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Malignant mesothelioma (MM) is a relatively rare but devastating tumor that is increasing worldwide.
Yet, because of difficulties in early diagnosis and resistance to conventional therapies, MM remains
a challenge for pathologists and clinicians to treat. In recent years, much has been revealed regarding
the mechanisms of interactions of pathogenic fibers with mesothelial cells, crucial signaling pathways,
and genetic and epigenetic events that may occur during the pathogenesis of these unusual, plei-
omorphic tumors. These observations support a scenario whereby mesothelial cells undergo a series of
chronic injury, inflammation, and proliferation in the long latency period of MM development that may
be perpetuated by durable fibers, the tumor microenvironment, and inflammatory stimuli. One culprit in
sustained inflammation is the activated inflammasome, a component of macrophages or mesothelial
cells that leads to production of chemotactic, growth-promoting, and angiogenic cytokines. This
information has been vital to designing novel therapeutic approaches for patients with MM that focus
on immunotherapy, targeting growth factor receptors and pathways, overcoming resistance to
apoptosis, and modifying epigenetic changes. (Am J Pathol 2013, 182: 1065e1077; http://dx.doi.org/
10.1016/j.ajpath.2012.12.028)
Supported by grants from the Mesothelioma Applied Research Foun-
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National Cancer Institute grant P01 CA11407 (project 2, B.T.M.), and in
part by the Intramural Research Program of the NIH National Cancer
Institute, Center for Cancer Research (A.T. and R.H.)
Malignant mesotheliomas (MMs), among the most aggres-
sive tumors, arise most often from the mesothelial cells that
line the pleura, peritoneum, and, occasionally, the pericar-
dium. Because of the multifaceted properties of mesothe-
lium that maintain a protective barrier but also produce
components of the extracellular matrix, hyaluronan and
other lubricants, chemokines and cytokines, and fibrinolytic
and procoagulant factors, understanding its complex biology
is a challenge. The intermediate filament pattern of meso-
thelial cells, suggesting an epithelialemesodermal hybrid
morphology, and their several patterns of differentiation
during the neoplastic process suggest their transformation to
malignancy is complicated and raises the question of
whether one is studying a single tumor type or multiple
subgroups of tumors.
stigative Pathology.
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MMs are most commonly attributed to occupational expo-
sures to asbestos, a regulatory term for a group of fibrous
silicates that occur as needle-like amphiboles (crocidolite,
amosite tremolite, anthophyllite, and antigorite) or curly ser-
pentine (chrysotile) fibers. Although each of these fibers has its
own distinctive properties, the fibrous nature and bio-
persistance of these inhaled fibers may be key to carcinogenic
events that occur during the long latency periods (mean, 30 to
45 years) of most MMs. Most intensely investigated are

Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_surname
mailto:brooke.mossman@uvm.edu
mailto:brooke.mossman@uvm.edu
http://dx.doi.org/10.1016/j.ajpath.2012.12.028
http://dx.doi.org/10.1016/j.ajpath.2012.12.028
http://dx.doi.org/10.1016/j.ajpath.2012.12.028
http://ajp.amjpathol.org
http://dx.doi.org/10.1016/j.ajpath.2012.12.028


Figure 1 Properties of chrysotile (white) asbestos. A: Image of bundle of curly chrysotile fibers before processing. B: Scanning electron micrograph of
chrysotile fibers (arrows) causing deformation of red blood cells. Chrysotile is positively charged, hemolytic, and cytolytic, primarily due to its magnesium
content. Leaching of magnesium renders chrysotile less toxic and also results in chrysotile fiber dissolution over time. C: Scanning electron micrograph of
interaction of long chrysotile fiber with the respiratory epithelium of the alveolar duct junction after inhalation by rats. Arrowheads show points of contact
with and between epithelial cells. Subsequent penetration into and between cells leads to fiber deposition in the lung interstitum and access to the visceral
pleura and pleural space. D: Polarized microscopy showing chrysotile fibers and fibrils. Photomicrograph is a courtesy of Lee Poye (J3 Resources, Inc., Houston,
TX) Original magnification, �100.
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chrysotile, the most commonly used type of asbestos histori-
cally (>90%useworldwide), and crocidolite, the asbestos type
associated most often with MMs in humans1,2 (Figures 1
and 2). The morphology of crocidolite asbestos is similar to
nonasbestos fibers of erionite or Libby amphibole, other
naturally occurring minerals associated with the development
of MMs.5,6 However, 20% to 25% of individuals with MM
have no documented exposure to asbestos or other fibers,
suggesting familial susceptibility (sporadic or idiopathicMM),
unknown exposure to in-place or naturally occurring asbestos,
or other causative agents, such as chemicals, radiation, and
viruses.7

Because asbestos fibers neither appear to be metabolized
nor directly interact with DNA, they are unlike most
chemical carcinogens. The sensitivity of human mesothelial
cells to fibers of high aspect (length to diameter) ratio is also
perplexing, as are the phenomena governing fiber transport
to the parietal pleura where most MMs are thought to
develop. Although much insight exists on understanding
how fibers (particularly high iron-containing amphibole
asbestos types) generate reactive oxygen and nitrogen
species to induce inflammation and cell signaling pathways
1066
important in proliferation and transformation, how these
cellular events converge in the pathogenesis of MM remains
enigmatic. This review amalgamates current observations in
the field and their implications in strategies to prevent and
manage MMs in patients.
Diagnosis of MMs

Detection of MMs is historically difficult and often occurs at
a late stage, in part accounting for the poor prognosis of patients.
A panel of staining approaches is necessary to ascertain MMs
and discriminate pleural MMs from lung carcinomas or peri-
toneal MMs from ovarian and peritoneal adenocarcinomas.8,9

Several major histologic types (eg, epithelioid, sarcomatoid,
biphasic, desmoplastic, or fibrotic) and more than a dozen
subtypes of MMs exist, further complicating diagnosis using
pathologic analysis. Moreover, no specific associations
between exposure to different fiber types and the pathogenesis
of distinct MM tumor subtypes have been reported. Since
phenotypic heterogeneity within a tumor type arises by two
principal mechanismsdreproducible genetic or epigenetic
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 Properties of crocidolite, or blue, asbestos. A: Riebeckito ore showing veins of crocidolite asbestos fibers (arrow) before processing. B: Scanning
electron micrograph showing morphology of needle-like fibers. C: Early penetration of a crocidolite fiber into the differentiated tracheobronchial epithelium in
tracheal organ culture. D: Growth of metaplastic cells over long fibers of crocidolite observed at 1 month in this model.3 These events have not been captured
in the pleura in animal inhalation models or in clinical specimens in humans, but mesothelial cells undergo proliferation, as measured by cell counts, or
immunochemical markers have been observed in response to crocidolite asbestos in vitro and after inhalation by rats.4

Pathogenesis/Treatment of Mesothelioma
events that produce distinct patterns of gene expression from the
same precursor cell or tumors arising from different subsets of
cells within a tissueddiagnostic tests based on epigenetic
profiles10,11 or down-regulated miRNAs12 have been sug-
gested, particularly because these may be used on small
amounts of cells in pleural or peritoneal effusions. However,
these new diagnostic tests need further substantiation, and
histopathologic analysis is the accepted diagnostic tool for
MMs.13
Plasticity of Mesotheliomas

The histologic features of normal mesothelium from different
body cavities are generally indistinguishable, although global
gene expression studies suggest that there may be phenotypic
differences between the mesothelium of the pleural and
peritoneal cavities.14 Mature mesothelial cells are commonly
flat and thin. However, at some anatomical sites and in
The American Journal of Pathology - ajp.amjpathol.org
response to injury, cuboidal or columnar mesothelial cells are
observed, and these cells differ from squamous-like meso-
thelial cells in organelle distribution and nuclear ultrastruc-
ture.15 The precise relationship between these cellular
variants is unknown, but studies on the regeneration of
mesothelium in response to injury suggest they do not arise
from a subserosal progenitor cell.16 Rather, in response to
pleural injury, surfacemesothelial cells at the edge of awound
increase their proliferation rate, as domesothelial cells distant
to the injury. In the pleural cavity, even free-floating meso-
thelial cells contribute to regeneration of mesothelium after
injury.16 The fact that phenotypic variations in MMs are
influenced by growth factors in vitro suggests that both
mesothelial and MM cells have autocrine and paracrine
cytokine pathways that contribute to plasticity of neighboring
cells.

Mature, adult mesothelial cells may or may not have
an innate capacity for phenotypic change or adaptation,
but clearly mesothelial cells contribute to developmental
1067

http://ajp.amjpathol.org


Mossman et al
processes in unexpected ways. In the mouse lung, only
mesothelial cells express the WT1 gene, and by using this
locus for lineage tracing, it has been shown that smooth
muscle cells are derived from surface mesothelium that
populate the walls of pulmonary blood vessels.17 Using the
same WT1 locus for lineage tracing, others demonstrate that
during development of mouse liver, both mesothelial cells
and submesothelial cells contribute to the generation of
hepatic stellate cells and perivascular mesenchymal cells.18

Analysis of populations of human pleural MM cells
suggests that these tumors may also contain subpopulations
of precursor cells with cancer stem cell properties.19 Given
that mesothelial cells have stem cellelike properties during
development and there appear to be distinct subpopula-
tions,16 it seems unlikely that the variations in MM tumor
pathology are simply a consequence of unique patterns of
genetic events arising in the same precursor cell. Most
likely, transformation occurs in distinct, vulnerable pre-
cursor cell populations. For example, most pleural MMs
appear to arise from the parietal pleura, and longer, more
pathogenic asbestos fibers may be trapped during drainage
of fluid through stomata on the parietal surface, leading to
preferential development of neoplasms at these sites.20 This
hypothesis raises the possibility that a unique target pop-
ulation of mesothelial cells is located in the parietal pleura
near or within stomata.
Uniqueness of Mesotheliomas

Like other solid tumors, the pathogenesis of mesothelioma is
thought to occur in a stepwise fashionwith cells progressively
acquiring traits, including self-sufficiency for mitogenic
signaling, suppression of apoptosis, unlimited capacity for
cell replication, genetic instability, tissue invasion, and
metastasis. Because tissue specimens representing reactive or
intermediate stages of MM are not generally available,
information on the pathogenesis of human MMs has been
acquired from studying patient specimens, human MM cell
lines, and animal models. Functional and molecular analyses
indicate that MMs display some of the hallmarks of most
cancers, but many oncogenic events typical to other tumor
types are uncommon in MM. For example, activation of the
Ras oncogene is common in pancreatic, lung, and other solid
tumors but rarely observed in mesothelioma.21e23 Similarly,
inactivation of the tumor suppressor genes TP53 or RB1 does
not occur in MMs at the frequency observed in many other
solid tumors. For some malignant tumors, such as colorectal
cancer, stepwise genetic perturbations in oncogenes and
tumor suppressor genes during the progression to malignancy
have been defined. This is not the case with MMs, although
enhanced mesothelial cell proliferation (reviewed in Heintz
et al24) and suppression of apoptosis are assumed to represent
early steps in tumor initiation. How asbestos contributes to
these events is not well understood, although long amphibole
fibers may act as stimulatory platforms for cell growth and
1068
metaplasia3 or interact with growth factor receptors on
mesothelial cells.
Molecular Mechanisms in the Pathogenesis of
Mesotheliomas

MMs display a wide array of defects in mitogenic signaling
pathways and disruption of cell cycle control. In addition,
like other solid tumors, persistent activation of the canonical
receptor tyrosine kinase (RTK)/Ras/ERK1/2 and phospha-
tidylinositol 3-kinase/Akt pathways are common features of
MM cells.25e29 RTK/SOS/Ras/ERK and phosphatidylino-
sitol 3-kinase/Akt link mitogenic signaling to cell cycle
progression. These signaling pathways can be dysregulated
by i) aberrant activity of RTKs; ii) alterations in signaling
adaptor proteins; iii) constitutive activation of GTPases,
such as Ras and Raf; and iv) overexpression of target
transcription factors or inactivation of negative regulators.
Mitogenic signaling pathways converge on core cell cycle
genes and loss of cell cycle checkpoints cooperates with
dysregulation of signaling to promote cell proliferation and
survival.
Mesothelial cells also respond to an unusually broad array

of growth factors, including epidermal growth factor (EGF),
keratinocyte growth factor, hepatocyte growth factor, tumor
necrosis factor (TNF)-a, IL-8, fibroblast growth factors, and
insulin-like growth factor 1) (reviewed in Heintz et al24 and
Sekido30). MM cell lines commonly display phosphoryla-
tion of multiple RTKs with phosphorylation of epidermal
growth factor receptor (EGFR) and MET being the most
prominent among 42 RTKs studied.30 Combinatorial inhi-
bition of MET and EGFR has stronger effects on inhibition
of MM cell proliferation than either factor alone,30 a ratio-
nale for combination targeted therapy in patients.
Tumor suppressor proteins that negatively regulate the

cyclin D1 regulatory axis are also common in MMs. For
example, inactivation of the NF2 gene, either by homo-
zygous deletion or mutation, is observed in 40% to 50%
of mesotheliomas.31 NF2 encodes Merlin, a membrane-
cytoskeleton protein regulated by Rac/PAK signaling, and
recent work indicates that it suppresses mitogenic signaling
by sequestering growth factor receptors.32 In tumor cells,
NF2 inhibits cell cycle progression by repressing expression
of cyclin D1,33 which controls S phase entry by phosphor-
ylation of the retinoblastoma tumor suppressor protein and
activation of the transcription factor E2F1. A second regu-
lator of cyclin D1 kinase activity, the tumor suppressor
p16(INK4a), is also deleted with high frequency in meso-
thelioma, and inactivation of both p16 and p19 (Arf)
cooperate to accelerate asbestos-induced MMs.34 In a mouse
model of asbestos carcinogenesis, heterozygous NF2þ/ mice
develop peritoneal MMs more quickly and with a higher
frequency than the wild-type mice.35 Interestingly, tumors
from heterozygous NF2 mice also showed frequent homo-
zygous deletion of the p16Ink4a/p19Arf gene locus.
ajp.amjpathol.org - The American Journal of Pathology
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Consistent with these observations, global gene expression
studies indicate that regulation of E2F1 may represent
a central control node in MM cell proliferation,36 and
aberrant expression of cell cycle regulatory genes may
predict survival in MM patients.37

Asbestos fibers induce dose-related proliferation and cell
death in mesothelial cells, responses dependent on fiber type,
size, duration of exposure, and the cell cycle phase of the target
cell. At lowdoses, asbestos induces some production of reactive
oxygen species (ROS) and mitogenic signaling, whereas cyto-
toxic doses of asbestos induce massive oxidant release, deple-
tion of glutathione,38 mitochondrial dysfunction,39 and both
apoptotic and necrotic cell death.40Asbestosfibers dimerize and
activate EGFR,41,42 and both EGFR and b1-integrin may up-
regulate signaling through activation of the AKT and ERK
pathways.43,44 Activation of ERK culminates in induction of
AP-1, a heterodimeric transcription factor composed of
members of the c-Fos and c-Jun proto-oncogene families. The
c-Fos family member Fra-1 is the primary component of AP-1
required for MM cell growth.45 Moreover, the JUN gene and
transcription factor are amplified in some human MMs.46 The
strength and duration of ERK1/2 phosphorylation may be
important in governing cell proliferation or death because
persistent activation of nuclear ERK1/2 by crocidolite asbestos
results in down-regulation of cyclin D1 and apoptotic cell
death.47 Recently, individual members of the ERK family have
been implicated in chemoresistance of MMs.48 The enhanced
ability of mesothelial cells to respond to asbestos fibers,
oxidants, and a wide array of growth factors that induce
Figure 3 A schematic diagram indicating the main players in transformation of m
oxidants, leading to phosphorylation of RTKs, mitogen-activated protein kinases, and
may be initiated by cytokines such as TNF-a produced by macrophages or mesothe
mesothelial cells and may impinge on early-response proto-oncogenes, such as fra-1
scription factors; these encodegenes promoting cell proliferation, inflammation, and g
asbestos fibers, genetic changes over timemay include transientmutations by ROS tha
genes. It is unclear whether thesemutations are directly relevant to the pathogenesis o
tumor suppressor genes. Modified from Heintz et al.22
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dysregulation of mitogenic signaling inMMs and loss of tumor
suppressor proteins may govern the pathogenesis of MMs
(Figure 3). For example, redox-regulated transcription factors
(ie, FOXM150), redox-sensitive proteins (ie, thioredoxins51),
and antioxidants52 have recently been used successfully as
biomarkers,51 targets,50 and inhibitors52 of MM.
Genetic and Epigenetic Events in
Mesotheliomas

Although 70% to 80% of MMs are associated with occupa-
tional exposures to asbestos, <5% of asbestos workers
develop MMs.53 These observations suggest there are
significant interindividual barriers to tumorigenesis and
genetic and other factors (eg, DNA repair) that affect
susceptibility to and MM induction by asbestos fibers. For
example, germline mutations in the tumor suppressor gene
BAP1 are associated with familial MMs.54 Studies examining
oxidative DNA damage on a number of cell types in vitro
indicate that asbestos fibers, particularly high iron-containing
types, are capable of inducing mutagenic lesions consistent
with exposure to ROS,55 as well as DNA repair by the base
excision DNA repair enzyme apurinic endonuclease,56,57 and
other DNA repair enzymes,58 but as yet no signature of
oxidative DNA damage has emerged from studies of human
MMs. A unique signature associated with asbestos fiber
exposures and carcinogenesis may exist, but this can only be
demonstrated by determining genomic sequences in a large
esothelial cells to MMs. Several receptors are activated directly by asbestos or
stimulation of growth-promoting or antiapoptotic (survival) pathways that also
lial cells.40,49 Cell-signaling cascades, such as ERKs, may govern plasticity of
, to modulate c-Jun recruitment to form AP-1, NF-kB, FOXO, and other tran-
enetic instability. In subsets ofMMs ormesothelial cells exposed to pathogenic
t are subsequently repaired andmutations in genetic susceptibility or cell cycle
f MMs. Epigenetic changes during carcinogenesismay be critical to silencing of
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number of MMs. Other studies have documented epigenetic
events (eg, DNA methylation profiles)10,11 and miRNA
signatures59,60 that may be helpful in understanding the
prognosis of MMs.
Chronic Inflammation and Proliferation in the
Pathogenesis of MMs

Inhalation studies have found that asbestos induces an
acute inflammatory response at sites of deposition of fibers
that is typified by elaboration of inflammatory cytokines,
recruitment of macrophages and neutrophils, and airway
epithelial cell proliferation (reviewed in Mossman et al4).
These inflammatory changes are followed by mesothelial
cell proliferation after inhalation of crocidolite asbestos by
rats.

On the basis of these observations, it is biologically plausible
that an endless sequence of inflammatory episodes during the
development of MM predisposes individuals, especially those
exposed occupationally to oxidant-generating asbestos fibers,
to malignant tumors. For example, the increased pathogenicity
of long asbestos fibers may depend on their ability to be
retained for longer periods in the pleura, producing repeated
injury, tissue repair, and local inflammation.61,62 Inflammation
by mesotheliomagenic fibers may reverse normal transpleural
pressure, resulting in a net flow of fluid and fibers directly into
the pleural space from the underlying lung parenchyma.63

Mesothelial function is likely altered either directly or indi-
rectly by chemokines or cytokines released fromepithelial cells
of the lung, alveolar, or pleural macrophages. We recently
reported in primary isolates and a telomerase-immortalized
human mesothelial cell line that crocidolite asbestos caused
increased gene expression and release of inflammatory medi-
ators, including IL-13, basic fibroblast growth factor, vascular
endothelial growth factor (VEGF), and granulocyte colony-
stimulating factor.64,65 In vivo experiments confirm that
1070
increased levels of many of these chemokines and growth
factors precede MM development in an intraperitoneal mouse
model of MM.66

Novel studies show that inhaled chrysotile fibers and
crocidolite asbestos in vitro activate the NLRP3 (NALP3)
inflammasome, a cytoplasmic protein complex that is required
for secretion of the cytokine IL-1b, in humanmacrophages and
monocytes.67 The inflammasome is activated by a redox-
dependent mechanism through oxidation of thioredoxin-
interacting protein 1, which, in macrophages, results from
oxidants produced by a NADPH oxidase during unsuccessful
phagocytosis of long fibers. In response to inhalation of
asbestos, recruitment of inflammatory cells and production of
cytokines are reduced significantly in NLRP3 knockout
mice.67 Surprisingly, human mesothelial cells also express
components of the NLRP3 inflammasome and produce
NLRP3 inflammasomeedependent cytokines and high-
mobility group protein 1 in response to crocidolite or erion-
itefibers.49Because critical cytokines are blockedwith an IL-1
receptor antagonist, both in vitro and in a xenograft model of
MM development,65 pathogenic fibers induce an autocrine
pathway in human mesothelial cells that initiates and sus-
tains inflammatory responses (Figure 4). This model also
acknowledges the contributions of macrophages in initial
inflammation and the tumor microenvironment [ie, tumor-
associated macrophages (TAMs)]. In agreement with our
hypothesis that asbestos and oxidants perpetuate a chronic
inflammatory environment for MMs, exposure to crocidolite
asbestos leads to ROS-dependent, transcriptional suppression
of FUS1/TUSC2, a novel tumor suppressor gene, in MMs.68

Several studies have found that inflammatory profiles can
be used as prognostic and therapeutic indicators of MM. For
example, IL-6 is a multifunctional cytokine that regulates
immune response and inflammation, and its overproduction
has been shown to underlie a number of malignant tumors,
including MMs. Others have investigated blood neutrophil-
to-lymphocyte ratio and other inflammation-based prognostic
Figure 4 The NLRP3 (NAPL3) inflammasome is
a key player in initiation of inflammation and
release of chemokines and cytokines in human
mesothelial cells and macrophages in response to
long, pathogenic fibers. ROS appear to play a role
in both activation of NADPH during phagocytosis
and lysosomal degradation, which then releases
asbestos fibers into the cytoplasm, where they
interact with NLRP3 and induce caspase-1 activity.
As a consequence, mature IL-1b, high-mobility
group protein 1, and IL-1berelated cytokines are
released into the tumor milieu, creating episodic
bouts of cell injury, inflammation, and compen-
satory proliferation. Levels of these key inflam-
matory factors are reduced in mesothelial cells
transfected with small-interfering NLRP3 and
enhanced in the presence of TNF-a released by
mesothelial cells, TAMs, and macrophages in the
tumor environment.49,67
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factors in MM patients.69,70 These studies found that the
neutrophil-to-lymphocyte ratio is an independent predictor of
survival for patientswithMMundergoing systemic therapy.69

Moreover, these indices correlate with sustained neoangio-
genesis and increased proliferation.70

TAMs recently have been associated with MMs and exist
in two major phenotypes: the M1 (antitumor) macrophage,
whichmaymodulate tumor cell death, and theM2 (protumor)
phenotype, which may be critical to the development of cell
proliferation and survival, angiogenesis, and tumor invasion.
In a hypoxic tumor microenvironment, TAMs can undergo
further modification of function and/or modulation or
suppression of immunostimulatory cytokines. For example,
TAMs assuming an immunosuppressive phenotype may also
suppress the infiltration of neutrophils inducing proin-
flammatory events and ROS.71 An intriguing preventive and
therapeutic possibility is the conversion of M2 to M1 TAMs
in MMs and other solid tumors.72

Management of MMs

Conventional Therapies

Poor performance status, nonepithelioid histology, male sex,
anemia, thrombocytosis, and leucocytosis are the major
indicators of poor prognosis in mesothelioma.73 The rarity of
disease, the limited number of patients in individual trials, and
the difficulty in objectively assessing response are challenges
in studying effective therapies. Although the role of surgery is
not fully established, current guidelines recommend surgery
for patients with clinical stages I through III MM if they are
deemed medically operable based on cardiopulmonary eval-
uation and tolerance. Because surgical procedures themselves
rarely result in a complete resection, they are usually per-
formed as part of a multimodal approach, consisting of
chemotherapy, surgery, and sometimes radiotherapy. Che-
motherapy is the default treatment for patients with stage IV
disease, sarcomatoid histology, and medically inoperable
stage I through III disease and is used in multimodal therapy
for patients with operable disease.74

Surgery

MMs have a specific propensity for adhesion and growth on
mesothelial cells that can be related to expression of the cell
adhesion molecule 1.75 Adhesion and migratory factors,
including mesothelin76 and CD44,77 frequently promote
localized intracavitary growth rather than distal metastasis
of MMs. For these reasons, surgery and cytoreductive
procedures in pleural MM are used, including extraple-
ural pneumonectomy (EPP) and pleurectomy/decortication
(P/D), which spare the lung. The role of surgery in MM and
the choice of surgical procedure has been a subject of much
controversy.78 Because of the lack of randomized trials,
clinical data to guide the selection of surgical procedure are
largely derived from observational studies performed in
The American Journal of Pathology - ajp.amjpathol.org
tertiary referral centers that treat selected groups of patients.
These series are biased with heterogeneous and selected
patient populations, lack of control groups of nonsurgically
treated patients, variable surgical techniques, and choice of
variable adjuvant therapies.78

EPP [ie, en bloc resection of ipsilateral lung, pleura (pari-
etal and visceral), pericardium, and hemidiaphragm] repre-
sents the most aggressive surgical option. The potential
benefits of EPP include complete resection of all gross tumors
and ability to deliver high-dose adjuvant hemithoracic radi-
ation therapy. EPP is associated with high morbidity and
mortality. In retrospective studies, themedian overall survival
of patients with resectable tumors that undergo EPP-based
multimodality therapy ranged from 14 to 19 months.79e81

The Mesothelioma and Radical Surgery trial, the only re-
ported randomized trial that compared EPPwith a nonsurgical
approach, randomized patients who completed platinum-
based induction chemotherapy to EPP (n Z 24) followed
by postoperative hemithoracic radiation therapy or no EPP
(n Z 26).82 Only 16 patients assigned to EPP completed
surgery, and 8 received hemithoracic radiation therapy.
Patients in the EPP group had inferior median overall survival
of 14.4 versus 19.5 months for the non-EPP group. In
a systematic review of 2320 patients who underwent EPP in
34 studies, a similar overall survival was found, ranging from
9.4 to 27.5monthswith 30-daymortality from0% to 11.8%.80

P/D or lung-sparing surgery consists of complete removal
of the involved pleura and all macroscopic tumors and is
termed extended or radical P/D when the diaphragm or
pericardium is resected.83 P/D has been evaluated in an effort
to provide macroscopic clearance of disease with lower
morbidity and mortality. The efficacy of P/D is limited by the
inability to provide effective postoperative radiation treat-
ment due to the risk of lung toxicity. There are no randomized
trials comparing the outcomes of P/D with either a nonsur-
gical approach or EPP. P/D was found to be associated with
only a marginal survival benefit compared with EPP [hazard
ratio (HR) for survival with EPP Z 1.4; P < 0.001].

Pleurodesis is a less invasive surgical procedure aimed
primarily at palliation of dyspnea and pain arising from
rapidly accumulating pleural effusions. It consists of pleural
fluid drainage by tube thoracostomy or video thoracoscopy
followed by instillation of an irritant (often sterile talc) to
obliterate the pleural space.

Local adjuvant therapies are used to potentially overcome
high rates of local recurrence after surgery by exposing tumor
tissue to very high concentrations of active agents, while
sparing the ipsilateral and contralateral lung parenchyma and
adjacent critical organs. These therapies include intrapleural
immunotherapy,84 chemotherapy with or without hyper-
thermia,85 and photodynamic therapy.86 Photodynamic therapy
uses a nontoxic photosensitizing drug that when activated by
the appropriate wavelength of visible light produces ROS that
can trigger a number of tumoricidal cascades. These local
therapies are usually administered as adjuvant treatments after
surgical debulking. In summary, the benefit to any form of
1071
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surgical cytoreduction in addition to systemic treatment remains
unproven because of the lack of controlled studies. EPPmay be
an option for very highly selected patients with epithelial
histology, operable early-stage disease, no nodal metastases,
good performance status, and no comorbidities,74,79,87 whereas
P/D may be considered for patients with operable advanced
disease,mixed (biphasic) histology, poor performance status, or
comorbidities.74,88 In patients with metastatic disease or sar-
comatoid histology, surgery is not recommended, but experi-
mental studies suggest that the latter tumor type is particularly
sensitive to oxidative stress and is inhibited by selenite,89

a potential new approach for therapy.

Radiation Therapy

Although MM is sensitive to radiation, the pattern of spread
surrounding the lung, proximity to heart, spinal cord, and other
organs and its large surface area rather than localized bulk
limit the delivery of therapeutic doses of radiation without
serious toxic effects.90 Hence, the use of radiation therapy is
limited to a single modality for palliation of symptoms90 and
as part of a multimodality approach to improve local control
after pneumonectomy.79 Improvements in radiation therapy
planning and delivery, for example, intensity-modulated
radiation therapy (IMRT), allow better dose distribution to
regions at risk of recurrence and reduced radiation to
surrounding organs.91 In the largest study to date, patients
received IMRT (median dose, 45Gy)with curative intent after
EPP.92 Although excellent local control was achieved (13%
locoregional failure), median overall survival was limited to
only 14.2 months by distant metastases.

Chemotherapy

Because the benefits of single-agent first-line or second-line
chemotherapy are limited, the current standard of care for
first-line chemotherapy is cisplatin and pemetrexed (a folate
inhibitor), the only first-line therapy approved by theUS Food
and Drug Administration for patients ineligible for surgery.
Two randomized clinical trials established the survival
benefit with cisplatin-based doublet chemotherapy over
single-agent cisplatin.93,94 Compared with cisplatin alone,
cisplatin plus pemexetred has been associated with improved
response rates (41.3% versus 16.7%; P < 0.0001), longer
time to progression (median, 5.7 versus 3.9 months; P Z
0.001), and overall survival (median, 12.1 versus 9.3 months;
HRZ 0.77,PZ 0.020). Cisplatin combined with 3mg/m2 of
raltitrexed, a quinazoline folate analog that is a pure and
specific thymidylate synthase inhibitor,93 also resulted in
improved response rates (23.6% versus 13.6%; P Z 0.056)
and survival (11.4 versus 8.8 months; HR Z 0.76; 95% CI,
0.58 to 1.00; P Z 0.48) compared with cisplatin alone.
Carboplatin may be an alternative for cisplatin based on
results of two phase II studies and an International Expanded
Access Program, which showed similar activity between the
two platinum analogs.95,96
1072
Novel Therapies

As discussed, recent advances inDNA sequencing technology
have provided a comprehensive view of MM genomes, tran-
scriptomes, and epigenetic components. Despite an improved
understanding of the mesothelioma genome, the translation of
genomic data to identification of novel therapeutic targets has
proven challenging.97 Mitotic checkpoints, histone deacety-
lases (HDAC),98 EGFR, and factors promoting angiogenesis
are among the targets being evaluated for therapeutic inhibi-
tion in MM.

Epigenetic Modulations

A family of histone acetyltransferases and HDACs regulate
tumor suppressor genes through chromatin condensation and
decondensation. Their inhibition alters gene expression and the
function of a wide range of proteins and cellular pathways
regulating cell proliferation, differentiation, and cell death. No
responses were observed in a phase II trial of belinostat, an
inhibitor of class I and II HDACs, in recurrent MM.99 On the
basis of the in vitro proapoptotic effect of valproic acid and its
synergy with doxorubicin, a phase II study tested the combi-
nation of valproic acid and doxorubicin in patients with MM
after prior platinum based chemotherapy (n Z 45). Seven
partial responses (16%) and two treatment-related deaths were
observed, with a median survival of 6.7 months and a progres-
sion-free survival of 2.5months.100 In a phase I trial, vorinostat,
an orally administered HDAC inhibitor, had some clinical
benefits among 13 patients with MM.101 A phase III random-
ized, double-blind, placebo-controlled trial of vorinostat, in
patients with advanced MM previously treated with systemic
chemotherapy, failed to demonstrate improvement in overall
survival (primary end point) (median, 31 weeks for the vor-
inostat group versus 27 weeks for placebo).102 A phase I/II trial
evaluating frontline vorinostat with pemetrexed/cisplatin in
patients with MM is ongoing (NCT01353482).

Signaling Pathway Inhibition

As shown in Figure 3, EGFR is dimerized by asbestos fibers
and up-regulated, mutated, and/or tyrosine-phosphorylated in
some MMs, resulting in downstream activation of the
mitogen-activated protein kinases, ERK1/2 and 5, and/or the
AKT pathway. Although EGFR is overexpressed in 44% to
97% of MM specimens, no consistent association has been
demonstrated between EGFR expression and outcome in
MM.103 Moreover, in phase II trials, gefitinib or erlotinib,
both orally administered, ATP-competitive, small-molecule
EGFR tyrosine kinase inhibitors, demonstrated no significant
clinical activity in front-line treatment of patients with unre-
sectable MM.104,105 The apparent lack of clinical activity of
EGFR inhibition despite EGFR expression and activation in
mesothelioma is the subject of ongoing investigation.106

Absence of mutations in the EGFR kinase domain in
patients with mesothelioma; concurrent activation of multiple
ajp.amjpathol.org - The American Journal of Pathology
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RTKs, including EGFR and MET; PTEN loss; and the
resultant activation of AKT may be possible mechanisms of
resistance to EGFR inhibition. Recent multiagent studies
suggest the efficacy of combinations of RTK inhibitors and
inhibition of the RTK chaperone heat shock protein 90.107

Role of Antiangiogenesis

The role of antiangiogenesis as a prognostic marker for
therapeutic targeting remains controversial. Although some
studies convincingly demonstrate increased angiogenesis in
MM as a factor predicting poor prognosis, others do not
(reviewed in Ceresoli and Zucali95). Single-agent targeting
with bevacizumab (a monoclonal antibody against VEGF),
thalidomide, and VEGF receptor tyrosine kinase inhibitors
have failed to alter the course of MM.108e110

As illustrated in Figure 3, some MMs may harbor mu-
tations in tumor suppressors and/or oncogenes, which
impair several DNA damage checkpoints by inhibiting the
activity of multiple kinases involved in G2 arrest. In a phase
I dose-escalation study, CBP501 (a G2 checkpoint abro-
gator) in combination with cisplatin produced clinical
activity in three of eight patients with MM.111 A phase II
part of a phase I/II trial is evaluating cisplatin and peme-
trexed combined with CBP501 in MM patients and has
completed accrual (NCT00700336).

Immunotherapies

The overexpression of unique proteins and the development of
MMs in a tumor environment of chronic inflammation have
prompted immunotherapeutic strategies for MM, including
dendritic cell (DC) and WT1 analog peptide vaccines and
antibodies targeting mesothelin. WT1 is a transcription factor,
which is commonly overexpressed in mesothelioma but has
limited expression in normal adult tissues.112,113DCs are potent
antigen-presenting cells found in peripheral tissues that induce
activation and proliferation of CD8þ cytotoxic T lymphocytes
and helper CD4þ lymphocytes. In a pilot trial, administration of
vaccine comprising four WT1 analog peptides, following
stimulation of injection sites with granulocyte-macrophage
colony-stimulating factor in nine MM patients with WT1-
expressing tumors, resulted in induction of immune responses
in most patients.112 In a phase I study, autologous tumor lysate
pulsed DCs were well tolerated and induced immune responses
to tumor cells in MM patients who received them after a cour-
se of standard chemotherapy.114 Ongoing clinical trials are
evaluating both WT1 vaccine and DC-based immunotherapy
in MM (NCT01265433, NCT01241682).

Mesothelin

Mesothelin is an immunogenic glycoprotein that is highly
overexpressed in pancreatic, ovarian, nonesmall cell lung
cancers, and MMs and occurs at lower levels in normal
mesothelial cells.115 Thus, it is an attractive candidate for
The American Journal of Pathology - ajp.amjpathol.org
tumor-specific immunotherapy. SS1 (dsFv) PE38 (SS1P) is
a chimeric recombinant immunotoxin comprising anti-
mesothelin disulfide-stabilized murine-antibody Fv fused
to PE38, a 38-kDa portion of Pseudomonas exotoxin A. In
preclinical studies, SS1P was cytotoxic to mesothelin-
expressing cell lines and caused regression of mesothelin-
expressing tumor xenografts in nude mice.116 In phase I
studies, clinical activity was noted in a group of heavily pre-
treated patients with mesothelin-expressing cancers.117

Preclinical observations of synergistic antitumor activity of
SS1P in combination with chemotherapies led to a trial of
SS1P with six cycles of pemetrexed and cisplatin in front-line
therapy for patients with advanced MM.118,119 Among the 14
evaluable patients treated at all dose levels, the overall
response rate was 50%. Despite clinical activity, development
of neutralizing antibodies to SS1P within 3 weeks of initiation
precluded its use beyond two cycles.117 However, recent
observations suggest that host immune depletion with pen-
tostatin plus cyclophosphamide (a nonmyeloablative regimen,
including durable host T-cell functional defects) safely
prevents anti-immunotoxin antibody formation.120 An
ongoing pilot study is evaluating the safety and immunoge-
nicity of a conditioning regimen of pentostatin and cyclo-
phosphamide in combination with SS1P in MM patients who
have progressive disease after prior treatments, such as a plat-
inum-containing chemotherapy regimen (NCT01362790).

Amatuximab (MORAb-009) is a fully humanized, high-
affinity monoclonal chimeric IgG1/k antibody that targets
mesothelin. It was generated by fusing the genes encoding the
antimesothelin Fv (SS1 scFv) in frame with human IgG1 and k
constant regions.118 In preclinical studies, amatuximab elicited
antibody-dependent cellular cytotoxicity against mesothelin-
expressing tumor cell lines. In addition, combination of ama-
tuximab with chemotherapy led to a greater reduction in the
growth of mesothelin-expressing tumors in nude mice than
either amatuximab or chemotherapy alone and was well toler-
ated in a phase I study with low incidence of immunoge-
nicity.121 To date, disease stabilization has been observed in
several heavily pretreated patients, and an open-label, multi-
center, phase II clinical trial of combinationof amatuximabwith
pemetrexed and cisplatin for treatment of malignant pleural
mesotheliomawith progression-free survival as the primary end
point has recently completed accrual (NCT00738582).
Summary

This review illustrates how observations on key factors in
the pathogenesis of MMs leads to design of therapies based on
these experimental and preclinical studies. In concert, data
suggest that MMs are a complex, pleiomorphic group of
tumors with their phenotypes governed by a plethora of cyto-
kines and growth factors produced in an autocrine fashion or by
components of their microenvironment. Novel therapeutic
approaches have been based on exploiting mechanisms
important in the pathogenesis of MMs and might include
1073
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promising combined approaches using immunotherapy,
sequential blocking of antiapoptotic pathways,122,123 and tar-
geting cell-cycle promoting and susceptibility genes.124,125
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