
Pluripotent stem cells for cardiac regeneration: Overview of recent 
advances & emerging trends

Harsha Pawani & Deepa Bhartiya

Stem Cell Biology Department, National Institute for Research in Reproductive Health (ICMR),  
Mumbai, India

Received January 6, 2012

Cell based regenerative therapy has emerged as one of the most promising options of treatment for 
patients suffering from heart failure. Various adult stem cells types have undergone extensive clinical 
trials with limited success which is believed to be more of a cytokine effect rather than cell therapy. 
Pluripotent human embryonic stem cells (hESCs) have emerged as an attractive candidate stem cell 
source for obtaining cardiomyocytes (CMs) because of their tremendous capacity for expansion and 
unquestioned potential to differentiate into CMs. Studies carried out in animal models indicate that ES-
derived CMs can partially remuscularize infarcted hearts and improve contractile function; however, 
the effect was not sustained over long follow up periods due to their limited capacity of cell division in 
vivo. Thus, the concept of transplanting multipotent cardiovascular progenitors derived from ES cells 
has emerged since the progenitors retain robust proliferative ability and multipotent nature enabling 
repopulation of other myocardial elements also in addition to CMs. Transplantation of CMs (progenitors) 
seeded in biodegradable scaffold and gel based engineered constructs has met with modest success due to 
issues like cell penetration, nutrient and oxygen availability and inflammation triggered during scaffold 
degradation inversely affecting the seeded cells. Recently cell sheet based tissue engineering involving 
culturing cells on ‘intelligent’ polymers has been evolved. Generation of a 3-D pulsatile myocardial 
tissue has been achieved. However, these advances have to be looked at with cautious optimism as many 
challenges need to be overcome before using these in clinical practice. 
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Introduction

	 The adult human myocardium has limited 
regenerative capacity and the muscle lost during 
infarction due to ischaemia, is replaced by non-
contractile scar tissue ultimately initiating congestive 
heart failure. A typical human infarct involves the 
loss of a large number of cardiomyocytes. Although 
a broad array of treatment options are available, but 

conventional management of heart failure generally 
does not successfully replace lost cardiomyocyte 
mass or myocardial scar with new contractile cells. 
These issues have generated a lot of interest towards 
alternative treatment strategies.

	 Cell-based regenerative therapies have evolved 
quickly over the last decade and hold promise as a long 
term treatment strategy. Continuing research efforts are 



focused towards identifying endogenous or exogenous 
stem cells with the ability to differentiate into committed 
CMs and repopulate lost myocardium. As a result 
several cell types have been tested for cell based therapy 
including (Fig. 1) human foetal CMs, skeletal muscle 
myoblasts, smooth muscle cells, bone marrow-derived 
haematopoietic stem cells, mesenchymal stem cells, 
resident cardiac stem and progenitor cells, umbilical 
cord blood derived stem cells, adipose-derived stem 
cells, embryonic stem cells, induced pluripotent stem 
cells and recently very small embryonic like stem 
cells. Preclinical studies in animal disease models have 
indicated that some of these cardiogenic progenitors 
could contribute towards muscle replacement through 
endogenous reparative processes. The first clinical 
trial in patients produced some encouraging results, 
showing modest benefits mostly owing to favourable 
paracrine influence of stem cells on the disease 
microenvironment. A deeper analysis of the proposed 
paracrine effects revealed that the transplanted stem 
cells basically attenuated inflammation, increased 
angiogenesis, reduced apoptosis of the surrounding 
cells and promoted recovery of the injured tissue 
through wound healing1-9. However, there is a lot of 
disagreement regarding the ability of many of these 
cell types to truly differentiate into cardiomyocytes 
thus leading to controversies10,11.

	 Of all these cell types, bone marrow derived cells 
and skeletal myoblasts have been most extensively tried 
and tested in humans, but Phase I and II clinical trials to 
date have yielded mixed results12-18. Skeletal myocytes 
do not functionally integrate with the host cardiac 
tissue, are unable to form the appropriate gap junctions 
and arrhythmias have been induced when these cells 
are transplanted19. Though both these cell types were 
initially asserted to have cardiomyogenic potential, 
the preclinical studies have indicated otherwise20- 23. 
In contrast human embryonic stem cells (hESCs) 
derived from the inner cell mass of spare blastocyst are 
pluripotent and can self-renew and differentiate into 
all cell types including CMs. Among various stem cell 
sources considered so far, hESCs are more promising for 
realizing cardiac regeneration through cardiomyocyte 
replacement because of their qualities. Firstly, the 
cardiomyogenic potential of hESCs is well established 
contrary to many adult stem cell types which have been 
pursued for cardiac regeneration24-26. Secondly, hESCs 
have the property of multi-lineage differentiation and 
thus can also be differentiated into smooth muscle cells 
and endothelial cells, enabling them to repopulate all 
myocardial tissue elements, lost during infarction not 
just CMs. Thirdly, well established protocols exist for 
isolation, maintenance and differentiation of hESCs 
and their scale up. hESC-derived CMs (hESC-CMs) 

Fig. 1. Schematic representation of the various adult stem cell types tested for cardiac regenerative abilities, their mode of action and the 
various routes of delivery.
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exhibit robust proliferative capacity both in vitro25,27.28 
and in vivo29, and transplanted hESC-CMs survive in 
experimental rodents models of infarction, form stable 
cardiac implants, attenuate ventricular remodelling and 
preserve contractile function30-32.

Cardiogenic differentiation of hESCs

	 The ability of hESCs to differentiate into 
spontaneously contracting cardiomyocytes has piqued 
the interest of many investigators. This led to a spurge 
of interest in studying the molecular embryogenesis 
of heart and identifying the key growth regulators and 
signaling pathways involved in heart formation. Three 
major approaches are widely used to derive CMs from 
hESCs, as reviewed elsewhere also33, without any 
genetic modification viz. (i) spontaneous differentiation 
by embryoid body (EB) formation, (ii) differentiation 
by co-culture with a visceral endoderm like cell line, 
and (iii) directed differentiation of cells in serum free/
serum containing medium supplemented with various 
combinations of growth factors and small molecule 
inhibitors.

Embryoid body formation: CMs are one of the first 
cell types induced from pluripotent stem cells in EBs, 
where cell to cell interactions stimulate the expression 
of markers for mesodermal and early cardiac cell 
lineages34. Therefore, the first approach involves 
growing hESCs in suspension cultures or low adherent 
dishes or in hanging drops in a medium containing 
foetal bovine serum (FBS) resulting in formation of EBs 
which contract spontaneously post plating on gelatin 
coated dishes on around day 12 of culture24-26,35,36. The 
addition of growth factors and/or small molecules 
reducing oxygen tension, reducing insulin levels in 
the differentiation medium, electrical stimulation and 
aggregation in a novel v96 plate system are some of 
the approaches which have further enhanced directed 
differentiation of EBs to the cardiac lineage37-41.

Co-culture with END2 cells: This approach is based on 
co-culture of hESCs with a mouse visceral endodermal 
like cell line END-2 initially reported by Mummery 
et al42. During early embryonic development, it is 
known that the anterior endoderm secretes signaling 
molecules which guide the formation of the cardiogenic 
mesoderm in vivo and on similar premise co-culture 
of hESCs with END-2 cells induces beating within 
12 days of co-culture even in cell lines which do not 
undergo cardiogenesis spontaneously42. Further studies 
have improved the efficiency of END-2 associated 
differentiation by omitting serum from the cultures43, 

adding small molecule inhibitors44 and by eliminating 
insulin from the co-culture medium45.

Directed differentiation: This approach involves 
treating high-density cultures of undifferentiated 
hESCs sequentially with cardiogenic mesoderm 
inducers activin A/nodal, bone morphogenetic protein 
like BMP2 and BMP4, members of the canonical and 
non-canonical wnt signaling cascade, members of the 
fibroblast growth factor (FGF) family and inhibitors of 
certain pathways in a stage specific manner in a defined 
culture medium. Laflamme et al30 reported directed 
differentiation of hESCs in both suspension and 
monolayer cultures by sequential treatment with activin 
A and BMP4 in a serum free medium. This method 
has proved to be much more efficient than EB-based 
methods that has yielded >30 per cent CMs30. Later on 
Yang and colleagues46 improved the efficacy of this 
approach (40 - 50%) using stage specific addition of 
activin A, BMP4, FGF-2, vascular endothelial growth 
factor (VEGF) and the wnt signaling inhibitor dickkopf 
homolog 1(Dkk-1). This led to the gradual transition of 
hES cells through the primitive streak stage, nascent 
mesoderm, cardiogenic mesoderm eventually to form 
early multipotent cardiovascular progenitors (MCPs). 
The MCPs on clonal expansion in culture gave rise 
to CMs, endothelial cells and smooth muscle cells. 
Various other groups have used similar protocols with 
different combinations of cytokines to achieve cardiac 
differentiation47-49. A recent study by Parsons et al50 
reports nicotinamide (NAM) alone to be sufficient to 
induce the specification of cardio-mesoderm directly 
from pluripotent hESCs that further progressed to 
cardioblasts which in turn generated human beating 
cardiomyocytes with high efficiency. Several growth 
factors and small molecule inhibitors have been studied 
for their effects on cardiogenesis and consequently, 
human cardiomyogenesis in vitro is now becoming a 
process which, to a certain extent, can be effectively 
manipulated and directed. 

	 Cardiomyocytes obtained by differentiating 
hES cells have been extensively characterized by 
transcriptional, immunocytochemical, ultrastructural, 
and functional endpoints. Phenotypically hESC-CMs 
exhibit, spherical, triangular or multi-angular, spindle 
shaped or rod shaped morphologies with randomly 
organized sarcomeres and intercalated discs resembling 
foetal CMs and are for most part elongated, striated 
cells, demonstrating intercalated Z discs and tight 
junctions between adjacent cells24-26,51. Various groups 
have carried out transcriptome analysis of the hESCs 



differentiating into CMs52-56 and one study has analysed 
the molecular signature of hESC-CM clusters57. hESC-
CMs express a number of cardiac markers, including 
cardiac-specific transcription factors (Nkx2.5, 
Tbx5,Tbx 20,Mesp1 GATA4, MEF2c, and Isl1) 
sarcomeric proteins (cTNI, CTNT, sarcomeric MHCs 
and actins), and chamber-specific proteins (MLC2V 
and MLC2A and ANP) and ion channel genes24-26,58. 
These exhibit spontaneous beating activity, cardiac 
ionic currents specific to various developmental stages 
and nodal, atrial, and ventricular-like action potentials 
and generate a functional syncytium which has stable 
spontaneous pace making activity and synchronous 
action-potential propagation27, 59-63.

	 We have two in-house derived hES cell lines 
KIND1 and KIND264, which show good propensity 
to differentiate into endoderm and mesoderm, 
respectively65. We have successfully differentiated 
KIND2 to yield tripotent cardiovascular progenitors 
using all the three differentiation approaches. The results 
indicate that as compared to spontaneous and END2 
associated differentiation, directed differentiation of 
feeder-free KIND2 hES cells led to several folds higher 
expression of cardiac transcripts by quantitative-PCR 
(q-PCR66) and was therefore, the most efficient.

Cardiac regeneration using hESCs

First generation cell therapy: Pioneering preclinical 
studies were performed using mouse embryonic stem 
cells and these have laid the foundation for similar 
studies using hESCs67-74. Preclinical studies undertaken 
in both small and large animal disease models to assess 
the efficacy of hESC-CMs have been reviewed in 
the following sections. However, over the time it has 
become evident that since hESC-CMs are terminally 
differentiated, their beneficial effects on heart function 
were short-lived. The heart contains diverse muscle 
and non-muscle cell types and, therefore, regeneration 
of myocardium requires not just repopulation of 
functional CMs but also the development of a network 
of blood vessels (arterial and venous smooth muscle 
cells and endothelial cells) to support and nourish these 
newly formed CMs. This led to the hunt for a more 
primitive cell type which was multipotent and could 
proliferate more robustly. As a result, hESCs have 
been differentiated into early stage MCPs which have 
been shown to give rise to endothelial cells, smooth 
muscle cells and CMs both in vitro and in vivo post 
transplantation. The contributions of both these cell 
types towards cardiac regeneration have been discussed 
below (Fig. 2):

Fig. 2. Work flow (thin arrows) and associated issues (big curved arrows) with hES cells derived cardiomyocytes (hESC-CMs) and cardiac 
progenitors (hESC-CPCs) during cell therapy. hESC-CMs or hESC-MCPs need to be expanded in culture, enriched and either cryopreserved 
for future use or directly used for transplantation by various routes as indicated. Enrichment strategies include density based Percoll gradient 
centrifugation, FACS / MACS using specific early cardiac markers or by transgenic overexpression of cardiac specific genes. 
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Preclinical studies using terminally differentiated 
hESC-CMs: Most of the initial cardiac transplantation 
experiments were performed in the uninjured heart. 
Klug and colleagues75 were the first to show that 
CMs derived from mouse ESCs could be purified 
using genetic  selection and could form stable 
grafts in the mouse heart. Similarly when hESC-
CMs were transplanted into the uninjured hearts of 
immunocompromised mice, rats, and pigs, these 
formed grafts of human myocardium29,76-78. Initial 
studies demonstrated that hESC-CMs could survive 
and integrate functionally following transplantation 
into pig hearts. The only setback was that the cells 
did not appear to mature considerably in vivo at the 
transplantation site. Transplantation of hESC-CMs 
to uninjured nude rat hearts showed that the cells 
survived, proliferated, and formed myocardial tissue78. 
The cells matured over the 4-week study period, and 
notably, non-cardiac cells present in the xenografts 
were preferentially cleared from the rat hearts78. 

	 In experimental animal models of acute myocardial 
infarction (MI), beneficial effects on heart function 
have been reported after transplantation of hESC-
CMs to the injury site. However, the risk of teratoma 
formation was highlighted and the implanted cells, in 
one study, did not integrate with the host tissue and 
signs of reactive fibrosis were documented79. Caspi 
and colleagues31 demonstrated surviving hESC-CM 
grafts in infarcted rat hearts for as long as 8 wk post 
transplantation, as well as improved left ventricular 
dimensions and function in cardiomyocyte recipients 
versus controls at 4 and 8 wk post transplantation 
by echocardiography. They also showed that 
transplantation of undifferentiated hESCs resulted in 
the formation of teratomas and that predifferentiating 
the hESCs to CMs ex vivo significantly reduces teratoma 
formation upon transplantation in infarcted rat hearts. 
To enhance graft survival, Laflamme and colleagues30 
developed a pro-survival cocktail containing various 
anti-death factors, extracellular matrix - matrigel and 
survival factors which significantly improved survival 
of hESC- CMs in infarcted heart of nude rats. The 
grafts survived and were present even after 4 wk 
post transplantation and had remuscularized around 
11 per cent of the infarct zone with the recipient 
hearts showing preserved global contractile function, 
regional wall thickening and left ventricular dimension 
versus the control. Van Laake et al32 examined the 
transplantation of hESC-CMs in a murine model i.e. 
acutely infarcted immunodeficient (NOD-SCID mice) 

and reported the survival of hESC-CM graft cells 
for as long as 12 wk post-transplantation. Magnetic 
resonance imaging (MRI) performed at 4 wk post 
transplantation indicated beneficial functional effects 
on left ventricular dimensions and function. However, 
the authors reported that these functional benefits were 
not observed at 12 wk79. 

	 In conclusion, although studies with hESC-
CMs have shown functional improvement post 
transplantation into an injured heart, these benefits are 
not sustained during long term follow up studies32,79. 
The potential pitfalls among others include (i) the lack 
of electrical coupling between the graft and the recipient 
tissue, (ii) inability of the hESC-CMs to keep pace 
with the rapid rodent heart rate (~450 beats/min for the 
rat), (iii) terminally differentiated CMs have a limited 
capacity of cell division due to which the benefits start 
diminishing with time, and lastly (iv) repopulating 
the CMs alone would not help as supporting cells and 
vasculature would also be required to nourish the graft 
in the hostile environment of the infarct.

Preclinical studies using hESC derived MCPs: From 
a clinical perspective, the ideal cardiac progenitor 
cells are those that can proliferate, survive and 
differentiate into multiple mature cardiac cell types 
when transplanted into normal or diseased heart80. 
Thus, MCPs are an attractive alternative due to their 
dual capacities of giving rise to multiple cell types 
in the heart and robust rate of proliferation. Once 
transplanted into the infarcted myocardium, the in vivo 
cues support further differentiation and maturation. 
Lineage tracing studies have uncovered different pools 
of cardiovascular progenitors in the early mouse, chick, 
drosophila and mammalian embryos81-84. Taking clues 
from these studies, several groups have now reported 
the isolation of MCPs during differentiation of both 
mouse and human ESCs using varied markers. Wu 
et al85 isolated Nkx2.5+ progenitors from developing 
transgenic mouse embryos and differentiating mouse 
ESC cultures. These progenitors were bipotential with 
the ability to form cardiomyocytes and smooth muscle 
cells. Several groups86-88 identified another population 
of MCPs marked by the second heart field markers 
Isl1 in mouse, rat and human myocardium and in 
differentiating human ESCs. These tripotent progenitors 
could give rise to cardiomyocytes, smooth muscle cells 
and endothelial cells. Kattman and colleagues89 isolated 
another tripotent cardiovascular progenitor population 
marked by brachyury (Bry) and VEGF receptor Flk-1 
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(foetal liver kinase-1), from mouse ESC derived EBs. 
This population appeared later and was distinct from the 
Bry+/ Flk-1+ hemangioblast population and gave rise to 
cardiomyocytes, smooth muscle cells and endothelial 
cells. Yang and colleagues46 have reported isolation of 
KDRlow/c-kit(CD117)neg MCPs during cardiovascular 
differentiation of ESCs, which retain the capacity to 
differentiate into three major cell types of the heart. 
Blin and colleagues90 identified a very early SSEA-1+ 

cardiac progenitor population derived from primate 
(human and monkey) ES and induced pluripotent stem 
cells (iPSCs) which appear even earlier than Flk1+ and 
other previously isolated MCPs. The cells could be 
induced to differentiate into any one of the three major 
cardiac lineages by treatment with specific growth 
factors like PDGF (platelet derived growth factor) for 
smooth muscle cells, VEGF for endothelial cells and 
conditioned medium of both fibroblasts and CMs for 
ventricular-like CMs.

	 Studies in a rat model of MI showed that injection 
of MCPs in the proximity of healed infarcts or 
stimulation of endogenous MCPs led to the replacement 
of approximately 42 per cent of the scar with newly-
formed myocardium, attenuated ventricular dilation 
and prevented the chronic decline in function of the 
infarcted heart91. Smits and group92 isolated a sca+ 
cardiomyocyte progenitor population from human 
foetal hearts and stimulated its in vitro expansion by 
5-azacytidine and transforming growth factor β (TGFβ) 
treatment. They compared the effects of transplantation 
of human cardiomyocyte progenitors versus those 
of cardiomyocytes derived from these progenitors 
in infarcted mouse hearts. The authors concluded 
that transplantation of both cell types resulted in a 
higher ejection fraction and reduced the extent of left 
ventricular remodelling up to 3 months after MI when 
compared with control animals. Both cell types also 
generated new cardiac tissue consisting of CMs and 
blood vessels and therefore, this excludes the need 
for in vitro predifferentiation of these progenitor cells 
into cardiomyocytes before transplantation. Blin et al90 
transplanted rhesus monkey ES cells derived SSEA-1+ 
MCPs into an immunosuppressed rhesus monkey 
model of MI and reported their successful engraftment 
and differentiation into ventricular myocytes 
which reconstituted 20 per cent of the scar tissue. 
Christoforou and colleagues93 sorted green fluorescent 
protein (GFP) tagged MCPs under control of Nkx2.5 
enhancer and differentiated these over 7-30 days before 
transplantation into infarcted mouse hearts. MCPs 

engrafted long-term in the infarct zone and surrounding 
myocardium without causing teratomas or arrhythmias 
and differentiated into cross-striated CMs forming gap 
junctions with the host cells, while also contributing to 
neovascularization. MCP transplantation also preserved 
the functional output of the infarcted heart.

Second generation cell therapy: Results from various 
clinical trials have indicated that cell based therapies 
involving direct injection of CMs lead to significant 
cell loss due to physical strain, primary hypoxia or cell 
wash-out. Time-course quantification using TUNEL 
assay has demonstrated that most of graft cells die within 
a few days in rat model94. To overcome this obstacle, 
tissue engineered myocardial patch transplantation has 
been examined as the second generation cell therapy. 
Delivery of cells in tissue-like structures that preserve 
cellular attachments could increase cell delivery 
efficiency and reduce cell death.

Scaffold based tissue engineering: The most popular 
approach of tissue engineering is to seed cells into 3-D 
biodegradable scaffolds as alternatives to extracellular 
matrix (ECM). It is hoped that the scaffold degrades 
over time; cells can proliferate and fill the space 
formerly occupied by the polymer resulting in tissue 
formation95. The use of scaffolds for tissue engineering 
is supportive for myocardial regeneration. Li et al96 
were the first to demonstrate therapeutic potentials 
of myocardial patch using gelatin sponges. Leor and 
group97 reported that bioengineered heart grafts using 
porous alginate scaffolds attenuated left ventricular 
dilatation and heart function deterioration in MI model. 
Clinical trials of collagen-based myocardial patch with 
bone marrow cells and vicryl mesh-based patch seeded 
with fibroblasts are now undergoing98,99. Zimmermann 
et al100 have developed another tissue engineering 
technology by forming a gel of cell and collagen 
solution mixture. Their constructs also prevented 
further dilatation, induced systolic wall thickening 
of the left ventricular infarcted area, and improved 
fractional shortening of damaged hearts in a rat MI 
model101. Some researchers have reported that direct 
injection of cell and matrix solution mixture improved 
damaged heart function102. 

	 Thus, tissue engineered myocardial patch 
transplantation may increase graft cell survival and 
improve damaged heart function more than isolated 
cell injection, spurring significant interest as second 
generation cell therapy for severe heart failure.

Cell sheet based tissue engineering: Scaffold-based 
myocardial patches have some disadvantages, such 
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as insufficient cell migration into pre-fabricated 
scaffolds and inflammatory reactions due to polymer 
biodegradation. To overcome these issues, Shimizu et 
al103 established scaffold- free cell sheet-based tissue 
engineering. Cell sheets include pure cells without 
any ECM alternative materials and are transplantable 
onto damaged heart directly as a myocardial patch. 
The cells are cultured on an intelligent surface 
made of the temperature responsive polymer, poly 
(N-isopropylacrylamide) (PIPAAm). This surface has 
the unique property of being hydrophobic and cell 
adhesive under normal culture conditions at 37°C and 
hydrophilic and non-cell adhesive at temperatures lower 
than 32°C due to rapid hydration and swelling of the 
polymer. This property allows spontaneous detachment 
of the cells as continuous sheets with all the adjacent 
cell-to-cell junctions, ECM contacts and adhesive 
proteins intact just by simply lowering the temperature 
and negates the use of denaturing enzymes like trypsin. 
This system is highly advantageous as opposed to 
scaffold based culture system which requires the 
proteolytic degradation of the matrix in turn affecting 
cell-to-cell junctions and adhesive proteins. Cell sheets 
are directly transplanted onto heart surface without 
suture and cells can be effectively delivered as thin, 
but large-area cell-dense constructs without cell loss.

	 Zimmerman et al100 created beating rings which 
they termed “engineered heart tissue” by mixing murine 
CMs, with liquid collagen type I, matrigel, and serum-
containing culture medium. The further development 
of these constructs to large, force generating grafts 
of multiple rings led to a remarkable improvement in 
ventricular function once transplanted on an infarcted 
heart101. Several studies have demonstrated cardiac 
function improvement by cell sheet transplantation104. 
Neonatal rat cardiac cell sheets transplanted onto 
infarcted rat hearts communicated with host 
myocardium both morphologically and functionally, 
resulting in significant improvement of left ventricular 
ejection fraction105.

	 Resident cardiac stem cells, mesenchymal stem 
cells, ES cells and a variety of other cell types have 
been used as sources for sheet fabrication. Implantation 
of these sheets onto the injured myocardium has 
shown modest benefits. As a step further, Shimizu 
and coworkers106 have proposed 2-D cell sheet 
stacking to create cell-dense 3-D myocardial tissues 
which may pulsate synchronously and evoke native 
contraction power. Long-term observation has showed 

one year survival of beating grafts and revealed that 
their size, conduction velocity, and contractile force 
increased in proportion to the host growth, indicating 
in vivo permanent survival of engineered tissues. 
Stacked cardiomyocyte sheets transplanted into nude 
rat subcutaneous tissues also pulsated and surface 
electrogram originating from the graft was detectable 
apart from host electrocardiogram. Morphological 
analyses showed characteristic structures of heart 
tissue including elongated CMs, well-differentiated 
sarcomeres, gap junctions and multiple blood 
vessels107. Another group108 has created a bioartificial 
heart by detergent based decellularization of rat 
hearts and repopulation with neonatal cardiac cells 
or rat aortic endothelial cells. These recellularized 
constructs were cultured under simulated physiological 
conditions for organ maturation. Ultimately, chronic 
coronary perfusion, pulsatile left ventricular load and 
synchronized left ventricular stimulation led to the 
formation of contractile myocardium that performed 
stroke work.

	 Transplantation of three layered grafts made of 
endothelial cell sheets and cardiomyocyte sheets also 
enhanced neovascularization and improved cardiac 
function rather than CM sheets alone109. Stevens 
et al110 designed “tri-cell” cardiac patches called 
cardio-HUVEC-MEF patches containing hESC-CMs, 
human umbilical vein endothelial cells  (HUVECs), 
and mouse embryonic fibroblasts (MEFs) in 1:1:0.5 
ratios, respectively. Transplantation of these tri-cell 
patches into nude rats resulted in 10-fold larger cell 
grafts as compared to patches composed only of CMs. 
The authors concluded that inclusion of vascular and 
stromal elements enhanced the in vitro performance of 
engineered human myocardium. Bel and colleagues111 
developed a composite cell sheet made of adipose 
derived stromal cell seeded with ES derived MCPs 
which when transplanted in rhesus monkeys was able 
to differentiate into CMs and reconstitute up to 20 per 
cent of the scar tissue. There was robust engraftment 
of autologous adipose derived stromal cells which 
were transplanted in sheet form along with the MCP 
sheet and increased angiogenesis compared to sham 
animals. Zakharova et al112 showed high efficiency 
of engraftment with cell sheet grafts containing 
cardiomyocyte progenitors and cardiac stromal cells. 
The transplanted cells effectively rescued myocardium 
function after infarction by promoting not only 
neovascularization but also inducing a significant level 
of cardiomyogenesis.
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Emerging trends

Induced pluripotent stem cells (iPSCs) for 
cardiovascular repair: iPSCs are novel pluripotent 
stem cells generated from adult somatic tissues by 
reprogramming originally with transduction of a few 
defined transcription factors, such as Oct4, Sox2, 
Klf4, and c-myc113. Recent studies have demonstrated 
that human iPSCs may prove to be an additional 
source of cardiomyocytes which share similarities 
with hESC-CMs114-117. It has been shown that iPSCs 
are similar to hESCs in terms of their morphology, 
proliferation, feeder dependence, surface markers, 
gene expression, epigenetic status, formation of EBs 
in vitro, promoter activities, telomerase activities, and 
in vivo teratoma formation118. Technically, iPSCs are 
cultured under conditions virtually identical to those 
for hESCs. Using the same cardiac differentiation 
protocol originally developed for hESCs, iPSCs can 
be similarly differentiated into CMs119. Human iPSC-
CMs have been implanted in mouse models of MI, and 
these regenerated myocardium, smooth muscle, and 
endothelial tissue, restoring post-ischaemic contractility 
performance and electric stability120. Mauritz et al121 
have compared functional benefits of iPSC-derived 
Flk-1+ve MCPs vs Flk-1-ve cells by injection into a mouse 
model of acute MI. The Flk-1+ve cells showed better 
engraftment and exerted superior functional benefits 
as compared to Flk-1-ve cells. iPSC derived MCPs cells 
thus represent a suitable autologous cell source for 
myocardial regeneration as these are committed, have 
the capability to form myocardial cells and contribute 
to revascularization. However, clinical trials in gene 
therapy have shown that the integration of viral vectors 
in the genome may promote malignancy; besides some 
of the virus-encoded genes can act as oncogenes. 
Further, comprehensive analyses of various ESC and 
iPSC lines showed that iPSCs differ from ESCs at 
the molecular level when comparing gene expression 
signatures80,81. When multiple transcriptional datasets 
from human fibroblasts were compared with ESCs 
and iPSCs derived from fibroblasts, it was found that 
iPSCs shared four times more genes in common with 
fibroblasts than ESCs122. Besides differences at the 
level of mRNA expression, microRNA expression also 
differs between iPSCs and ESCs, with some cancer 
related microRNAs highly expressed in iPSCs123- 125. 
Thus, the clinical application of iPSC derived 
cardiomyocytes appears to be a distant possibility at 
present.

Very small embryonic like stem cells (VSELs) for 
cardiovascular repair: VSELs are a unique population 
of rare Oct-4+CXCR4+ CD133+ lin- CD45- pluripotent 
stem cells found in human tissues including cord 
blood and bone marrow126 that are deposited during 
early embryogenesis in developing organs/tissues as a 
reserve population of pluripotent stem cells to serve as 
a backup pool of stem cells responsible to maintain life-
long tissue homeostasis. These were initially identified 
by Kucia et al127 in adult murine bone marrow (BM) 
as a rare population of stem cells with embryonic 
characteristics. Wojakowski et al128 have reported 
an ex vivo expansion and differentiation protocol for 
differentiation of BM-derived VSELs into CMs. These 
stem cells get mobilized into blood in patients with 
acute coronary syndromes and stroke129,130. 

	 Dawn and colleagues130 have shown that direct 
intramyocardial injection of VSELs 48 h after coronary 
artery occlusion in mice had promising effects. 
Administration of VSELs led to improved contractility 
and reduced remodelling as well as reduced myocyte 
hypertrophy after 35 days of follow up. In mice that 
received HSCs no such effects occurred. Beneficial 
effects were observed despite use of only small 
number (10,000 cells) of VSELs whereas a much 
higher number of hematopoietic cells (100,000 cells) 
were not effective. Predifferentiation of expanded 
VSELs allowed the use of larger numbers of cells 
resulted in a much improved left ventricular ejection 
fraction, myocardial systolic thickening and attenuated 
remodelling sustained over the 6 month follow 
up131,132.

	 VSELs share pluripotent characteristics with ES 
cells but do not form teratoma and can be isolated from 
an autologus source133. Thus both the major drawbacks 
associated with ES cells like immune-rejection and 
risk of teratoma formation can be overcome by use of 
VSELs. These cells have the potential but much remains 
to be done to exploit these in the field of regenerative 
medicine.

Conclusions

	 Although adult stem cells, such as bone marrow, 
skeletal myoblast and mesenchymal stem cells are the 
most common cell source for cardiac regeneration in 
clinical trials as these have no risks of immune rejection 
with autologous transplantation, these are non-
tumourigenic, and have no ethical obstacle; these are 
restricted in their renewal and differentiation potential 
to become functional CMs. Cardiomyogenic potential 
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of iPS cells is well established both in vitro and in vivo. 
However, significant challenges, such as risk of viral 
vector and low efficacy during reprogramming as well 
as tumour formation remain to be overcome before the 
translation of iPS cell technology into clinical practice. 
Human ES cells and VSELs are being extensively 
pursued based on positive data from preliminary 
studies in small animal disease models. These represent 
an ideal cell source with the potential of unlimited 
expansion, differentiation into desired cell types in 
a controlled manner and well established functional 
benefits upon transplantation. Issues like improving 
efficacy of cardiac differentiation protocols, large 
scale generation of pure populations of MCPs or CMs, 
appropriate time of transplantation post MI, the right 
cell number to be transplanted, site of transplantation, 
low oxygen and nutrient penetration in thick stacked 
cell sheets, immune rejection and the like warrant 
further and careful studies in preclinical models.
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