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Abstract
Genetic and other scientific studies routinely generate very many predictor variables, which can be
naturally grouped, with predictors in the same groups being highly correlated. It is desirable to
incorporate the hierarchical structure of the predictor variables into generalized linear models for
simultaneous variable selection and coefficient estimation. We propose two prior distributions:
hierarchical Cauchy and double-exponential distributions, on coefficients in generalized linear
models. The hierarchical priors include both variable-specific and group-specific tuning
parameters, thereby not only adopting different shrinkage for different coefficients and different
groups but also providing a way to pool the information within groups. We fit generalized linear
models with the proposed hierarchical priors by incorporating flexible expectation-maximization
(EM) algorithms into the standard iteratively weighted least squares as implemented in the general
statistical package R. The methods are illustrated with data from an experiment to identify genetic
polymorphisms for survival of mice following infection with Listeria monocytogenes. The
performance of the proposed procedures is further assessed via simulation studies. The methods
are implemented in a freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/).

Keywords
Adaptive Lasso; Bayesian inference; Generalized linear model; Genetic polymorphisms; Grouped
variables; Hierarchical model; High-dimensional data; Shrinkage prior

1. Introduction
Scientific experiments routinely generate very many highly correlated predictor variables for
complex response outcomes. For example, genetic studies of complex traits (e.g. QTL
(quantitative trait loci) mapping and genetic association analysis) usually genotype
numerous genetic markers across the entire genome, with closely linked markers being
nearly collinear. The main goals of such studies are to identify which predictor variables are
associated with responses of interest and/or to predict outcomes of new individuals using all
the predictor variables. To control for potential confounding effects, it is desirable to
simultaneously fit as many predictors as possible in a model. Due to high-dimensional and
correlated structure, however, classical generalized linear models are usually
nonidentifiable, and thus a variety of penalization methods and Bayesian hierarchical
models have been proposed to solve the problem.

Penalization approach introduces constraints (or penalties) on the coefficients and estimates
the parameters by maximizing the penalized objective function (Hastie, Tibshirani and
Friedman, 2001). A promising penalization method is the Lasso of Tibshirani (1996), which
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uses the L1-penalty, , where λ(≥ 0) is the tuning parameter controlling the amount
of penalty. Bayesian approach places prior distributions on the coeffificients and
summarizes posterior inference using MCMC algorithms or by finding posterior modes
(Gelman et al., 2003). A commonly used prior distribution is the double-exponential

distribution, , where λ (≥ 0) is the shrinkage parameter controlling the
amount of shrinkage (Park and Casella, 2008; Tibshirani, 1996a, b; Yi and Xu, 2008). Under
this prior, the posterior modes of the coefficients correspond to the Lasso estimates (Park
and Casella, 2008; Tibshirani, 1996a). Another widely used prior distribution is the Student-
t distribution, p(βj) = tv(0,s2), with the degrees of freedom ν and the scale s controlling the
amount of shrinkage (Gelman et al., 2008; Yi and Xu, 2008). The family of the Student-t
distributions includes various distributions as special cases, for example, Normal βj ~ N(0,
s2) (ν = ∞), Jeffreys’ prior βj ∝ 1/|βj| (ν = s = 0) and Cauchy (ν = 1). One remarkable
feature of the above distributions is that they can be expressed as scale mixtures of normal
distributions (Park and Casella, 2008; Yi and Xu, 2008). This hierarchical formulation leads
to the development of straightforward MCMC and Expectation-Maximization (EM)
algorithms (Figueiredo, 2003; Gelman et al., 2008; Kyung et al., 2010; Park and Casella,
2008; Yi and Banerjee, 2009; Yi and Xu, 2008).

The above approaches have shown excellent performance in many situations, however they
have some limitations. First, the Lasso (also Student-t) uses a unique tuning parameter to
equally penalize all coefficients, and thus can either include a number of irrelevant variables
or over-shrink large coefficients. This is particularly critical for sparse high-dimensional
data (as in most genetic studies) where among hundreds or thousands of variables only a few
have detectable effects. To address this issue, Zou (Zou, 2006) introduced the adaptive

Lasso that uses a weighted L1-penalty , where  with  being some
preliminary estimate of βj such as the least-squares estimate. The intuition of the adaptive
lasso is to use different penalty parameters for different coefficients and thus differently
shrink coefficients. Although theoretically attractive, the practical performance of the
adaptive Lasso heavily depends on the quality of the initial estimates. Secondly, some
previous methods cannot appropriately address the hierarchical structures of predictor
variables. To accommodate the grouping structure, several group approaches based on
composite penalties have been proposed. Both the inner and outer penalties can take
multiple forms, including ridge, Lasso, elastic net and others. If the inner penalty is ridge as
with group Lasso, then the approaches have an “all in or all out” property for variables
within the same groups. If the inner penalty is Lasso-type, then two level selection may be
achieved. Despite theoretical effectiveness of such methods, they may suffer a high
computational cost.

In this article, we adopt a Bayesian approach and propose hierarchical prior distributions for
high-dimensional generalized linear models with grouped predictor variables. We express

our hierarchical priors as scale mixtures of normal distributions: ,

 or , and assume that the scale parameters  (or λj) or 
further follow gamma distributions with unknown group-specific hyperparameters. The
variable-specific scale parameters are similar in spirit to the variable-specific penalties in the
adaptive Lasso of Zou (2006), but they can be easily estimated in our Bayesian framework.
Similar Bayesian approaches have been proposed. Griffin and Brown (2010) (Griffin and
Brown, 2010) and Leng et al. (2010) (Leng, Minh Ngoc Tran and Nott, 2010) have

generalized the Bayesian Lasso by including variable-specific scale parameters  in the
exponential prior with gamma mixing distributions. Sun et al. (2010) (Sun, Ibrahim and Zou,
2010) and Armagan et al. (2010) (Armagan, Dunson and Lee, 2010) assume the parameters
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λj rather than  in the exponential prior to follow gamma distributions and show that this
treatment induces simpler posterior distributions facilitating study of properties and
implementation. Carvalho et al. (2009, 2010) (Carvalho, Polson and Scott, 2009, 2010)

proposed the horseshoe prior that is similar to our prior with . More
recently, Lee et al (2012) (Lee et al., 2012) discussed the use of Bayesian sparity priors
obtained through hierarchical mixtures of normals for the analysis of genetic association.
However, these previous methods either prefix the hyperparameters in gamma distributions
or have not considered grouped variables. Our hierarchical priors consist of both the group-
specific and variable-specific parameters, and thus not only adopt different shrinkage for
different coefficients and different groups but also providing a way to pool the information
within groups.

To develop our algorithms for fitting generalized linear models with the proposed
hierarchical prior distributions, we first derive the conditional posterior distributions for all
parameters. These posterior distributions may allow us to implement MCMC algorithms. In
this paper, however, we focus on much faster EM algorithms for finding posterior modes.
We incorporate our EM algorithms into the usual iteratively weighted least squares (IWLS)
for fitting classical generalized linear models as implemented in the general statistical
package R. This strategy allows us to take advantage of the existing algorithm and leads to
stable and flexible computational tools.

The rest of the paper is organized as follows. We first introduce hierarchical generalized
linear models with grouped variables in Section 2 and then describe the hierarchical prior
distributions in Section 3. We derive our EM-IWLS algorithms for fitting the hierarchical
GLMs with the proposed priors in Section 4 and describe the implementation in R in Section
7. In Section 6, we discuss the relationship between the proposed models and existing
approaches. Section 7 illustrates the methods with data from an experiment to identify
genetic polymorphisms for survival of mice following infection with Listeria
monocytogenes. Section 8 demonstrates the performance of the proposed procedures via
simulation studies. Finally, some concluding remarks and potential extensions are discussed
in Section 9.

2. Hierarchical Generalized Linear Models with Grouped Predictors
We consider the problem of variable selection and coefficient estimation in generalized
linear models with a large number of coefficients or highly correlated predictor variables.
The observed values of a continuous or discrete response are denoted by y = (y1, ⋯, yn). We
assume that the predictor variables can be divided into K groups, Gk, k =1, ⋯, K, and the k-
th group Gk contains Jk variables, where K ≥ 1 and Jk > 1. There may be multiple ways of
defining the groups. In genetic studies, for example, we can use genomic regions or
candidate genes, or the types of the effects (e.g., additive and dominance effects) to
construct groups. We also include in the model some variables (e.g., gender indicator, age,
etc.) that do not belong to any groups.

A generalized linear model consists of three components: the linear predictor η, the link
function h, and the data distribution p (Gelman et al., 2003; McCullagh and Nelder, 1989).
The linear predictor for the i-th individual can be expressed as

(1)
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where β0 is the intercept, xij and zij represent observed values of ungrouped and grouped
variables, respectively, βj is a coefficient, the notation j ∈ Gk indicates the group of variable
j, Xi contains all variables, and β is a vector of all the coefficients and the intercept. For

simplicity, we denote Xi = (1, xi1, ⋯, xiJ) and β = (β0, β1, ⋯, βJ)′, where  is the
total number of variables.

The mean of the response variable is related to the linear predictor via a link function h:

(2)

The data distribution is expressed as

(3)

where φ is a dispersion parameter, and the distribution p(yi|Xi,β,φ) can take various forms,
including Normal, Gamma, Binomial, and Poisson distributions. Some GLMs, for example
the Poisson and the Binomial models, do not require a dispersion parameter; that is, φ is
fixed at 1.

Generalized linear models with many coefficients or highly correlated variables can be
nonidentifiable classically. An approach to overcoming the problem is to use Bayesian
inference. We use a hierarchical framework to construct priors for coefficients. At the first
level, we assume an independent normal distribution with mean 0 and variable-specific

variance  for each coefficient βj :

(4)

The variance parameters  directly control the amount of shrinkage in the coefficient

estimates; if , the coefficient βj is shrunk to zero, and if , there is no shrinkage.
Although these variances are not the parameters of interest, they are useful intermediate
quantities to estimate for easy computation of the model.

We treat the variances  as unknowns and will further assign prior distributions to them as
discussed in the next sections. Enough data is available to estimate the intercept β0 and the
dispersion parameter φ. Thus, we can use any reasonable non-informative prior distributions

for these two parameters; for example,  with  set to a large value, and
p(logφ) ∝ 1.

3. Hierarchical Adaptive Shrinkage Priors for Variance Parameters
The prior distributions for the variance parameters play a crucial role on variable selection
and coefficient estimation. We consider two types of priors; the first is the half-Cauchy

distribution for τj, and the second is the exponential prior distribution for .

3.1. Half-Cauchy prior distribution for τj
A half-Cauchy distribution can be expressed as
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(5)

which has a peak at zero and a scale parameter αk[j], where the subscript k[j] indexes the
group k that the j-th predictor belongs to. The scale parameter controls the amount of
shrinkage in the variance estimates; small scales force most of the variances close to zero
(Gelman, 2006). For grouped variables, we treat the scale parameters αk[j] as random
variables and assign a noninformative prior distribution on the logarithmic scale, p(log αk[j])
∝ 1. The common scale αk[j] induces a common distribution for variables within a group.
For ungrouped variables, we cannot estimate the scale and thus preset αk[j] to a known value
(say αj = 1).

There is no direct way to fit the model with the above half-Cauchy prior. Therefore, we use
the hierarchical formulation of the half-Cauchy distribution. The half-Cauchy variable can
be expressed as the product of the absolute value of a normal random variable with variance

 and the square root of an inverse-χ2 variable with degree-of-freedom 1 and scale 1,

i.e., τj =|sj|ηj, where  and . For computational simplicity,

we deal with  rather than τj and express the prior distribution of  hierarchically:

(6)

where ν = 1, a = 0.5, and . We describe the computational algorithm for
arbitrary values of ν and a in the next section. The half-Cauchy prior distribution
corresponds to ν = 1 and a = 0.5, and is free of user-chosen hyperparameters.

3.2. Exponential prior distribution for 

The second prior distribution assumes that the variances  follow exponential or
equivalently gamma distributions with variable-specific hyperparameters sj :

(7)

The hyperparameter sj controls the amount of shrinkage in the variance estimate; a large

value of sj forces the variance  closer to zero. We treat the hyperparameters sj as random
variables with the Gamma hyper-prior distributions:

(8)

where the subscript k[j] indexes the group k that the j-th predictor belongs to, and a and bk[j]

are two hyperparameters. As shown later, placing the gamma prior on sj rather than  leads

to a simpler posterior distribution of sj that is independent of the variance  and thus
facilitates computation.

As default, we set a = 0.5. Theoretically, we need not worry so much about how to select a,
because the shrinkage can be determined by bk[j] and thus the hyperparameter a has less
effect on inference. For ungrouped variables, we preset bk[j] to a known value (say bk[j] =
0.5). For grouped variables, we treat the scale parameters bk[j] as unknown parameters and
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assign a noninformative prior distribution on the logarithmic scale of bk[j], i.e., p(log bk[j]) ∝
1.

The above prior distributions include group-specific parameters bk and variable-specific
parameters sj. The group-specific parameters provide a way to pool the information among
variables within a group and also to induce different shrinkage for different groups, while
the variable-specific parameters allow different shrinkage for different variables. Indeed, as
we will see in later numerical experiments, the estimates of bk for groups which include no
important variables will be much different from those with important variables, and the
estimates of sj for zero βj will be different from those for nonzero βj.

Conditional on the scale parameters sj, the hierarchical priors (6) and (7) induce the Student-

t distributions  and the double-exponential distributions βj ~ DE(0, sj) on the
coefficients, respectively. Hereafter, we refer these two prior distributions as to hierarchical t
and hierarchical double-exponential distributions, respectively. For the hierarchical t prior,
we use the hierarchical Cauchy distribution as a default choice (i.e., setting ν = 1).

4. EM-IWLS Algorithm for Model Fitting
We fit the above hierarchical generalized linear models by estimating the marginal posterior
modes of the parameters (β,φ). We modify the usual iterative weighted least squares (IWLS)
for fitting classical GLMs and incorporate an EM algorithm into the modified IWLS
procedure. The EM-IWLS algorithm increases the marginal posterior density of the
parameters (β,φ) at each step and thus converges to a local mode. Our EM algorithm treats

the unknown variances  and the hyperparameters sj and bk[j] as missing data and estimates
the parameters (β,φ) by averaging over these missing values. At each step of the iteration,

we replace the terms involving the parameters (β,φ) and the missing values ( , sj, bk[j]) by
their conditional expectations, and then update the parameters (β,φ) by maximizing the
expected value of the joint log-posterior density,

(9)

4.1. Conditional posterior distributions and conditional expectations
For the E-step of the algorithm, we take the expectation of the above joint log-posterior
density with respect to the conditional posterior distributions of the variances and the
hyperparameters. For the hierarchical t prior distribution, the conditional posterior
distributions are

(10)

(11)

(12)
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Therefore, we have the conditional expectations

(13)

(14)

(15)

For the hierarchical double-exponential prior distribution, the conditional posterior
distributions are

(16)

(17)

(18)

Therefore, we have the conditional expectations

(19)

(20)

(21)

It is worth noting that under the hierarchical double-exponential prior the posterior p(sj|

βj,bk[j]) is independent of the variance , which may speed up convergence.

4.2. Estimating (β,φ) conditional on the prior variances 

Since only the terms  include both the parameters and the missing

values, only the conditional expectations  directly affect the M-step. Given the

prior variances , j = 0, ⋯, J, we thus estimate (β,φ) by fitting the generalized linear model
with a normal prior distribution for the coefficients the generalized linear model yi ~ p(yi |

Xi,β,φ) with the normal priors  (Gelman et al., 2008; Yi and Banerjee, 2009;
Yi, Kaklamani and Pasche, 2011). Following the usual iteratively weighted least squares
(IWLS) algorithm for fitting generalized linear models (as implemented in the glm function
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in R), we approximate the generalized linear model likelihood p(yi | Xi,β,φ) by the weighted
normal likelihood

(22)

where the ‘normal response’ zi and ‘weight’ wi are called the pseudo-response and pseudo-
weight, respectively. The pseudo-response and pseudo-weight are calculated by

(23)

where , , L′(yi | ηi) = dL(yi | ηi)/dηi, L″(yi | ηi) =

d2L(yi | ηi)/dηi
2, and  is the current estimate of β.

The prior  can be incorporated into the weighted normal likelihood as an
‘additional data point’ 0 (the prior mean) with corresponding ‘explanatory variables’ equal

to 0 except xj which equals 1 and a ‘residual variance’  (Gelman et al., 2003; Gelman et
al., 2008). Therefore, we can update β by running the augmented weighted normal linear
regression

(24)

where  is the vector of all zi and all (J + 1) prior means 0,

 is constructed by the design matrix X of the regression

 and the identity matrix I(J+1), and 
is the diagonal matrix of all pseudo-weights and prior variances. With the augmented X*,

this regression is identified and thus the resulting estimate  is well defined and has finite
variance, even if the original data are high-dimensional and have collinearity or separation
that would result in nonidentifiability of the classical maximum likelihood estimate (Gelman

et al., 2008). Therefore, we obtain the estimate of β, , and its

variance . If a dispersion parameter, φ, is present, we can update φ at
each step of the iteration by

(25)

4.3. EM-IWLS algorithm and inference
In summary, the EM-IWLS algorithm can be described as follows:

1. Start with a crude parameter estimate.

2. For t = 1, 2, ⋯ :

E-step: Calculate the conditional expectations

1.
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2.
 for the hierarchical t prior, or 

for the hierarchical double-exponential prior

3.

M-step:

1. Based on the current value of β, calculate the pseudo-data  and the

pseudo-weights .

2. Update β by running the augmented weighted normal linear regression.

3. If φ is present, update φ.

We choose the starting values of the parameters as follows. An initial estimate to the linear
predictor η is found by the standard method as implemented in the R function glm (This
standard method is not affected by the number of variables and can be safely used in high-
dimensional settings). With the initial linear predictor, we can obtain initial values for the
pseudo-response and the pseudo-weight, zi and wi, from Equation (22). We set the starting

value of φ (if present) to 1, and the variances  to 1 for all the predictors except for the

intercept for which  is prefixed at a large value (say 1010). This initial value of 
corresponds to first setting initial values for the hyperparameters bk to be 0.5 or 0.125 for the
hierarchical t or double-exponential priors, respectively, and then taking the prior means for

the scale parameters sj and the variances . These hyperparameter values lead to a weakly
informative prior on the coefficients, and could be reasonable. With the initial values of the

pseudo-response and the pseudo-weight zi and wi and the variances , the estimate of β is
obtained by the augmented weighted normal linear regression (23). From these starting
values, the EM-IWLS algorithm can converge rapidly.

We apply the criterion in the R function glm to assess convergence, i.e., |d(t)−d(t−1)|/(0.1+|
d(t)|)< ε, where d(t) = −2 log p(y |Xβ(t),φ(t)) is the estimate of deviance at the tth iteration),
and ε is a small value (say 10−5). At convergence of the algorithm, we obtain the latest

estimates ( ) and the covariance matrix . As in the classical
framework, the p-values for testing the hypotheses H0: βj = 0 can be calculated using the

statistics , which approximately follows a standard normal distribution or a
Student-t distribution with n degrees of freedom, if the dispersion φ is fixed in the model or
estimated from the data, respectively.

4. Relationship with Existing Methods
The Bayesian GLMs with the hierarchical t and double-exponential priors includes various
previous methods in the literature as special cases. The EM-IWLS algorithm described
above can be easily adapted to fit these existing models.

1. The hierarchical t prior with sj = ∞ and the double-exponential prior with sj = 0
correspond to a flat distribution. Placing flat priors on all βj corresponds to classical
models, which are usually non-identifiable for high-dimensional data. Our
framework has the flexibility of setting flat priors to some predictors (e.g., relevant
covariates) that perform no shrinkage;
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2.
Atνj = ∞, the t prior is equivalent to a normal distribution , which
leads to a ridge regression when setting a common scale sj ≡ s ;

3. For the hierarchical t prior, setting νj = sj = 0 corresponds to placing Jeffreys’ prior

on each variance, , which is equivalent to a flat prior on log , leading

to improper priors . For the hierarchical double-exponential prior,
setting a = bk = 0 in the Gamma hyper-prior distribution (8) leads to the Normal-
Jeffrey’s prior on βj (Armagan et al., 2010);

4. Setting a common scale parameter to all variables, sj ≡ s , leads to the Bayesian
lasso or t models discussed in Park and Casella (2008) and Yi and Xu (2008);

5. Ignoring the group structure but using variable-specific scale parameters sj leads to
the Bayesian adaptive lasso described in Leng et al. (2010).

6. Implementation
We have created an R function bglm for setting up and fitting the Bayesian hierarchical
generalized linear models. As described above, the Bayesian hierarchical generalized linear
models include various models as special cases, and thus the R function bglm can be used
not only for general data analysis but also for high-dimensional data analysis using various
prior distributions. Our computational strategy is based on extending the well-developed
IWLS algorithm for fitting classical GLMs to our Bayesian hierarchical GLMs. The IWLS
algorithm is executed in the glm function in R (http://www.r-project.org/). The bglm
function implements the EM-IWLS algorithm by inserting the E-step for updating the

missing values (i.e., the variances  and the hyperparameters sj and bk[j]) and the steps for
calculating the augmented data and the dispersion parameter into the IWLS procedure in the
glm function, and includes all the glm arguments and also some new arguments for the
hierarchical modeling. We have incorporated the bglm function into the freely available R
package BhGLM (http://www.ssg.uab.edu/bhglm/).

7. Applications
We illustrate the methods by analyzing the mouse data of (Boyartchuk et al., 2001). This
dataset consisted of 116 female mice from an intercross (F2) between the BALB/cByJ and
C57BL/6ByJ strains. Each mouse was infected with Listeria monocytogenes. Approximately
30% of the mice recovered from the infection and survived to the end of the experiment
(264 hours). We denoted the survival status for the i-th animal by yi (= 0 or 1 if the i-th
animal was dead or alive, respectively). The mice were genotyped at 133 genetic markers
spanning 20 chromosomes, including two at the X chromosome. The numbers of markers on
an autosome range from 4 to 13. The goal of the study was to identify markers that are
significantly associated with the survival status and to estimate the genetic effects of these
markers. The single-marker analysis has been previously applied to this data set, identifying
significant QTL on chromosomes 5 and 13 (Boyartchuk et al., 2001). As shown below, our
hierarchical model analyses detected additional significant QTL.

For each autosomal marker which consists of three genotypes, we constructed two main-
effect variables, the additive and the dominance, using the Cockerham genetic model; the
additive predictor is defined as xa = −1 × Pr(aa) + 0 × Pr(Aa) + 1 × Pr(AA) and the
dominance predictor as xd = −0.5 × [Pr(aa) + Pr(AA)] + 0.5 × Pr(Aa), where Pr(aa), Pr(AA)
and Pr(Aa) are probabilities of homozygotes aa, AA and heterozygote Aa, respectively. For
observed genotypes, one of these probabilities equals 1. The resulting 262 main-effect
variables were clustered into 38 groups based on their located chromosomes and effect types
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(i.e., additive or dominance). Each marker at the X chromosome consists of two genotypes.
Therefore, we defined a binary variable for each of these markers and treated these variables
as ungrouped. The genotype data contains ~ 11% missing values. We calculated the
genotypic probabilities of missing marker genotypes conditioning on the observed marker
data, and then used these conditional probabilities to construct additive and dominance
predictors (Yi and Banerjee, 2009).

We used logistic models with the proposed prior distributions to simultaneously fit all the
variables. Figure 1 displays the coefficient estimates, standard errors, and p-values for all the
variables. The two analyses obtained fairly similar results, identifying four or five effects
significantly associated with the survival status and shrinking all other effects to zero.
Although the two models detected different additive predictors on Chromosome 13 (i.e.,
c13.18.9a or c13.26.2a), these two variables were strongly correlated (r2 = 0.87). The model
with the hierarchical double-exponential prior detected an additional dominance predictor
located on Chromosome 15.

Figure 2 shows the estimates of hyper-parameters sj and bk for the grouped variables. For
the hierarchical Cauchy prior, larger sj and smaller bk would induce weaker shrinkage on the
corresponding coefficients. As can be seen in Figure 2, the estimates of sj for the detected
variables (i.e., c5.25.5a, c6.18.2a and c13.18.9a) were larger than those of other variables,
and the estimates of b5, b6 and b13 were much smaller than other bk’s. For the hierarchical
double-exponential priors, smaller sj and larger bk are expected to yield weaker shrinkage on
the corresponding coefficients. Figure 2 clearly shows that the detected variables had much
smaller estimates of sj, and the groups including significant effects had much larger
estimates of bk. Therefore, allowing variable-specific parameters sj and group-specific
parameters bk enable us to achieve hierarchically adaptive shrinkage on the coefficients.

For comparison purposes, we analyzed the data using the prior distributions with fixed
values of hyper-parameters. Figure 3 displays the results from the logistic models with the

prior distributions  and  with several fixed values of s2.
These prior distributions lead to the existing models described earlier. All these analyses
were clearly unsatisfactory, failing to detect the strong signals that were found previously.
Figure 4 shows the analyses using the prior distributions with fixed values of bk but

unknown variable-specific parameters . Since hyper-parameters that are deeper in the
hierarchy have less effect on inference (Leng et al., 2010), some of these analyses could
yield results similar to the previous findings. However, the choice of the parameters bk
largely affect the results.

8. Simulation Studies
We used simulations to validate the proposed models and algorithm and to study the
properties of the method. We compared the proposed method with several alternative
models. Our simulation studies used the real genotype data in the above mouse survival
study of Listeria monocytogenes, and generated a binary response yi for each of 116 mice
from the binomial distribution Bin(1, logit−1(Xiβtrue)) conditional on the assumed ‘true’
coefficients βtrue, where Xi was constructed as in the above real data analysis. The ‘true’
coefficients βtrue were set based on the fitted logistic model with the hierarchical Cauchy
prior (see the left panel of Figure 1), equaling the estimated values for the intercept and the
detected predictors, c5.25.5a, c6.18.2a and c13.18.9a, and 0 for the others. For each
situation, 1000 replicated datasets were simulated. We calculated the frequency of each
effect estimated as significant at the threshold level of 0.05 over 1000 replicates. These
frequencies corresponded to the empirical power for the simulated non-zero effects and the
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type I error rate for other coefficients, respectively. We also examined the accuracy of
estimated coefficients by calculating the mean and 95% interval estimates.

For each simulated dataset, we simultaneously fitted all the 264 main-effect variables using
logistic linear models with the proposed prior distributions. As in the real data analysis, the
variables were clustered into 38 groups. As shown in the left panel of Figure 5, the three
non-zero effects were detected with higher power than all other effects. Given the small
sample size and the relatively large number of predictors, these powers are reasonable. The
model with the hierarchical double-exponential prior generated higher power for two of the
three simulated effects. The type I error rates for effects on chromosomes without simulated
non-zero effects were close to zero. For chromosomes 5, 6 and 13, however, there were
several non-simulated effects detected with non-zero type I error rates. This may be
expected because these variables were highly correlated with the non-zero variables. The
right panel of Figure 5 shows the assumed values, the estimated means and the 95%
intervals of all coefficients for the analysis with the hierarchical double-exponential prior.
The estimates of all effects were accurate; the estimated means overlapped the simulated
values.

We then analyzed the simulated datasets using logistic regressions with the prior

distributions  and  with several fixed values of sj. As
shown in Figure 6, these analyses generated lower power than the proposed hierarchical
prior distributions for all the simulated effects. With an inappropriate choice of the hyper-
parameter, these alternative priors had no power to detect the simulated effects.

9. Discussion
We have proposed two prior distributions, hierarchical Cauchy and double exponential
distributions, for simultaneous variable selection and coefficient estimation in high-
dimensional generalized linear models. The hierarchical priors include both variable-specific
and group-specific tuning parameters. Numerical results showed that our methods can
impose different shrinkage for different coefficients and different groups, and hence allow
reliable estimates of parameters and increase the power for detection of important variables.
Although both the two proposed priors perform well, we found that with the double
exponential distribution the power for detection of important variables is usually higher, and
the algorithm converges more rapidly. Therefore, we recommend the hierarchical double
exponential model as default in high-dimensional data analysis. The proposed algorithm
extends the standard procedure for fitting classical generalized linear models in the general
statistical package R to our Bayesian models, leading to the development of stable and
flexible software. Although a fully Bayesian computation that explores the posterior
distribution of parameters provides more information, our mode-finding algorithm quickly
produces all results as in routine statistical analysis.

The key to Bayesian hierarchical modeling is to express shrinkage prior distributions as

scale mixtures of normals with unknown variable-specific variances  (Kyung et al., 2010;
Park and Casella, 2008; Yi and Xu, 2008). We have used this hierarchical formulation to
obtain our adaptive shrinkage priors and to develop our algorithms. Kyung et al. (2010) and
Leng et al. (2010) have showed that various penalized likelihood methods, including the
elastic net (Zou and Hastie, 2005), the group Lasso (Yuan and Lin, 2006), and the composite
absolute penalty (Zhao, Rocha and Yu, 2009), can be expressed as Bayesian hierarchical
models by assigning certain priors on these variances. Our hierarchical priors can be
incorporated into various Lasso methods, leading to new Bayesian hierarchical models.
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Our computational algorithms also take advantage of the hierarchical formulation of the

prior distributions. Given the variances , the normal priors on the coefficients can be
included in the model as additional ‘data points’, and thus the coefficients can be estimated
using the standard iterative weighted least squares, regardless of the specific prior
distributions on the variances. The conditional expectations of the variances and other
hyperparameters are independent of response data, and thus the same updating scheme can
be used to update the variances and hyperparameters regardless of the response distribution.
Therefore, our approach can be straightforwardly applied to a broad class of models. An
alternative approach does not require the introduction of these variances (Hans, 2009; Sun et
al., 2010). However, it has the disadvantage that the step for updating the coefficients is
complicated. As a result, the approach is less extendable.

We describe our algorithm by simultaneously estimating all coefficients β. This can be
referred to as the all-at-once algorithm. This method can be very fast when the number of
variables is not very large (say J < 1000) and has the advantage of accommodating the
correlations among all the variables. However, it can be slow or even cannot be
implemented when the number of variables is large (say J > 2000) due to memory storage
and convergence problems. We can extend the algorithm to update all coefficients at a group
given all the others, referred to as the group-at-time algorithm. At each of the iteration, the
group-at-time algorithm proceeds by cycling through all the groups of parameters and treats
the linear predictor of all other groups as an offset in the model. This method updates
coefficients in a conditional manner, significantly reducing the number of parameters in
each M-step, and thus can deal with large number of variables.
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Figure 1.
Jointly fitting two effects of markers (DXM186 and DXM64) on the X chromosome and
262 main effects of 131 markers on 19 autosomes using the hierarchical logistic models with
the two prior distributions, hierarchical Cauchy (HC) and hierarchical double-exponential
(HDE). The points, short lines and numbers at the right side represent estimates of effects, ±
2 standard errors, and p-values, respectively. Only effects with p-value < 0.06 are labeled.
The notation, e.g., c5.25.5a, indicates the additive predictor of the marker located at 25.5 cM
on chromosome 5.
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Figure 2.
Estimates of hyper-parameters of grouped variables for the two prior distributions,
hierarchical Cauchy (HC) and hierarchical double-exponential (HDE). The top panels are
the estimates of sj and log(sj), and the bottom panels are the estimates of log(bk), for
hierarchical Cauchy and hierarchical double-exponential priors, respectively. Only terms
corresponding to effects with p-value < 0.05 are labeled and blacked. The notation, e.g.,
c5.25.5a, indicates the additive predictor of the marker located at 25.5 cM on chromosome
5.
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Figure 3.

Analyses using the prior distributions  (the top panels) and

 (the bottom panels) with fixed values of s2. The points and short lines
represent estimates of effects and ± 2 standard errors, respectively. Only effects with p-value
< 0.05 are labeled.
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Figure 4.
Analyses using the hierarchical Cauchy (HC) and hierarchical double-exponential (HDE)

with fixed values group-specific parameters bk but unknown variable-specific parameters .
The points, short lines and numbers at the right side represent estimates of effects, ± 2
standard errors, and p-values, respectively. Only effects with p-value < 0.05 are labeled.
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Figure 5.
The left panel shows the frequency of each effect estimated with p-value smaller than 0.05
over 1000 replicates with the two prior distributions, hierarchical Cauchy (HC) and
hierarchical double exponential (HDE). The right panel shows the assumed values (circles),
the estimated means (points) and the 95% intervals (short lines). Only effects with non-zero
simulated value are labeled and blacked. The notation, e.g., c5.25.5a, indicates the additive
predictor of the marker located at 25.5 cM on chromosome 5.
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Figure 6.
Frequency of each effect estimated with p-value smaller than 0.05 over 1000 replicates

using the prior distributions  (the left panel) and  (the
right panel) with fixed values of sj. Only effects with non-zero simulated value are labeled
and blacked. The notation, e.g., c5.25.5a, indicates the additive predictor of the marker
located at 25.5 cM on chromosome 5.
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