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Abstract: Torque ripple occurs in Permanent Magnet Synchronous Motors (PMSMs) due 
to the non-sinusoidal flux density distribution around the air-gap and variable magnetic 
reluctance of the air-gap due to the stator slots distribution. These torque ripples change 
periodically with rotor position and are apparent as speed variations, which degrade the 
PMSM drive performance, particularly at low speeds, because of low inertial filtering.  
In this paper, a new self-tuning algorithm is developed for determining the Fourier Series 
Controller coefficients with the aim of reducing the torque ripple in a PMSM, thus 
allowing for a smoother operation. This algorithm adjusts the controller parameters based 
on the component’s harmonic distortion in time domain of the compensation signal. 
Experimental evaluation is performed on a DSP-controlled PMSM evaluation platform. 
Test results obtained validate the effectiveness of the proposed self-tuning algorithm, with 
the Fourier series expansion scheme, in reducing the torque ripple. 
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1. Introduction 

The Permanent Magnet Synchronous Motor (PMSM) market is growing more rapidly when compared 
to traditional competitors because of lower cost, as well as higher efficiency and reliability. For the sake 
of energy savings and environmental performance, PMSMs also feature one of the highest torque to loss 
ratios. These motors are widely used in fast dynamic positioning systems and machine-tool  
components [1,2]. The main disadvantage of PMSMs is the non-uniformity in the developed torque, 
known as “torque ripple” [3]. Torque ripple generates speed oscillations which cause system 
performance deterioration and in machine-tool applications, it can leave visible patterns on high precision 
machined surfaces [4]. Under the assumption of pure sinusoidal back electromagnetic force (EMF), the 
conventional Field Oriented Control (FOC) applies constant current references in the synchronous 
reference frame to produce a constant torque. However, depending on the magnet shape and how well 
the windings are manufactured, the back-EMF has in practice very different waveforms, which range 
from almost sinusoidal to trapezoidal. Torque ripple occurs in PMSMs due to non-sinusoidal flux 
density distribution around the air-gap and the variable magnetic reluctance of the air-gap due to stator 
slots distribution. These torque ripples change periodically with rotor position and are apparent as 
speed variations, which degrades the PMSM drive performance, particularly at low speeds because of 
low inertial filtering [5]. 

In order to improve the performance of PMSMs and increase its market share, the suppression of 
the pulsating torque has received much attention in recent years [6–17]. These torque ripple reduction 
techniques can be divided into two groups: one focusing on the improvement of motor design and the 
other emphasizing the use of active control of stator current excitation. From the motor design point of 
view, skewing the stator lamination stacks or rotor magnets, arranging proper winding distributions 
and incorporating other motor design features reduces cogging torque partially, but does not 
completely eliminate it. Moreover, special machine design processes add addition complexity to the 
production process, which results in higher machine cost [18]. 

The second approach, which is of our interest, concentrates on using an additional control effort to 
compensate for the periodic torque pulsations. Some methods rely on pre-programed stator current 
excitation to cancel torque harmonics. However, accurate information about the PMSM parameters is 
required, and a small error or variation in these parameters can produce higher torque ripple due to  
the open-loop control. As an alternative, closed-loop control algorithms with online estimation of 
parameters and adaptive control algorithms have been proposed to reduce torque ripple. One possible 
approach relies on a closed-loop speed regulator to attenuate indirectly torque pulsations since all 
possible sources of torque ripple are observable from rotor speed, and hence this method has potential 
for complete torque ripple minimization. Repetitive Control techniques incorporate a sinusoidal 
control component to deal with periodic torque pulsations [19–23] while Iterative Learning  
Control (ILC) is implemented in the frequency domain to reduce torque ripple, by means of Fourier 
series expansion [24–29]. Some recent papers deal with learning control algorithms for Permanent 
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Magnet Step Motors [30–32], by identifying the Fourier coefficients of any truncated approximation 
and implementing Iterative Learning techniques, providing an experimental comparison for both 
methods. Adaptive techniques have been proposed based on the spectrum of the torque perturbation 
using some theoretical developments. 

In this paper, a new self-tuning algorithm is developed for determining the Fourier Series Controller 
coefficients with the aim of reducing the torque ripple in a PMSM, thus allowing for a smoother 
operation. This algorithm adjusts the controller parameters based on the component’s harmonic 
distortion in the time domain of the compensation signal. The estimated Fourier coefficients are used 
by a nonlinear controller which achieves accurate and ripple-reduced torque control. Experimental 
evaluation was performed on a DSP-controlled PMSM evaluation platform and test results obtained 
verify the effectiveness of proposed self-tuning algorithm, with the Fourier series expansion scheme, 
in reducing the torque ripple. 

This paper is organized as follows: A model of the Permanent Magnet Synchronous Motor is 
presented in Section 2. The new self-tuning Fourier Coefficient Algorithm is introduced in Section 3. 
Section 4 describes the experimental setup, and the experimental results are presented in Section 5. 
Finally, in Section 6 concluding remarks are provided. 

2. Model of PMSM 

In this section, a standard PMSM model [33] is revised and additional considerations are explained 
so torque ripple sources are clarified. For a three-phase PMSM, the flux linkages Ψ௦ related to the 
mutual and self-inductances ݏܮ and currents i are given as: Ψ௦ ൌ ௦݅௦ܮ  Ψ (1) 

In matrix form: 

Ψ௦ ൌ ௦௦݅௦ܮ  ௦௦݅௦ܮ  ௦௦݅௦ܮ  Ψ௦ 

Ψ௦ ൌ ௦௦݅௦ܮ  ௦௦݅௦ܮ  ௦௦݅௦ܮ  Ψ௦ 

Ψ௦ ൌ ௦௦݅௦ܮ  ௦௦݅௦ܮ  ௦௦݅௦ܮ  Ψ௦ 

 

(2) 

The stator windings voltages ܝ௦ depend on the winding resistance ࢘௦ and flux linkages શ௦: ܝ௦ ൌ ௦௦࢘  ݀શ௦݀ݐ  
(3) 

Rewriting this expression in matrix form: 

u௦u௦u௦ ൩ ൌ ݎ௦ 0 00 ௦ݎ 00 0 ௦൩ݎ ݅௦݅௦݅௦ ൩ 
ێێۏ
ۍێێ
݀Ψ௦݀݀ݐΨ௦݀݀ݐΨ௦݀ݐ ۑۑے

 ېۑۑ
 

(4) 

The stator windings are displaced by 120°, and the flux linkages Ψ௦, Ψ௦, Ψ௦ established by 
the permanent magnet, which are periodic functions of ߠ, are assumed to be sinusoidal with 
magnitude Ψ: 
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Ψ௦ ൌ Ψ sinሺߠሻ 

Ψ௦ ൌ Ψ sin ቀߠ െ ଶଷߨቁ 

Ψ௦ ൌ Ψ sin ቀߠ  ଶଷߨቁ 

 

(5) 

From Equation (3), assuming ࡸ௦ is constant: ܝ௦ ൌ ௦௦࢘  ௦ࡸ ݐ௦݀݀  ݀શ݀ݐ  
(6) 

Defining  ߱ ൌ ௗఏೝௗ௧  , we have: 

݀શ݀ݐ ൌ Ψ ێێۏ
ۍ ߱ cosሺߠሻ߱cos ቀߠ െ ଶଷߨቁ߱cos ቀߠ  ଶଷߨቁۑۑے

ې
 

 

(7) 

Hence, in Cauchy form, by using ࡸ௦ି ଵ: ݀௦݀ݐ ൌ െࡸ௦ି ଵ࢘௦௦ െ ௦ିࡸ ଵ ݀શ݀ݐ  ௦ିࡸ ଵܝ௦ 
(8) 

Incorporating the transient behavior of the mechanical system, where electric torque ܶ, load torque ܶ, viscous friction coefficient ܤ and inertia moment ܬ are used: 

ܶ െ ߱ܤ െ ܶ ൌ ܬ ݀ଶߠ݀ݐଶ  
(9) 

݀߱݀ݐ ൌ ܬ1 ሺ ܶ െ ߱ܤ െ ܶሻ 
(10) 

where mechanical position and velocity are related by ௗఏೝௗ௧ ൌ ߱. 

To find the electromagnetic torque developed ܶ, where ܹெ is the permanent magnet energy, the 
co-energy ܹ is used: 

ܹ ൌ ଵଶሾ݅௦ ݅௦ ݅௦ሿࡸ௦ ݅௦݅௦݅௦ ൩  ሾ݅௦ ݅௦ ݅௦ሿ ێێۏ
ۍ Ψ sinሺߠሻ
Ψsin ቀߠ െ ଶଷߨቁ
Ψsin ቀߠ  ଶଷߨቁۑۑے

ې  ܹெ 

 

(11) 

Therefore, we have the following formula to calculate the electromagnetic torque for the  
three-phase ܲ -pole permanent-magnet synchronous motors: 

ܶ ൌ 2ܲ ߠ߲ܹ߲ܿ ൌ ܲΨ2 ቀ݅௦ cosሺߠሻ  ݅௦ cos ቀߠ െ ଶଷߨቁ  ݅௦ cos ቀߠ  ଶଷߨቁቁ 
(12) 

Hence: ݀߱݀ݐ ൌ ܲΨ2ܬ ቀ݅௦ cosሺߠሻ  ݅௦ cos ቀߠ െ ଶଷߨቁ  ݅௦ cos ቀߠ  ଶଷߨቁቁ െ ܬܤ ߱ െ ܬ1 ܶ 
(13) 

Using the electrical angular velocity ߱ and displacement “ߠ”, related to mechanical angular 
velocity and displacement as ߱ ൌ ଶ ߱ and ߠ ൌ ଶ  :, results in the following equationߠ
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 ݀߱݀ݐ ൌ ܲଶΨ4ܬ ቀ݅௦ cosሺߠሻ  ݅௦ cos ቀߠ െ ଶଷߨቁ  ݅௦ cos ቀߠ  ଶଷߨቁቁ െ ܬܤ ߱ െ ܬ2ܲ ܶ ݀ߠ݀ݐ ൌ ߱ 

 

(14) 

Regarding the implicit time reparameterization to express the time functions acceleration and the 
speed in Equation (14) as functions of the rotor position, the relation rotor position-time is guaranteed 
to be invertible for the total rotor position (not only for one revolution range), if rotor position is a 
monotonic function of time like happen for a non-cero angular speed of constant sign. 

To control the angular velocity, one regulates the currents fed or voltages applied to the stator 
windings. To maximize the electromagnetic torque developed, the motor should be fed by a balanced 
three-phase current set: ݅௦ሺݐሻ ൌ √2݅ெ cosሺ߱ݐሻ ൌ √2݅ெ cosሺ߱ݐሻ ൌ √ࡹ ሻݐሻ ݅௦ሺ࢘ࣂሺܛܗ܋ ൌ √2݅ெ cos ቀ߱ݐ െ ଶଷߨቁ ൌ √2݅ெ cos ቀ߱ݐ െ ଶଷߨቁ ൌ √ࡹ ܛܗ܋ ቀ࢘ࣂ െ ࣊ቁ ݅௦ሺݐሻ ൌ √2݅ெ cos ቀ߱ݐ  ଶଷߨቁ ൌ √2݅ெ cos ቀ߱ݐ  ଶଷߨቁ ൌ √ࡹ ܛܗ܋ ቀ࢘ࣂ  ࣊ቁ 

 

(15) 

Generating an electromagnetic torque: 

ܶ௫ ൌ Ψଶ √2݅ெ൫cosଶሺߠሻ  cosଶ൫ߠ െ మయߨ൯  cosଶ൫ߠ  మయߨ൯൯ = ࡼશ√  (16) ࡹ

To produce the specified current, the balanced three-phase voltages are given as: ݑ௦ሺݐሻ ൌ ெݑ2√ cosሺߠሻ ݑ௦ሺݐሻ ൌ ெݑ2√ cos ቀߠ െ ଶଷߨቁ ݑ௦ሺݐሻ ൌ ெݑ2√ cos ቀߠ  ଶଷߨቁ 

 

(17) 

To simplify the control of PMSM, it is a common practice to transform the equations from  
three-phase voltages ࢛ௗ௦ to the 0݀ݍ variables ࢛ௗ௦ for the rotor reference frame [34]. 

In matrix form, the mathematical model of the PMSM in the rotor reference frame is given as: 

ێێۏ
ێێێ
ۍێێ

ௗೞೝௗ௧ௗೞೝௗ௧ௗబೞೝௗ௧ௗఠೝௗ௧ௗఏೝௗ௧ ۑۑے
ۑۑۑ
ېۑۑ ൌ

ێێۏ
ێێێ
ۍێ െ ೞ 0 0 െ Ψ 00 െ ೞ 0 0 00 0 െ ೞೞ 0 0ଷమΨ଼ 0 0 െ  00 0 0 1 ۑۑے0

ۑۑۑ
ېۑ

ێێۏ
ߠ௦݅ௗ௦݅௦߱݅ۍێ ۑۑے

ېۑ  ێێۏ
െ݅௦ۍێ ߱݅ௗ௦ ߱000 ۑۑے

  ېۑ
ێێۏ
ێێێ
ଵۍ 0 00 ଵ 00 0 ଵೞ0 0 00 0 0 ۑۑے

ۑۑۑ
ې ݑ௦ݑௗ௦ݑ௦  െ ێێۏ

ۑۑے000ଶ0ۍێ
ېۑ ܶ 

 

 

(18) 

The required currents to regulate the angular velocity of PMSM and guarantee balanced operating 
conditions are given as: ݅௦ ሺݐሻ ൌ √2݅ெ, ݅ௗ௦ ሺݐሻ ൌ 0, ݅௦ ሺݐሻ ൌ 0 (19) 

And assuming that inductances are negligible, the applied voltages should be: ݑ௦ ሺݐሻ ൌ ,ெݑ2√ ௗ௦ݑ ሺݐሻ ൌ 0, ௦ݑ ሺݐሻ ൌ 0 (20) 
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2.1. Additional Considerations 

In order to understand torque ripple in PMSM we have to reconsider some assumptions from the 
previous model. 

2.1.1. Non-Sinusoidal Flux Linkages 

Flux linkages are not perfectly sinusoidal so the electromotive force differs from cosine function 
and applying cosine currents to the stator windings produces torque ripples. The induced non-cosine 
electromotive forces ࢋ௦ are all assumed to be periodic functions with a peak value ܧ [35]: 

௦ࢋ ൌ ݀શ݀ݐ ൌ E߱ ێێۏ
ۍ ݂௦ሺߠሻ݂௦ ቀߠ െ ଶଷߨቁ

݂௦ ቀߠ  ଶଷߨቁۑۑے
ې
 

 

(21) 

where the functions ݂௦ሺߠሻ, ݂௦ሺߠሻ, and ݂௦ሺߠሻ have the same shape as ݁௦, ݁௦, and ݁௦ with a 
maximum magnitude of ±1. 

Since electromagnetic torque is given by: 

ܶ ൌ ሾ݁௦݅௦  ݁௦݅௦  ݁௦݅௦ሿ 1߱ (22) 

Using Equation (21), we finally have: 

ܶ ൌ ܧ ቂ ݂௦ሺߠሻ݅௦  ݂௦ ቀߠ െ ଶଷߨቁ ݅௦  ݂௦ ቀߠ  ଶଷߨቁ ݅௦ቃ (23) 

where ܶ is still independent of frequency, but in this case current waveforms should be calculated to 
produce constant torque. 

2.1.2. Non-Constant Inductances 

From Equation (1), electromotive force can be calculated by: ࢋ௦ ൌ ݀શ௦݀ݐ ൌ ݐ݀݀ ሾࡸ௦௦  શሿ (24) 

Without assuming constant ࡸ௦: ࢋ௦ ൌ ௦ࡸ ݐ௦݀݀  ௦ ݐ௦݀ࡸ݀  ݀શ݀ݐ  
(25) 

The second term from Equation (25) produces torque ripple due to inductance angular variations, 
and it is associated to differences in winding inductances of the stator. 

2.1.3. Stator Yoke Reluctance Variations 

From a macroscopic viewpoint, the torque produced in a PMSM is given by [35]: 

ܶ ൌ ଵଶ݅ଶ ߠ݀ܮ݀ െ ଵଶேమΨଶ ߠܴ݀݀  ݅ ݀Ψ݀ߠ  
(26) 
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As mentioned before, the first term appears when motor construction causes the winding inductance 
to vary as a function of position, and third term describes the mutual torque that is used to make the 
motor shaft turn. Additionally the second term describes cogging torque that appears whenever rotor 
magnetic flux travels through the varying reluctance of stator yokes, attempting to align with the stator 
teeth or poles independent of any current. When motor shaft is rotated by hand, the pulsations felt are 
caused by cogging torque. 

3. Self-Tuning Fourier Coefficient Algorithm 

As stated in the previous section, torque ripples arise from non-sinusoidal flux density distribution 
around the air-gap and variable magnetic reluctance due to stator slots distribution. These torque ripples 
change periodically with rotor position and are apparent as speed variations particularly at low speeds. 

These periodic torque ripples ܶሺθሻ, with period ߬ ൌ 2π can be represented in the form of a  
Fourier series: 

ܶሺθሻ ൌ ܽ  ሾܽ cosሺ݇θሻ  ܾ sinሺ݇θሻሿே
ୀଵ  

 

(27) 

where ܽ, ܽ, and ܾ are unknown constant vectors. 
Since cogging torque and harmonic components of the non-sinusoidal electromotive force depend 

on the slot distribution, torque ripple is a periodic function of the position and can be considered  
anti-symmetric and modeled by the sinusoidal components. 

ܶሺθሻ ൌ ሾܾ sinሺ݇θሻሿே
ୀଵ  

(28) 

Considering the inertia moment of the system ܫ, the acceleration ߙ, angular velocity ߱, in relation 
to θ, are given by: 

α୰ሺθ୰ሻ ൌ T୰ሺθ୰ሻI ൌ 1I ൭ሾb୩ sinሺkθ୰ሻሿN
୩ୀଵ ൱ 

 

(29) 

ω୰ሺθ୰ሻ ൌ 1I ൭ െ b୩k cosሺkθ୰ሻ൨N
୩ୀଵ ൱ 

 

(30) 

To compensate for the velocity ripple a control voltage ݑሺݐሻ should be introduced where ܭ௩ is the 
voltage constant: 

ሺθሻݑ ൌ ܫ௩ܭ ൭ ܾ݇ cosሺ݇θሻ൨ே
ୀଵ ൱ 

(31) 

Introducing  ܿ ൌ ೡೖூ , the control voltage can be written, as function of the position θሺݐሻ, as: ݑሺθሻ ൌ ൣ ܿcos൫݇θሺݐሻ൯൧ே
ୀଵ  

 
(32) 
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For each term ܿcos൫݇θሺݐሻ൯ the angular position ripple θሺݐሻ can be approximated by a sinusoidal 
function, and because of speed variations its temporal representation of  cos൫݇θሺݐሻ൯ is distorted, thus 
we can use a measure of its distortion S to iteratively adjust its coefficients ܿ until distortion is 
reduced by regulating ߱ሺθሻ. Let ߬ ൌ 2π be the spatial period for a complete mechanical revolution: ܵ ൌ න cos ቀ݇θሺݐሻቁఛ

  ݐ݀
(33) 

 ܿሺݐሻ ൌ ܿሺݐ െ 1ሻ  δS  (34) 

This algorithm permits adjusting the control voltage parameters, adapting for changes in the torque 
ripple, and the parameter δ allows for controlling the adjusting speed. 

Demonstration: 

While the shape of the cogging torque is a complex function of motor geometry and material 
properties, here it is approximated by a sinusoidal function and consequently the angular position 
ripple is also approximated by a sinusoidal function. 

Assuming that angular position is given by θሺݐሻ ൌ ߱ݐ  ݐሺ߱݊݅ݏܣ  ߮ሻ, were nominal angular 
position “߱ݐ” comes from the nominal constant speed of the rotor “߱”, and the angular position 
ripple “݊݅ݏܣሺ߱ݐ  ߮ሻ” corresponds to the angular lag or advance (from nominal angular position), 
produced by periodic perturbation such as cogging torque. Then the angular velocity ߱, and angular 
position ripple θ are given by: 

θሺݐሻ ൌ ݐሺ߱݊݅ݏܣ  ߮ሻ (35) ߱ሺݐሻ ൌ ߱  ݐሺ߱ݏܿ߱ܣ  ߮ሻ (36) 

For each term  ܿcos൫݇θሺݐሻ൯, according to Fourier series methodology, its value is in theory 
determined by: c୩ ൌ 1T න cos ቀkθ୰୧୮୮ሺtሻቁT

 ω୰ሺtሻdt (37) 

were T represent the temporal period for a complete mechanical revolution. 
In practice, ߱ሺݐሻ is not necessarily a periodic function of time and synchronization of the 

controller to the torque perturbation could be difficult to achieve. 
Using Equations (35) and (36) in Equation (37): c୩ ൌ 1T න  cosሺk Asinሺωt  φሻሻT

 ሺω  Aωcosሺωt  φሻሻdt (38) 

So: ܿ ൌ ߱ܶ න ݐሺ߱݊݅ݏܣሺ݇ݏܿ   ߮ሻሻ்
 ݐ݀  1ܶ න ݐሺ߱ݏܿ߱ܣ  ߮ሻ ݐሺ߱݊݅ݏܣሺ݇ݏܿ  ߮ሻሻ்

  ݐ݀
(39) 

Recognizing that the second term is equal to zero, because can be rewritten as  ଵ்  cosሺݑሻ் c୩ :ݑ݀ ൌ ωT න cosሺkAsinሺωt  φሻሻT
 dt (40) 
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Finally:  c୩ ൌ ωT න cos ቀkθ୰୧୮୮ሺtሻቁT
 dt (41) 

when the rotor speed is not constant or periodic of unknown period it is preferable to replace T by τ to 
allow for a fix parameter. Furthermore instead of computing ఠబ், because the angular velocity is 

changing, the integral term can be used to iteratively adjust the coefficient ܿ, through the gain factor δ 
as proposed in Equations (33) and (34). 

4. Experimental Implementation 

Figure 1 shows the overall torque ripple minimization scheme. During the transient state, the 
Fourier Series Controller is not activated and the Field Oriented Control (FOC) sets the motor in a 
stable operation.  

Figure 1. Block diagram of the Fourier series controller applied to the Field Oriented Control. 

 

When steady state is reached, the Fourier Series Controller is applied and it provides the additional 
compensation so as to minimize torque ripple. Conventional PI current controllers that generate the 
control voltages in accordance with the field oriented control are used in the inner loop. The current 
controllers work with a sample time of 500 μs and gains are set as: Kp = 1, Ki = 80, all variables are 
considered in per unit values and the δ parameter is set to 0.02.  

Figure 2 shows the configuration of the experiments. A TMDSHVMTRPF development system 
with a F28035 DSP control card is connected to the EMJ-04APB22 four pole pairs Permanent Magnet 
Synchronous Motor with the following parameters: 200 V, 2.7 A, 400 W maximum power, 300 rpm 
rated speed, 4.7 Ω, 0.014 H stator resistance and inductance, and 2500 PPR incremental encoder 
attached. Measurements of the variables were taken at the PWMDAC ports of the TMDSHVMTRPF 
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development system by using a FLUKE 199C floated oscilloscope-meter, setting the bandwidth to 10 
kHz for high frequency rejection. The encoder signals were coupled with a TTL Buffer (SN74LS243N 
Bus Transceiver), to avoid electric noise that degrades the angular position signal readings.  

Figure 2. Experimental setup including the TMDSHVMTRPF development and  
EMJ-04APB22 PMSM. 

 

The performance evaluation of the controller with the proposed self-tuning algorithm is presented in 
the following section. 

5. Experimental Results 

To verify the performance of the proposed self-tuning algorithm with the Fourier series expansion 
scheme, experiments were performed using the setup described in the preceding section. The 
experiments were conducted for speeds lower than 10% of the motor´s nominal speed. The 
performance criterion used to evaluate the performance of the proposed scheme for torque ripple 
minimization is the variation of the angular speed determined from the angular position measurements 
from the encoder.  

The Standard Field Oriented Control 

Figure 3 shows the angular position of the motor versus time, the slope of the triangular waveform 
change reflecting speed variations. In Figure 4 a cosine function of the angular position, with the same 
frequency as the perturbation fundamental frequency, is plotted against time, showing a distortion 
shape caused by speed variation that can be used to adjust the Fourier coefficients. Figure 5 presents 
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the speed ripple, although it is only 1.6% of the reference speed (4.4 rpm of 273 rpm), it is responsible 
for distorting the previous two waveforms. 

Figure 3. Angular position of the motor, at 273 rpm, controlled by Field Oriented Control. 

 

Figure 4. Fundamental cosine term, distorted by speed ripple, for Field Oriented Control. 

 

Figure 5. Speed ripple, at 273 rpm, controlled by Field Oriented Control. 

 

The proposed self-tuning algorithm with the Fourier series expansion scheme (for the first two 
terms) Figure 6 shows a reduction in angular position waveform distortion. Figure 7 verifies that the 
fundamental cosine function shape also improved. Figure 8 presents a 2 rpm peak to peak speed ripple 
which is half of the original variation as shown in Figure 5. The waveform in Figure 9 corresponds to 
the control signal u(θ) in per unit values. 

Figure 6. Angular position of the motor, at 273 rpm, controlled by the proposed scheme, 
for the first two terms. 

 

Time (s)

θ 
(°

) 

0 0.1 0.2 
0 

360 

Time (s)

co
s (
θ)

 

0 0.1 0.2 -1 

1 

Time (s)ω
 (r

pm
) 

0 0.1 0.2 

270 

275 

Time (s)

θ 
(°

) 

0 0.1 0.2 
0 

360 



Sensors 2013, 13 3842 
 

Figure 7. Fundamental cosine term, corrected by the proposed scheme, for the first two terms. 

 

Figure 8. Speed ripple, at 273 rpm, controlled by the proposed scheme, for the first two terms.  

 

Figure 9. Control signal u(θ), of the proposed scheme, for the first two terms. 

 

Figures 10–12 shows similar results for the proposed control for the first four terms. Figure 13 
presents the control signal u(θ), although the wave forms in Figures 9 and 13 are substantially 
different, for this experiment the results are similar and perhaps it is because torque ripple is almost 
sinusoidal. Figures 14–17 shows that the second and fourth harmonic cosine function shape also 
improved. Finally Figure 18 shows that speed can be reduced to 2.7% of nominal speed while the 
motor starts to malfunction at 5.7% of nominal speed with only FOC control.  

Figure 10. Angular position of the motor, at 273 rpm, controlled by the proposed scheme, 
for the first four terms. 
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Figure 11. Fundamental cosine term, corrected by the proposed scheme, for the first  
four terms. 

 

Figure 12. Speed ripple, at 273 rpm, controlled by the proposed scheme, for the first  
four terms. 

 

Figure 13. Control signal u(θ), of the proposed scheme, for the first four terms. 

 

Figure 14. Second harmonic cosine term, distorted by speed ripple, for Field  
Oriented Control. 
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Figure 15. Fourth harmonic consine term, distorted by speed ripple, for Field  
Oriented Control. 

 

Figure 16. Second harmonic cosine term, corrected by the proposed schem. 

 

Figure 17. Fourth harmonic consine term, corrected by the proposed scheme. 

 

Figure 18. Angular position of the motor, at 80 rpm, controlled by the proposed scheme. 

 

6. Conclusions 

In this paper has been presented an adaptive self-tuning algorithm for determining the Fourier 
coefficients of the controller with the aim of reducing the torque ripple in a PMSM. Its implementation 
is simple and represents a good alternative for minimizing torque ripple, cogging torque and non-
sinusoidal electromotive torque variations due to its periodic nature. The proposed scheme does not 
require previous knowledge of the motor parameters. The performance of the proposed scheme has 
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been evaluated through experimentation and test results confirm 50% speed ripple reduction (from 4.4 
rpm to 2 rpm peak to peak speed ripple). Further research should be conducted to extend these results 
to applications where load torque varies as periodic function, which is not considered in this work.  
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