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Abstract

Background: Genome-wide association studies have identified numerous single nucleotide polymorphisms associated with
type 2 diabetes through the past years. In previous studies, the usefulness of these genetic markers for prediction of
diabetes was found to be limited. However, differences may exist between substrata of the population according to the
presence of major diabetes risk factors. This study aimed to investigate the added predictive value of genetic information
(42 single nucleotide polymorphisms) in subgroups of sex, age, family history of diabetes, and obesity.

Methods: A case-cohort study (random subcohort N = 1,968; incident cases: N = 578) within the European Prospective
Investigation into Cancer and Nutrition Potsdam study was used. Prediction models without and with genetic information
were evaluated in terms of the area under the receiver operating characteristic curve and the integrated discrimination
improvement. Stratified analyses included subgroups of sex, age (,50 or $50 years), family history (positive if either father
or mother or a sibling has/had diabetes), and obesity (BMI, or $30 kg/m2).

Results: A genetic risk score did not improve prediction above classic and metabolic markers, but – compared to a non-
invasive prediction model – genetic information slightly improved the area under the receiver operating characteristic curve
(difference [95%-CI]: 0.007 [0.002–0.011]). Stratified analyses showed stronger improvement in the older age group (0.010
[0.002–0.018]), the group with a positive family history (0.012 [0.000–0.023]) and among obese participants (0.015 [20.005–
0.034]) compared to the younger participants (0.005 [20.004–0.014]), participants with a negative family history (0.003
[20.001–0.008]) and non-obese (0.007 [0.000–0.014]), respectively. No difference was found between men and women.

Conclusion: There was no incremental value of genetic information compared to standard non-invasive and metabolic
markers. Our study suggests that inclusion of genetic variants in diabetes risk prediction might be useful for subgroups with
already manifest risk factors such as older age, a positive family history and obesity.
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Introduction

According to the most recent meta-analysis of genome-wide

association studies, 63 individual SNPs have now been linked with

diabetes risk [1]. However, these variants explain only ,5.7% of

variance in disease susceptibility [1]. Genetic markers have also

been frequently compared with established risk factors for type 2

diabetes in terms of their usefulness for predicting risk [2]. For

example, we have previously reported that information on 20

SNPs is not informative for predicting future diabetes in the EPIC-

Potsdam study [3]. Overall, prospective studies showed limited

predictive value of genetic markers in general, and particularly if

compared to classical non-genetic risk factors [4]. However, few

studies indicate that prediction by genetic variants might be

informative among specific subgroups, e.g. individuals who are

younger (,50 years) [5,6], or who are obese [6]. However, a

systematic comparison of genetic and non-genetic risk factors in

subgroups of a prospective study that allows an accurate

determination of the diabetes risk is still lacking. Our aim was

therefore to evaluate if the predictive value of a large set of genetic

variants differed between subgroups according to sex, age, family

history, and BMI.
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Methods

Ethics statement
The ethics committee of the State of Brandenburg, Germany,

gave approval for the study and written informed consent was

obtained from all participants.

Study design and participants
The European Prospective Investigation into Cancer and

Nutrition (EPIC)–Potsdam study is a population-based cohort

study of 27,548 participants recruited from Potsdam, Germany, in

the years 1994–1998 [7]. Participants were mainly aged 35–65

years at baseline. Follow-up assessment was performed every 2 to 3

years to identify incident type 2 diabetes cases. Over a mean

follow-up time of 7 years, 849 incident cases were identified. The

diagnosis of incident cases was based on self-reports in a

questionnaire and verification by physicians.

We used a case-cohort nested within the prospective EPIC-

Potsdam cohort for evaluation of genetic risk factors. Out of

26,444 study participants with blood samples collected at baseline

a random subcohort with 2,500 participants was selected. This

subcohort is representative for the full cohort and baseline

characteristics showed no significant differences [8].Participants

with prevalent type 2 diabetes at baseline, abnormal baseline

plasma glucose levels or more than 9 missing data on SNPs were

excluded from analysis leaving 1,968 participants in the subcohort.

Of the 801 incident cases identified during follow-up in the cohort

with blood samples, 578 cases remained after similar exclusions.

Baseline information was used to calculate the German

Diabetes Risk Score (GDRS), a validated prediction equation

developed in the EPIC-Potsdam cohort including the following

non-invasive measures: age (years), height (cm), waist circumfer-

ence (cm), prevalent hypertension (yes vs. no), physical activity (h/

week), smoking (currently smoking$20 cig./d, ex-smoking vs.

never smoker or currently smoking ,20 cig./d), alcohol intake

(moderate consumption [10–40 g/d] vs. low or high consump-

tion), intake of red meat (150 g/d), intake of wholegrain bread

(50 g/d) and coffee consumption (150 ml cup/d). [9]. Diet was

assessed with a validated semiquantitative food frequency ques-

tionnaires (FFQ) including 148 food items. Frequencies were

measured in 10 categories and portion sizes were estimated from

photographs of standard portion sizes [10,11,12]. Information on

family history of diabetes was obtained from self-reports in a

questionnaire, and body mass index (BMI) was calculated from

measures of height and weight (kg/m2) in a physical examination.

Measurements of metabolic markers were described in previous

reports [3,7].

Genotyping
Genotyping of 20 previously analyzed SNPs associated with

type 2 diabetes was performed with Taqman technology (Applied

Biosystems, Foster City, CA) [3]. For the current analyses, 23

additional SNPs were genotyped by KBioscience (http://www.

kbioscience.co.uk) using KASP SNP genotyping system. This is a

competitive allele-specific PCR incorporating a FRET quencher

cassette. The overall set of SNPs was selected to reflect common

diabetes-associated single nucleotide polymorphisms and to be

largely identical to the set of SNPs evaluated in sub-group analysis

the Framingham Offspring study [5] for better comparability. The

accuracy of genotyping was independently assessed to be between

0 and 0.2%, with reproducibility at 99.9% and success rate of

96.5%. For single SNPs frequency of missing genotype informa-

tion was lower than 6.5%. All SNPs were in Hardy-Weinberg

equilibrium (p.0.001), except for rs5945326 (near DUSP9 gene)

and hence this SNP was excluded from analysis.

Statistical analyses
We assumed an additive model for each SNP with values of 0,

1 and 2 for the number of risk alleles and analyzed the predictive

value of the SNPs using a count genetic score. For participants

with missing genotypes the genetic score was standardized to

score values for participants with complete genotype information

[13].

The incremental value of metabolic markers and the count

genetic score was investigated with several different prediction

models. The discriminatory ability of each model was deter-

mined with the areas under receiver operating characteristic

curves (ROC-AUCs) using logistic regression analysis. Model

comparisons of a sparser with an extended model were used to

assess the improvement in prediction with difference in ROC-

AUCs and 95% confidence intervals (95% CI) calculated with

the Delong test [14]. The integrated discrimination improve-

ment (IDI) was calculated with predicted risks from logistic

regression [15]. Model comparisons were repeated in subgroups

of sex, age (,50, $50 years of age), family history of diabetes

(positive: father, mother or at least one sibling has type 2

diabetes) and obesity (positive: BMI$30 kg/m2).

All statistical analyses were performed with SAS (Version 9.2,

Enterprise Guide 4.3, SAS Institute Inc., Cary, NC, USA). The

significance level was defined with a two-tailed p-value of ,0.05.

Results

Baseline characteristics of the random subcohort of EPIC-

Potsdam and incident cases are presented in table 1. Incident cases

were, compared to the subcohort, more likely to be males, were on

average older, had a higher BMI, and had a wider waist

circumference. Proportions of hypertensive participants and

former or current smokers were larger among incident cases.

Diabetes risk quantified with the GDRS was considerably higher

among incident cases compared to the subcohort participants.

Also, concentrations of biochemical markers reflected a higher

baseline risk for incident cases compared to the subcohort.

Regarding the genetic score, incident cases had slightly higher

number of risk alleles than the members in the subcohort.

The genetic loci and risk-allele frequencies are listed in Table

S1. Risk-allele frequencies ranged from 0.09 to 0.94 in the random

EPIC-subcohort and were comparable with prior reports on allele

frequencies [5,16,17] or HapMap-CEU and 1000 Genomes data

[18].

Table 2 shows comparisons of models without or with inclusion

of the count genetic score. Discrimination for a model including

only the 42 SNP genetic score was weak (ROC-AUC: 0.579; 95%

CI: 0.552–0.605). However, when adding the genetic score to the

GDRS ROC-AUC increased from 0.846 to 0.853 (delta: 0.007

[95% CI: 0.002–0.011]). Additionally including genetic markers to

a model containing the GDRS, glucose, A1C, triglycerides, HDL

cholesterol, c-glutamyltransferase and alanine aminotransferase

showed small differences in ROC-AUC (0.002 [20.001–0.004])

but without significance.

Stratified analyses for prediction models including the count

genetic score, GDRS or count genetic score along with the GDRS

are presented in table 3. The discriminative ability of the genetic

score alone was weak in both men and women. Also, the predictive

value of the genetic score added to the GDRS was similar in men

and women (differences in ROC-AUC: 0.006 and 0.008, IDI: 6.20

and 6.24%, respectively). Analyses stratified by age showed lower

Genetic Information for Diabetes Risk Prediction
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ROC-AUCs for the GDRS and the genetic score in the upper age

group. When the genetic score was included along with the

GDRS, improvement was more apparent in the older age group

(difference of ROC-AUC: 0.010, IDI: 7.50%) compared to the

younger group (0.005, 5.25%). We observed a slightly higher

ROC-AUC for the genetic risk score among participants with a

positive family history, while the GDRS discriminated slightly

better in the group with a negative history. Improvement by

genetic information was larger among participants with a positive

family history (delta ROC-AUC: 0.012, relative IDI: 8.71%)

compared to participants with a negative family history. With

regard to BMI subgroups, both the GDRS and genetic score

Table 1. Baseline characteristics for the case-cohort of EPIC-Potsdam.

Characteristic Random subcohort Incident cases of Type 2 diabetes

No. of participants 1,968 578

Sex (% male) 37.0 58.8

Age (years) 49.469.0 54.667.5

BMI (kg/m2) 25.964.2 30.464.5

Waist circumference (cm) 85.2612.6 100.1612.2

Body height (cm) 167.668.5 168.668.7

Prevalent hypertension (%) 30.5 58.0

Moderate alcohol consumption (% 10–40 g/d) 33.8 30.8

Former smoker (%) 31.4 44.3

Current smoker (%$20 units/d) 5.7 9.2

Intake of wholegrain bread (50 g portion/d) 0.961.1 0.860.9

Coffee consumption (150 ml cup/d) 2.862.1 2.762.1

Intake of red meat (150 g portion/d) 0.360.2 0.360.2

Physical activity (h/week) 6.265.9 6.065.8

Score points GDRS 441.16120.9 595.0699.4

Biochemical markers

HbA1c (%) 6.42 (6.40–6.45) 7.13 (7.06–7.19)

Random glucose (mg/dl) 95.0 (94.3–95.8) 110.1 (108.3–112.0)

Adiponectin (mg/ml) 7.25 (7.10–7.41) 5.10 (4.91–5.30)

HDL-cholesterol (mg/dl) 51.4 (50.7–51.9) 42.8 (41.9–43.6)

Triglycerides (mg/dl) 104.7 (102.1–107.4) 166.2 (158.8–173.9)

hs-CRP (mg/l) 0.72 (0.68–0.77) 1.73 (1.56–1.92)

c-glutamyltransferase (U/l) 17.9 (17.3–18.6) 33.4 (31.3–35.6)

alanine-aminotransferase (U/l) 19.4 (19.0–19.9) 29.1 (27.9–30.5)

Genetic risk score (20 SNPs) 19.262.9 19.862.9

Genetic risk score (42 SNPs) 42.664.2 43.764.0

Presented values are means 6 standard deviation (SD) and for biochemical markers geometric means are presented with 95% confidence intervals (95% CI).
doi:10.1371/journal.pone.0064307.t001

Table 2. Improvement in Discrimination by Adding Genetic Information to the GDRS and Metabolic Biomarkers in the Case-Cohort
of EPIC-Potsdam.

ROC IDI

C statistic
(95% CI)

delta ROC-AUC
(95% CI)

Absolute IDI
(95% CI)

Relative
IDI (%)

Genetic markers (42 SNPs) only 0.579 (0.552–0.605) - - -

GDRS only 0.846 (0.829–0.863) Ref. Ref. Ref.

GDRS and genetic markers (42 SNPs) 0.853 (0.836–0.869) 0.007 (0.002 – 0.011) 0.0154 (0.0152–0.0157) 5.44

GDRS, glucose, A1C, triglycerides, HDL cholesterol,
c-glutamyltransferase, and alanine aminotransferase

0.899 (0.885–0.913) Ref. Ref. Ref.

GDRS, glucose, A1C, triglycerides, HDL cholesterol,
c-glutamyltransferase, alanine aminotransferase and
genetic markers (42 SNPs)

0.901 (0.887–0.914) 0.002 (20.001–0.004) 0.0071 (0.0069–0.0072) 1.66

doi:10.1371/journal.pone.0064307.t002
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showed a better discrimination in the group without obesity.

Although non-significant, improvement in discrimination was

larger in the obese group.

Discussion

We observed that prediction based on a large number of single

nucleotide polymorphisms is not accurate, regardless of subgroups

with different risk according to sex, age, family history, or obesity.

Prediction based on a model with non-invasive risk factors was

Table 3. Stratified Analyses of the GDRS and GRS with 42 SNPs for Sex, Age, Family History of Diabetes, and Obesity Status.

ROC IDI

C statistic (95% CI) delta ROC-AUC (95% CI) Absolute IDI (95% CI) Relative IDI (%)

Women (238 cases and 1,216 non-cases)

Genetic markers (42 SNPs) only 0.581 (0.542–0.621) - - -

GDRS only 0.855 (0.832–0.879) Ref. Ref. Ref.

GDRS and genetic markers (42 SNPs) 0.861 (0.838–0.884) 0.006 (20.00–0.013) 0.0158 (0.0155–0.0162) 6.20

Men (340 cases and 701 non-cases)

Genetic markers (42 SNPs) only 0.582 (0.546–0.619) - - -

GDRS only 0.812 (0.785–0.839) Ref. Ref. Ref.

GDRS and genetic markers (42 SNPs) 0.820 (0.793–0.846) 0.008 (20.000–0.016) 0.0161 (0.0158–0.0165) 6.24

Age,50 years (154 cases and 996 non-cases)

Genetic markers (42 SNPs) only 0.589 (0.540–0.637) - - -

GDRS only 0.883 (0.855–0.910) Ref. Ref. Ref.

GDRS and genetic markers (42 SNPs) 0.887 (0.861–0.914) 0.005 (20.004–0.014) 0.0169 (0.0164–0.0173) 5.25

Age$50 years (424 cases and 921 non-cases)

Genetic markers (42 SNPs) only 0.577 (0.545–0.609) - - -

GDRS only 0.788 (0.763–0.813) Ref. Ref. Ref.

GDRS and genetic markers (42 SNPs) 0.798 (0.774–0.822) 0.010 (0.002–0.018) 0.0161 (0.0159–0.0164) 7.50

ROC IDI

C statistic (95% CI) delta ROC-AUC (95% CI) Absolute IDI (95% CI) Relative IDI (%)

Negative Family History of Diabetes (295 cases and 1,272 non-cases)

Genetic markers
(42 SNPs) only

0.566 (0.530–0.602) - - -

GDRS only 0.851 (0.830–0.872) Ref. Ref. Ref.

GDRS and genetic markers
(42 SNPs)

0.855 (0.833–0.876) 0.003 (20.001–0.008) 0.0098 (0.0095–0.0100) 3.58

Positive Family Historya of Diabetes (202 cases and 456 non-cases)

Genetic markers
(42 SNPs) only

0.599 (0.551–0.647) - - -

GDRS only 0.841 (0.809–0.872) Ref. Ref. Ref.

GDRS and genetic markers
(42 SNPs)

0.852 (0.822–0.883) 0.012 (0.000–0.023) 0.0266 (0.0261–0.0271) 8.71

Non-obese (301 cases and 1,650 non-cases)

Genetic markers
(42 SNPs) only

0.599 (0.565–0.634) - - -

GDRS only 0.832 (0.809–0.855) Ref. Ref. Ref.

GDRS and genetic markers
(42 SNPs)

0.839 (0.817–0.861) 0.007 (0.000–0.014) 0.0164 (0.0161–0.0167) 7.55

Obeseb (277 cases and 267 non-cases)

Genetic markers
(42 SNPs) only

0.572 (0.524–0.620) - - -

GDRS only 0.705 (0.662–0.749) Ref. Ref. Ref.

GDRS and genetic markers
(42 SNPs)

0.720 (0.677–0.763) 0.015 (20.005–0.034) 0.0202 (0.0198–0.0206) 15.87

aA positive family history of diabetes was defined as either the mother or the father or a sibling suffered from type 2 diabetes.
bObesity was defined as BMI$30 kg.
doi:10.1371/journal.pone.0064307.t003
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slightly improved by genetic information, but not if established

biochemical risk markers were also considered. We also observed

that improvement in prediction by genetic information beyond

classical risk factors was slightly larger among older or obese

participants and participants with a family history of diabetes.

Genetic markers alone showed a discriminatory ability (ROC-

AUC) between 0.54 [19] and 0.68 [20] in previous studies. Our

results, based on a genetic risk score including 42 SNPs, are

comparable with these findings. Although we used a larger set of

SNPs compared to most previous studies, acceptable discrimina-

tion by genetic information alone will require identification of

many more common variants (usually with small effects) or rare

variants with stronger effects [21].

We have previously reported that metabolic markers im-

proved discrimination of the German diabetes risk score

substantially, whereas a genetic risk score including 20 SNPs

did not [3]. Our current analyses showed comparable results

with no added value of 42 SNPs beyond metabolic markers.

These results are in accordance with previous studies [19,22]

suggesting that prediction models involving lifestyle and

biochemical predictors and showing very good discrimination

are not improved by the known genetic markers [23]. Still, we

observed an improvement in discrimination with the genetic risk

score if only a non-invasive model served as the reference. Thus,

genetic profiling could be an alternative to the determination of

biochemical markers. However, the improvement by genetic

information is so far much smaller than that observed with

conventional biochemical risk markers, such as plasma glucose,

HbA1c, or plasma lipids.

Previous reports suggest that genetic risk prediction might be

more useful in younger populations [5,24,25]. In the Framingham

Offspring study Meigs et al. found a substantially better model

improvement by a genotype score in participants being ,50 years

of age compared to older [25]. The same trend was observed by de

Miguel-Yanes et al. when evaluating an extended set of SNPs (40)

in the same study population [5]. Data from the Malmö and

Botnia studies support this notion: the ability of genetic risk factors

to predict future type 2 diabetes improved with an increasing

duration of follow-up, in contrast to lifestyle-related risk factors

[24]. However, a recent study by Vassy et al. among young adults

did not see an improvement in prediction by genetic information

over routine clinical measurements [26]. Similarly, our results did

not support the hypothesis that prediction by genetic information

is more accurate in younger individuals. To the contrary, we found

that 42 SNPs, an almost identical set compared to de Miguel-

Yanes et al. [5], improved prediction more among older

participants ($50 years) than among younger. Although we

cannot rule out that the larger improvement among older

participants in our study could be due to the relatively lower

discrimination achieved by the lifestyle-related prediction model,

the Framingham Offspring study observed larger improvements

among younger participants despite the fact that the baseline

model without genetic risk factors actually showed slightly better

discrimination as well compared to older participants. While these

different results might be explained by differences in the study

populations [27], in the study design and in the identification of

diabetes cases, or in the baseline risk factor models considered, our

results support that genetic risk might affect people with an

adverse risk profile (e.g. older age) more likely than with a healthy

risk profile [4]. This is further supported by our observation that

improvement in discrimination by genetic information was larger

among participants who had a family history of diabetes or who

were obese.

To our knowledge, no previous study reported stratified analysis

by family history of diabetes. Some studies suggest that the

strength of the association between genetic risk scores and diabetes

depends on family history, but this is only indirect support for our

observation [13,20]. Talmud et al. hypothesized that the inclusion

of family history in a reference model could weaken the added

predictive value of genetic risk markers, if it was part of the family

history complex [19]. However, recent results from the InterAct

consortium suggest that the currently known diabetes gene

variants only explain a very minor proportion of excess risk

associated with family history [28].

We found that the discriminatory ability of the 42 SNPs alone

was slightly better in the non-obese group compared to the

obese, however, discrimination was generally poor irrespective

of obesity status. Van Hoek et al. showed similar results for low

compared to high BMI groups (cut-off 26 kg/m2). However,

genetic information resulted in a stronger improvement in

ROC-AUC among obese compared to non-obese participants

in our study. This difference could be due to the relatively lower

discrimination among obese participants achieved by the

lifestyle-related prediction model. However, the improvement

in ROC-AUC reached not statistical significance in the obese

group, but this might mainly reflect the smaller sample size

particularly for non-cases. No other study investigated improve-

ment of prediction models by genetic markers in subgroups of

BMI. While two studies observed stronger associations of

genetic risk scores with type 2 diabetes risk in obese people

compared to non-obese after adjustment for age and sex

[13,20], the extent to which genetic information improve

prediction has not been investigated.

Several limitations of our study need to be considered. While a

strength of our study is its prospective design, we included in our

analysis only clinical cases of diabetes identified by self-reports

and did not screen our study population for unknown diabetes

during follow-up. Thus, our results may not be generalizable to

patients who are identifiable only by screening. Further, we

cannot rule out that diabetes cases include subtypes such as

latent autoimmune diabetes of adults (LADA) which might have

affected our results. Also, the prospective design rendered it

necessary to exclude all prevalent diabetes cases at baseline.

Thus, our results reflect genetic prediction in middle-aged

individuals but not prediction at birth. However, a prospective

design is more meaningful than a case-control design if

prediction by genetic variants is compared with prediction by

anthropometric and lifestyle-related risk factors. We based our

analysis on a large number of established diabetes SNPs,

however, we cannot rule out that a more comprehensive list of

SNPs would be more useful for prediction purposes, although

this appears to be unlikely [4]. We have evaluated the

discriminatory predictive power of genetic markers using ROC

analyses and reclassification (IDI). It has been suggested that

evaluation of different risk prediction models should also include

the net reclassification improvement [15,29]. However, we have

recently reported that the absence of established risk classes for

diabetes introduces large subjectivity to such analyses [30].

Similar to previous studies [5,6], the comparison of delta ROC-

AUCs between subgroups did not rely on a statistical test which

might introduce subjectivity to the interpretation of the results.

Our stratified analyses were based on the original GDRS with

published points, but the predictive value of age or waist

circumference might be different in strata of age or BMI,

respectively. However, refitting the prediction models in

different strata only slightly affected the ROC-AUCs and

Genetic Information for Diabetes Risk Prediction
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improvement stayed almost the same, so that the overall

conclusion would not be changed.

In conclusion, genetic risk prediction with 42 SNPs alone was

not accurate enough to be used for identification of individuals at

high risk. In addition to conventional non-invasive risk factors

genetic risk prediction might be used to achieve a slightly higher

accuracy, however, it failed to significantly improve risk prediction

with established biochemical risk factors. Although differences

were not substantial, our data suggest, that genetic variants might

be more useful for prediction within subgroups with already

manifest risk factors, such as higher age, obesity, and a positive

family history of diabetes.
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Table S1 Genetic loci and genotype frequencies among
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