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Abstract

Invasive species are expected to cluster on the “high-return” end of the leaf economic spectrum, displaying leaf traits
consistent with higher carbon assimilation relative to native species. Intra-leaf nitrogen (N) allocation should support these
physiological differences; however, N biochemistry has not been examined in more than a few invasive species. We
measured 34 leaf traits including seven leaf N pools for five native and five invasive species from Hawaii under low
irradiance to mimic the forest understory environment. We found several trait differences between native and invasive
species. In particular, invasive species showed preferential N allocation to metabolism (amino acids) rather than
photosynthetic light reactions (membrane-bound protein) by comparison with native species. The soluble protein
concentration did not vary between groups. Under these low irradiance conditions, native species had higher light-
saturated photosynthetic rates, possibly as a consequence of a greater investment in membrane-bound protein. Invasive
species may succeed by employing a wide range of N allocation mechanisms, including higher amino acid production for
fast growth under high irradiance or storage of N in leaves as soluble protein or amino acids.
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Introduction species vary greatly in how N is allocated among these pools. For
example, plants may allocate 5-32% of leaf N to Rubisco and 2—
30% to cell walls, with higher amounts of cell wall protein in
longer-lived leaves [12-17]. Notably, studies examining intra-leaf
N pools have tended to focus primarily on cell-wall protein as the
primary non-photosynthetic fraction without quantifying N

The invasion of non-native species poses a rapidly growing
threat to biodiversity and ecosystem function in many parts of the
world, a threat equal to or stronger than that of climate change
[1]. Thus, the need to understand the mechanisms of invasion has
never been greater. Recent work has suggested that native and
mvasive plant species have similar carbon capture strategies but
are aligned on opposite sides of a leaf economics spectrum [2]. For
example, while native and invasive species show similar relation-
ships among variables such as leaf nitrogen (N) concentration,
photosynthetic rate (A), and leaf mass per unit area (LMA),
invasive species cluster on the “high-return” end of the leaf
economics spectrum with higher values of leaf N and A and lower
values of LMA relative to natives [3,4]. Many of these traits, such
as LMA, leaf N and A, correlate with relative growth rate [5,6],
but see [7,8] and higher relative growth rates facilitate invasion in
some systems [9], but see [10]. Intra-plant N allocation should
reflect these trait differences [11]; however, the biochemical basis
underlying these patterns has not been examined in native and

allocation to amino acids, nucleic acids, inorganic N and
secondary N-containing compounds [14-16,18,19], but see
[20,21]. This level of resolution may be critical for determining
important traits of invasive species. If invasive species occupy the
“high-return” of the leaf economics spectrum with high A and low
LMA, they should allocate more N to photosynthetic enzymes,
and amino acids and nucleic acids as precursors of protein
synthesis and growth. It is also possible that allocation of N to
amino acids and nucleic acids (required for protein synthesis and
growth) may have an equal or stronger effect on plant
performance than increasing the amount of soluble protein
involved in photosynthesis [21-22]. This hypothesis is supported
by many studies where fertilization of woody species (primarily
fast-growing forestry species) resulted in small changes in leaf N,
but large changes in relative growth rate [23-29]. Conversely, if
native species occupy the “slow-return” end of the leaf economics
spectrum, requiring tougher, longer-lived leaves for a positive
carbon balance, these species should allocate more N to structure

invasive species.

Within leaves, N occurs in soluble and membrane-bound
proteins which are involved in carbon assimilation and light
harvesting, respectively, as well as non-photosynthetic compounds
such as cell wall proteins, amino acids, nucleic acids, defense
compounds (e.g., alkaloids), and inorganic N (NO3~, NH,"). Plant
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(cell-wall protein) at the expense of metabolic processes such as
photosynthesis and growth.

The goal of this study was to examine intra-leaf N pools within a
suite of native and invasive species and determine how these N
pools correlate with leaf-level morphological and physiological
traits, such as A and LMA. We characterized 34 leaf traits, and in
particular leaf N partitioning with a high level of resolution, in five
native and five invasive woody species that co-occur in Hawaii. All
species establish on young, N-poor volcanic soils ranging in age
from 100 to 10,000 years with ample water availability [30]; thus,
plant growth is limited primarily by N availability in open areas,
and co-limited by N and irradiance under closed canopies. While
relative growth rates were not directly measured for these species,
data collected in our study demonstrated that the invasive species
selected generally had lower LMA than natives, aligning them
closer to the ‘“high-return” end of the leaf economics spectrum.

We examined seven intra-leaf N pools including soluble protein,
membrane-bound protein, cell-wall protein, total nucleic acid,
amino acid and inorganic N (NO3~, NH,"). The soluble protein
fraction contains Calvin cycle and photorespiratory enzymes of
which up to 50% is Rubisco [12]. All ten species were grown
under shaded conditions (300 umol photon m %5~ ! at mid-day)
to simulate natural conditions for seedlings establishing in the
understory of native mesic forests in Hawail (dominated by
Metrosideros polymorpha). Previous theoretical estimates based on gas
exchange data have indicated that shade leaves should have a 1:1
ratio of soluble to membrane-bound protein [12,31]. We expected
that invasive species would have higher A and lower LMA and,
consequently, would allocate more N to soluble protein, amino
acids and nucleic acids and less N to cell wall protein.

Materials and Methods

Plant material

Seeds were collected on the Island of Hawaii in November 2007
for the native species Acacia koa (Fabaceae), Dodonaea viscosa
(Sapindaceae), Osteomeles anthyllidifolia (Rosaceae), Pipturus albidus
(Urticaceae) and Sophora chrysophylla (Fabaceae), and for the
invasive species Falcataria moluccana (Fabaceae), Leucaena leucocephala
(Fabaceae), Psidium cattleianum (Myrtaceae), Pyracantha angustifolia
(Rosaceae), and Schinus terebinthifolius (Anacardiaceae); nomencla-
ture follows Wagner et al. [32]. All necessary permits were
obtained for the described field studies (Tim Tunison, Hawaii
Volcanoes National Park). All ten species are woody shrubs or
trees with Cjs photosynthesis. All five invasive species are
considered high risk weeds (A Global Compendium of Weeds,
http://www.hear.org/gcw/index.html). Only one of the five
native species (Dodonaea) is indigenous or naturalized outside of
Hawaii. Because many of the worst invaders in Hawaii are
legumes, we included two invasive (Falcataria, Leucaena) and two
common native (Acacia, Sophora) legume species.

All non-legumes co-occur within Hawaii Volcanoes National
Park and were chosen based on abundance, growth habit, and
viability of seed. Seeds were germinated in potting soil in March
2008 and grown at the UCLA Plant Growth Facility greenhouse.
After 3-6 months, plants were transferred to 3.6 L pots to avoid
pot-binding. All plants received fertilization (0.2 mg) during
irrigation every two days [Scotts Peters Professional water soluble
fertilizer, N-P-K ratio 20-20-20; N as NH," (4.1%), NO5 ™~ (5.5%),
urea (10.4%); P as PyOs5; K as KyO]. Pots were watered to field
capacity. Irradiance levels within the greenhouse ranged from 60—
550 umol photon m~? 57!, with an average value of 300 umol
photon m™2 s~' at mid-day. Our efforts focused on intensive
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physiological and biochemical measures and relative growth rate
data were not collected in this study.

Gas exchange measurements

In January 2009, photosynthetic rates and chlorophyll fluores-
cence were measured with a LI-6400 portable photosynthesis
system with a fluorescence chamber (LI-COR, Lincoln, NE,
USA). All physiological and biochemical measures were conducted
on fully-expanded, recently mature leaves. We conducted light
response curves on two individuals per species and determined
that 1000 umol photon m ™2 s~ " was a saturating irradiance for all
species. We conducted all measures at this irradiance. Relative
humidity was maintained between 40-60% and ambient temper-
ature was 25°C.

The effective quantum vyield of PSIT (¢psy), measured at
1000 pmol photon m ™2 s~ !, was calculated as (F,,'-F,)/F,,’, where
F; is the fluorescence yield of a light-adapted leaf and F,," is the
maximal fluorescence during a saturating light flash. COy-
response curves were determined by varying chamber COg
concentration between 50 and 2000 uL L' (50, 100, 200, 400,
600, 1000, 1500, 2000). Maximum carboxylation rate (V,,.,) and
maximum photosynthetic electron transport rate (Jn.x) were
estimated from the COg-response curves based on [33,34] using
temperature responses outlined in ref. [35].

Following gas exchange measures, we measured leaf thickness
with digital calipers at three points along the leaf to account for
variation in thickness. Leaves were then harvested, scanned for leaf
area, dried, and weighed to determine leaf mass per unit area
(LMA). Leaf density (g cm ™) was calculated by dividing LMA by
leaf thickness. Total leaf N concentration was determined with an
elemental analyzer (CE Instruments Flash EA 1112, CE Elantech).
All physiology measurements were conducted on five individuals
per species.

Biochemical measurements

Leaves adjacent to gas exchange leaves were harvested,
immersed in liquid nitrogen and stored at —80°C prior to
processing. We pulverized 30 to 100 mg of leaf tissue in liquid
nitrogen prior to each extraction procedure. All reagents and
solutions were made with ultrapure water (Barnstead NANOpure
InfinityTM Ultrapure Water System. Prod. >17.00 MQ —CM).
Pigments were isolated in acetone and determined colorimetrically
with a UV/VIS spectrophotometer (Beckman DU-640) following
the methods of [36]. Chlorophyll a and b concentration were
determined using a multi-wavelength analysis at 645, 662, and
710 nm. We did not have enough tissue to perform pigment
analysis on Acacia koa.

Water-soluble, SDS-soluble, and SDS-insoluble protein frac-
tions were extracted using a modified version of the procedure
described in ref. [16] in which the SDS-soluble fraction consists of
membrane-bound proteins and the SDS-insoluble fraction consists
of cell-wall proteins. Previous work has shown a tight correlation
between soluble protein and Rubisco concentration with Rubisco
accounting for approximately 50% of the soluble protein fraction
[31]. We used 4% polyvinylpolypyrrolidone (PVPP, or cross-
linked insoluble PVP) in place of PVP with a 100 mM Tris
Extraction buffer, pH 7.4 for the effective absorption of polyphe-
nols [37]. The pH of 7.4 allows for maximum extraction efficiency
combined with maximum polyphenol absorption by PVPP [38]
and significantly increases water soluble protein yields [39]. While
this protein fractionation method has been used in a diverse array
of studies, e.g., [16,18], the method underestimates soluble and
membrane-bound protein fractions when phenolic compounds are
present. We corrected for the interference by phenolics for species
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with total phenolic concentration greater than 12% dry leaf mass
(Ppturus, Psidium, and Schinus) (see Methods S1). Our correction
resulted in a +/—20% error for protein fractions in these three
species. This error is similar to or smaller than that associated with
calculations of intra-leaf’ N partitioning which rely on estimates of
Rubisco activity and bioenergetics derived from gas exchange
measures [14,40-45].

The three protein fractions were hydrolyzed with barium
hydroxide [46] and then quantified using an updated version of
the ninhydrin method [47]. Because the ninhydrin method is poor
for detecting hydroxyproline or proline [16], which are abundant
in cell-wall proteins [17], this assay likely underestimates the
amount of structural protein. However, this method is appropriate
for assessing the relative differences in protein fractions among
species. We used bovine serum albumin for standards.

Nucleic acids were extracted using a modified version of the
method in ref. [20]. Samples were first extracted in 2 ml of
chloroform: methanol (2:1). Samples were then sequentially
extracted twice with chloroform: methanol: water (1:1:0.8), once
with cold 80% methanol, and once with cold 5% trichloroacetic
acid (TCA). All sequential extractions were performed for 15 min
with 1 ml of extraction medium. After each extraction the samples
were centrifuged at maximum speed for 2 minutes and the
supernatant discarded. The final pellet was extracted twice with
2.5% TCA for one hour at 95°C. For total nucleic acid-nitrogen
(TNA) quantification, the supernatant containing TNA was
digested using the persulfate digest method [48] with 4.9 ml of
water, 100 pl of TNA extract, and 666 pl of persulfate reagent.
Each reaction vial was autoclaved at 120°C for 1.5 h [49], cooled
at 4°C and buffered with 1 ml of 0.7 M ammonium chloride,
pH 8.5 [48]. We added 0.5 to 0.6 g of spongy cadmium to each
reaction tube and placed vials on a shaker table in the dark for
1.5 hours. We then added 250 ul of color reagent [48] and
allowed the samples to develop for 10 minutes in the dark. We
read the absorbance at 540 nm using a microplate reader.
Potassium nitrate and calf thymus DNA (Sigma Aldrich D4522)
were used as standards.

Amino acids were extracted with 80% methanol [50] and
quantified using the Ninhydrin method [47], modified for use with
a microplate reader. We added 120 pl of ninhydrin solution to
120 pl of amino acid extract. The samples were then incubated at
100°C for 15 minutes and cooled on ice. We added 440 ul of cold
50% isopropanol to each sample and read the absorbance at
570 nm. Ammonium was extracted as in ref. [51] using 2 ml of
80% methanol and quantified by fluorimetry using HPLC. Nitrate
was extracted as in ref. [52] and absorbance was read at 405 nm
using a microplate reader.

Statistical analysis

To determine differences in biochemical and gas exchange traits
among five native and five invasive species, we used a nested
ANOVA with ‘origin’ (native and invasive species) as a fixed effect
and ‘species’ nested within origin. To determine differences in
biochemical and gas exchange traits among legumes and non-
legumes, we used a nested ANOVA with ‘legume’ as a fixed effect
and ‘species’ nested within legume. Data that violated the
ANOVA assumptions of normality and homogeneity of variance
were Box—Cox transformed.

For traits that correlated with leaf mass per area (LMA), we
tested whether the differences between native and invasive species
could be explained by differences in LMA. We tested the trait-
LMA relationships between native and invasive species for
differences in slope and intercepts using SMATR (http://www.
bio.mq.edu.au/ecology/SMATR/index.html; [53]). For this test,
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we used raw and log-transformed data (i.e., fitting a power-law
relationship).

A multivariate analysis was conducted on biochemical traits
using principal components analysis (PCA). All traits were
standardized prior to analysis using the formula [(trait — trait
mean)/trait SD]. Pearson product-moment correlation coeffi-
cients were generated to evaluate the linear association among
biochemical, physiological and morphological traits. All ANOVA,
PCA and correlation analyses were performed in JMP 8 (SAS
Institute, Inc., Cary, NC, U.S.A.).

Results

Nitrogen fraction recovery

Across species, we recovered between 38 to 108% of total leat N
in our seven fractions (soluble protein, membrane-bound protein,
cell-wall protein, total nucleic acid, amino acid, NH;*, and NO3 ™,
see Results S1). Lower recovery in some species could be due to
the presence of nitrogenous compounds not measured (e.g.,
alkaloids) or interference during N fraction extraction. These
deviations did not occur in any systematic way; that is, the sum of
N fractions was not substantially lower at low or high leaf N, for
native versus invasive species, or for legumes versus non-legumes
(see Results S1). For consistency across the results, we present the
percentage of leaf N allocated to various N fractions using the
value obtained by summing our seven fractions rather than that
obtained by elemental analysis. Throughout, we use the term
‘concentration’ to refer to a parameter expressed per unit dry mass
and ‘content per area’ for the area basis.

General patterns across species

The allocation of leaf N to protein (81.7 to 91.8%) varied
relatively narrowly across species (Figure 1). However, species
varied substantially in their distribution of protein among soluble,
membrane-bound and cell-wall fractions. Total nucleic acid and
amino acid concentrations and contents per area varied signif-
icantly among species (Figure 1). The fraction of leaf N allocated to
nucleic acid ranged twofold from 5.4 to 11.2% across species while
the allocation to total amino acid concentration ranged fivefold
from 1.1 to 5.4% (Figure 1). Variation among species in inorganic
N was driven by a few species as discussed below.

Variation in nitrogen partitioning between native and

invasive species

Invasive species differed from natives in several leaf physiolog-
ical and biochemical traits (Table 1). Invasive species had lower
LMA and, consequently, lower leaf N content per area compared
to native species. Invasive species also had lower photosynthetic
function per area (A,reas Vimaxs Jmaxs Lable 1) compared to native
species. With respect to biochemical traits, native species had high
absolute values of membrane-bound, cell-wall, and total protein
concentrations and content per area compared to invasive species
as well as a higher fraction of total leaf N allocated to membrane-
bound protein (Table 1). Soluble protein concentration, content
per area, and the ratio of soluble to membrane-bound protein
(invasive, 1.33; native, 1.00) did not differ significantly between
native and invasive species (T'able 1). Invaders allocated a higher
percentage of leaf N to total amino acid and NH4" compared to
native species, driven by higher NH," in Psidium and Schinus
(Table 1, Table S1). Chlorophyll concentration and chlorophyll
content per area were similar between native and invasive species.

These results were not confounded with differences in LMA
across native and invasive species (data not shown). At a given
LMA, most traits showed differences between native and invasive
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Figure 1. The fraction of total leaf N present in six biochemical fractions for five native and five invasive species grown at 300 umol
photon m~2 s, The percent of total leaf N represented by all three protein fractions is provided on the right. Inorganic N includes nitrate and
ammonium. Species abbreviations are: Acacia koa (acko), Dodonaea viscosa (dovi), Falcataria moluccana (famo), Leucaena leucocephala (lele),
Osteomeles anthyllidifolia (osan), Pipturus albidus (pial), Psidium cattleianum (psca), Pyracantha angustifolia (pyan), Schinus terebinthifolius (scte), and

Sophora chrysophylla (soch). Legumes are marked with an asterisk (¥).
doi:10.1371/journal.pone.0064502.g001

species: for N, and cell-wall protein concentration because the
slopes of the trait against LMA differed between native and
invasive species (P-values =0.02-0.03) and for membrane-bound
protein concentration and NH," content per area the slopes were
statistically similar but the intercept was higher for native or
mvasive species (P-values =0.01-0.03). For one trait, the percent
of total leaf N allocated to amino acids, native and invasive showed
the same relationship with LMA (slope P=0.58; intercept
P=0.97), so the differences in that case were explained by LMA.

A multivariate analysis showed that two invasive species were
biochemically distinct from all other species (Figure 2). Psidium
tended to have high concentrations of amino acids and NH,", and
low concentrations of membrane-bound and cell-wall proteins.
Schinus differed from other species in its high NH," concentration
and low nucleic acid concentration.

Variation in nitrogen partitioning between legumes and
non-legumes

Legumes generally had higher total protein and soluble protein
concentrations and content per area (Table 1). Non-legumes
allocated a larger fraction of leaf N to membrane-bound and cell-
wall protein fractions than did legumes (Table 1). Legumes had
substantially higher ratios of soluble to membrane-bound protein
than non-legumes (1.71 vs. 0.81, Table 1). Total nucleic acids and
amino acids were higher in legumes than non-legumes on both a
mass and area basis (Table 1, Table S1). Leaf NO3 ™ concentration
was significantly higher in two legumes, Leucaena and Sophora, than
in all other species (Figure 1, Table SI).
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The multivariate analysis showed that legumes clustered
together with high soluble protein and nucleic acid concentration
when expressed as a percentage of total leaf N (Figure 2). The
exception was Sophora, one of the native legumes, which clustered
with the majority of non-legumes when traits were expressed on a
mass basis.

Functional significance of N partitioning

Biochemical traits were more strongly inter-correlated on a
mass basis than an area basis (Table 2). On a mass basis, soluble
protein was strongly positively correlated with most biochemical
fractions, with the exception of NH,*, with which it was negatively
correlated. Few biochemical fractions correlated with physiological
function or leaf morphological traits. Membrane-bound protein
correlated positively with light use efficiency (¢psyy), although this
did not translate into higher rates of photosynthesis (Table 3).
Species with high soluble and membrane-bound protein concen-
tration tended to have higher rates of photosynthesis (Ay,.s), but
this was not statistically significant. Leaf NH," was negatively
correlated with all four measures of physiological function (A,
Vinaxs Jmaxs Opsi)- Amino acid and chlorophyll concentrations
(area basis) were negatively correlated with PNUE. Lastly, species
with high LMA and density had higher area-based cell wall
protein concentration, but lower mass-based soluble protein,
nucleic acid and chlorophyll concentration (Table 3).
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Table 1. Group means (and standard error in parentheses) for invasive and native species, and for legumes and non-legumes
grown at 300 umol photon m 2 s~

Native species Invasive species

(n=5) (n=5) Effect of origin Legumes (n=4) Non-legumes (n=6) Effect of legume
Physiology
Aarea 12.5 (0.7) 10.5 (0.6) 5.13% 11.8 (0.6) 11.3 (0.6) 0.49
s 277 (31) 295 (28) 0.17 335 (30) 254 (29) 3.81
Vmax 100.9 (5.4) 78.7 (5.0) 11.09%* 106.8 (5.1) 784 (5.1) 17.65**
Ul 173 (9) 131 (9) 11.60%* 171 (9) 139 (9) 8.70**
Dpsi 0.23 (0.01) 0.21 (0.01) 155 0.24 (0.01) 0.20 (0.01) 4.42%
Narea 1.72 (0.11) 1.34 (0.10) 6.53* 1.71 (0.11) 1.41 (0.10) 7.36**
Nimass 342 (1.2) 33.0 (1.1) 0.20 43.8 (1.1) 26.8 (1.1) 113.49%*
PNUE 120 (13) 124 (12) 0.00 107 (12) 131 (12) 1.68
LMA 54.9 (3.1) 44.3 (2.8) 4.83* 40.7 (3.0) 55.5 (2.9) 10.37**
Leaf thickness 0.019 (0.001) 0.016 (0.001) 18.25%* 0.016 (0.001) 0.019 (0.001) 20.77**
Leaf density 2.86 (0.18) 2.70 (0.16) 0.13 249 (0.17) 2.98 (0.17) 215
Biochemistry
Psor (Mass) 11.3 (1.0) 10.6 (1.0) 0.08 17.20 (0.99) 6.80 (0.97) 46.58**
Psor (area) 0.55 (0.09) 0.41 (0.08) 1.35 0.67 (0.09) 0.36 (0.09) 17.25**
Psor (% N) 34.8 (2.5) 39.0 (24) 1.44 45.3 (2.5) 313 (24) 16.69**
Prem (mMass) 11.63 (0.98) 9.05 (0.93) 7.34** 11.96 (0.95) 9.26 (0.93) 5.81*
Prmem (area) 0.64 (0.07) 0.36 (0.07) 7.78%* 0.49 (0.07) 0.51 (0.07) 0.09
Prmem (% N) 434 (2.2) 36.6 (2.1) 5.10* 33.8 (2.1) 44.1 (2.1) 12.26**
Pcw (mass) 2.22 (0.19) 1.71 (0.18) 5.58* 2.11 (0.19) 1.87 (0.18) 1.16
P.w (area) 0.12 (0.01) 0.07 (0.01) 7.76%* 0.08 (0.01) 0.10 (0.01) 1.59
Pew (% N) 8.88 (0.65) 7.73 (0.61) 1.15 6.01 (0.63) 9.84 (0.61) 19.05**
A/Pgo 41.7 (7.1) 44.9 (6.6) 0.02 25.3 (6.9) 55.3 (6.6) 11.53**
Pyo/Prmem 1.00 (0.18) 133 (0.17) 3.24 1.71 (0.18) 0.81 (0.17) 15.90%*
Protal (Mass) 25.1 (1.5) 214 (1.4) 6.81% 31.3 (1.5) 17.9 (1.4) 45 68%*
Piotal (area) 131 (0.15) 0.85 (0.14) 14.43%* 1.24 (0.15) 0.97 (0.14) 10.76%*
AA (mass) 0.78 (0.09) 0.93 (0.08) 2.03 1.26 (0.08) 0.59 (0.08) 65.13**
AA (% N) 2.60 (0.30) 3.88 (0.28) 8.49%* 343 (0.29) 3.12 (0.28) 7.08*
TNA (mass) 2.40 (0.16) 2.42 (0.15) 1.38 3.35 (0.16) 1.78 (0.15) 57.94**
TNA (% N) 8.49 (0.68) 9.17 (0.64) 0.49 9.44 (0.66) 8.42 (0.65) 1.51
NH," (mass) 0.11 (0.02) 0.21 (0.02) 3.64 0.05 (0.02) 0.23 (0.02) 71.50%*
NH;" (% N) 0.44 (0.20) 1.67 (0.19) 9.01** 0.19 (0.19) 1.63 (0.19) 126.53**
NO; ™~ (mass) 0.36 (0.11) 0.42 (0.11) 0.00 0.59 (0.11) 0.25 (0.11) 1.51
NO3;™ (% N) 1.44 (0.45) 2.00 (0.44) 1.56 1.87 (0.45) 1.62 (0.43) 230
Chl (mass) 780 (76) 856 (62) 0.70 1043 (74) 712 (62) 11.58**
Chl (area) 409 (5.2) 359 (4.2) 0.66 41.1 (5.0) 36.6 (4.2) 1.02
Statistical effects of ‘origin’ (native/invasive) and ‘legume’ (legume/non-legume) are F-ratios with statistically significant values denoted by * P<<0.05 and ** P<<0.01. For
both analyses, ‘species’ (df =8) was nested within ‘origin’ (df=1) or ‘legume’ (df = 1). Trait abbreviations: A,r. photosynthetic rate ( umol CO, m™ leaf s™'); Amass,
photosynthetic rate (nmol g~ s7"); Vinax Maximum rate of carboxylation ( umol CO, m™ leaf s™'); Jmayx Maximum electron transport rate ( umol electrons m~2 s ");
Ppsy, effective quantum yield of PSII, (AF/Fr"); Narear leaf N (@ N m™2); Nppass, leaf N (mg N g™"); PNUE, photosynthetic nitrogen use efficiency ( umol CO, mol™ N s7');
LMA, leaf mass per area (g m~?); Leaf thickness (mm); Leaf density (g cm ~3); P, soluble protein (mg N g~' and g N m~2); Pem, membrane-bound protein (mg N g™’
and g N m™?); P, cell-wall protein (mg N g~" and g N m~2); AA, amino acid (mg N g~"); TNA, total nucleic acid (mg N g~ '); NH,*, ammonium (mg N g~ "); NO; ™, nitrate
(mg N g™"); Chl, Chorophyll A + B (ug g~' and mg m~2);% N, percent of total leaf N.
doi:10.1371/journal.pone.0064502.t001

Discussion lower LMA and higher A relative to native species, with greater
allocation to leaf N pools associated with photosynthesis and
growth. In support of this idea, across all species, LMA was
negatively correlated with soluble protein, total nucleic acid and
chlorophyll content and positively correlated with cell wall protein.
Invasive species as a group did have lower LMA and cell wall

Intra-leaf N partitioning should reflect trade-offs on the leaf
economics spectrum with faster growing species allocating more N
to metabolic processes at the expense of structure. Thus, we
hypothesized that invasive species, which are generally located on
the “high-return” end of the leaf economics spectrum, would have
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Figure 2. Results of a principal components analysis for six N fractions from five native and five invasive (*¥) species grown at
300 umol photon m~2 s " on a mass basis (A) and as a percentage of total leaf N (B). Legumes tended to cluster together (dashed square)
in both panels. Two invasive species differed from the other species: Psidium had lower membrane-bound and cell-wall protein and higher amino
acid concentration whereas Schinus had high NH;" concentration. Species abbreviations are provided in Figure 1.

doi:10.1371/journal.pone.0064502.g002

protein with higher amino acid content, consistent with allocation
to growth at the expense of structure. However, our hypothesis
that invasive species would allocate more resources to carbon
assimilation and growth at the expense of structure was only
partially supported. Photosynthetic rates were either similar (mass-
based) or higher (area-based) in native species relative to invasive
species, soluble protein did not differ between groups, and native
species had higher amounts of total N and membrane-bound
protein.

Our finding that native and invasive species did not differ in the
allocation of N to soluble protein contrasts with previously
published results that invasive populations of Ageratina adenophora
allocated more N to soluble protein at the expense of cell-wall
protein compared with native populations [18]. Despite no
difference in soluble protein between native and invasive species,
native species had higher A,,., and V,,,, compared with invasive
species and this suggests that Rubisco content or activity may have

300 umol photons m ™2

been higher in native species. Our soluble protein fraction includes
Rubisco and many other proteins, but Rubisco was not directly
measured in this study.

The low irradiance used in our experiment (which reflects
actual growing conditions of seedlings in Hawaiian forest
understory) resulted in relatively even allocation of N to light
harvesting (e.g., membrane-bound protein) and carbon assimila-
tion (e.g. soluble protein) functions. Our data matched theoretical
estimates modeled from gas exchange data, indicating that shade
leaves should have a 1:1 ratio of soluble and membrane-bound
protein whereas sun leaves should have 2-3 times higher soluble
than membrane-bound protein [12,31]; in our light-limited
growth environment, we found roughly a 1:1 ratio of soluble to
membrane-bound protein with no significant difference between
native and invasive species. However, native species allocated
more N to membrane-bound protein (43.4% of total N) than
invasive species (36.6% of total N). Because the membrane-bound

Table 2. Correlation coefficients (r) for relationships among leaf N fractions for five native and five invasive species grown at
s~' and high nutrient availability (n=10 species).

Peol Prmem Pew AA TNA NH," NO;~ Chl N
Peol = 0.78%* 0.50 0.71* 0.88%* —045 —0.04 0.76* 0.75*
Prmem 0.79%* - 0.84%* 0.40 0.72* -0.20 0.06 0.62+ 0.68*
Pew 0.63* 0.85%* = 0.30 0.59+ 0.06 -0.10 0.44 0.56+
AA 0.75* 0.40 0.30 - 0.70* -0.09 0.19 0.68* 0.72*
TNA 0.93** 0.76* 0.72* 0.75* = —043 —0.07 0.66+ 053
NH,* —0.65* —0.57+ ~0.54 -038 —0.59+ - 0.11 0.13 0.01
NO;~ 0.29 0.29 —0.05 0.30 0.25 —0.14 = 0.50 0.16
chl 0.86%* 0.64+ 035 0.63+ 0.78* -0.25 0.70* - 0.74*
N 0.93%* 0.68* 0.41 0.74* 0.77* —0.63+ 0.40 0.86%* =

doi:10.1371/journal.pone.0064502.t002
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Correlations between area- and mass-based traits are on the upper half and lower half of the table, respectively. Correlations were performed on log-transformed data.
Significant correlations at P<<0.10 (+), P<<0.05 (*) and P<0.01 (**) are shown. Trait abbreviations are given in Table 1.
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protein fraction includes pigment-protein complexes which
promote effective light harvesting and electron transport, higher
amounts of membrane-bound protein in native species may have
contributed to the higher photosynthetic rates (Aaea; Jmax) under
our light-limited growth conditions. While membrane-bound
protein was higher in native species relative to invasive species,
chlorophyll content was similar and this suggests that the
membrane-bound protein fraction may represent protein that
may or may not be involved in carbon assimilation.

Two invasive species (Falcataria, Psidium) and one native
species (Acacia) displayed high soluble protein concentration and,
consequently, low photosynthetic rates per unit soluble protein
(A/Pg,), which conflicts with predictions of optimal N
partitioning models. These models, run across irradiance
environments, suggest that shade leaves should allocate less N
to soluble protein as photosynthesis becomes limited by light
harvesting rather than carbon assimilation at low irradiance
[54]. Although a high production of soluble protein seems like a
wasteful use of N at low irradiance, it is possible that higher
protein and amino acid concentration in Acacia, Falcataria and
Psidium represented N storage [55,56] and this could allow rapid
growth in a heterogeneous light environment (e.g., tree gaps,
forest edges), although the rate of amino acid production rather
than pool size is more commonly related to relative growth rate.
A recent study supports the idea that Acacia has high phenotypic
plasticity in response to light availability [57] which suggests

PLOS ONE | www.plosone.org

Table 3. Correlation coefficients (r) for relationships among leaf biochemical, physiological and morphological traits for five native
and five invasive species grown at 300 umol photons m~2 s~ ' and high nutrient availability (n=10 species).

Aurea Anmass Vimax Jmax Opsn PNUE LMA Density Thick
Psor (Mass) 0.18 0.53 0.33 0.06 0.49 —0.05 —0.59+ —0.54 —0.18
Pgol (area) 0.14 0.10 0.44 0.16 0.56+ -0.41 -0.02 0.05 0.05
Pol (% N) —0.07 0.48 0.04 —0.01 0.13 —0.05 —0.66* —0.50 —-043
Prmem (Mass) 0.43 0.53 0.50 0.14 0.71% 0.15 —-042 —0.49 0.10
Prmem (area) 033 —0.04 0.54 0.23 0.64* —-0.25 0.27 0.12 037
Prmem (% N) 0.29 -0.12 0.16 0.15 0.11 0.29 037 0.25 0.31
Paw (mass) 0.39 0.34 0.44 0.04 0.67* 0.14 —0.24 —0.38 0.27
Py (area) 0.18 -0.67 0.36 0.1 043 -0.31 0.58+ 0.35 0.55+
Pew (% N) —0.02 —0.50 -0.13 —0.04 -0.23 0.09 0.63* 0.50 0.36
AA (mass) 0.01 0.19 0.15 0.06 0.23 -033 -0.30 -0.28 -0.10
AA (area) —0.09 —0.23 0.16 0.11 017 —0.64* 0.19 0.15 0.10
AA (% N) -0.30 —0.24 -0.19 0.01 -0.30 —047 0.07 0.12 -0.12
TNA (mass) 0.10 0.47 0.21 —0.02 0.39 0.00 —0.59+ —0.68* 0.09
TNA (area) 0.03 0.03 0.29 0.07 0.40 -033 -0.05 —0.26 0.40
TNA (% N) -0.29 0.08 -0.25 -0.20 -0.22 —0.01 -037 —0.57+ 0.30
NH,* (mass) —0.57+ —0.58+ —0.81** —0.67* —0.71* —0.24 0.31 0.23 0.21
NH,* (area) -0.53 —0.78** —0.66* —0.50 —0.64* —043 0.63* 0.52 033
NH,* (% N) -0.52 —0.64* 0.72* —0.48 —0.74* -0.19 0.45 0.40 0.18
NO;~ (mass) —0.06 0.28 0.18 0.14 —0.06 0.00 —-043 —0.42 —0.11
NO;~ (area) -0.18 -0.21 0.18 0.24 -0.22 -037 0.14 0.09 0.10
NO;™ (% N) -0.28 —0.20 -0.19 0.01 —0.54 —0.05 0.07 0.13 -0.13
Chl (mass) -0.28 0.31 -0.05 -0.27 0.01 -0.16 —0.62+ —0.69* 0.06
Chl (area) —047 —0.49 0.00 -0.16 —0.08 —0.81% 0.30 0.10 0.45
Correlations were performed on log-transformed data. Significant correlations at P<<0.10 (+), P<<0.05 (*) and P<0.01 (**) are shown. Trait abbreviations are given in
-drzlzzeo.11.371/journal.pone.0064502.t003

that stored N may be useful for rapid growth under changing
light conditions.

Our hypotheses for N allocation outside of protein were
partially supported. We predicted that invasive species would
allocate more N to amino acids and nucleic acids which are
required in greater amounts in rapidly growing tissues [21,22].
While invasive species allocated a larger percentage of leaf N to
amino acids compared with native species, total nucleic acid
concentration did not vary between groups. Strong species-level
variation was evident, and thus differences among native and
invasive species for a given N fraction were often driven by a single
species. Considering all the biochemical fractions, two invaders
were distinct from all other species. Psidium tended to have high
amino acid concentration, high NH," concentration, and low
membrane-bound and cell-wall protein concentration while Schinus
differed from other species primarily in its high NH,* concentra-
tion and low nucleic acid concentration. These findings at the
biochemical level are analogous to other studies that showed great
trait variation within groups of native and/or invasive species:
such a pattern has been reported for leaf nutrient concentrations,
LMA, canopy height, seed mass, relative growth rate, and water
use [2,58-60]. Thus, the results of comparisons of native and
mvasive species will depend on the particular species considered.
The overall average differences between natives and invasives are
instructive, but species- level comparisons provide higher resolu-
tion that might indicate outcomes of these trait differences at the
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plant level. Thus, the pertinent question is: what are the functional
consequences of this inter-specific variation in N partitioning?

The partitioning patterns for Psidium were consistent with
general expectations concerning invasive species: more N was
allocated to growth (amino acids) at the expense of structure (cell-
wall protein). Psidium may succeed in dense understories by
increasing amino acid production for transport out of the leaf to
fuel the production of new structures. Increasing whole-plant leaf
area will maximize light interception in Hawaii’s light-limited
mesic forests. Our results concur with those of Niinemets et al. [28]
who found that an invasive species (Rhododendron ponticum) diluted
leaf N at a high fertility, forested site, making more leaves rather
than increasing leaf N concentration. The authors concluded that,
at a plant level, greater light interception may be more
advantageous than a higher Chl/N ratio in a forest understory.

Conversely, the patterns in Schinus, particularly its high levels of
NH,", suggested stress rather than optimal N partitioning. NH,*
accumulation in leaves is toxic and under normal conditions leaf
NH," levels are relatively constant in plants. Differences in leaf
NH," among species may indicate a decrease in amino acid
production most likely resulting from stress associated with low
irradiance. Low total protein concentration in Schinus drove the
overall higher total protein concentration of natives relative to
invasives. While Schinus seedlings often recruit within dense
patches of established adult plants, our results suggest that this
species spreads by a mechanism other than superior leaf
biochemistry, possibly vegetative reproduction into high light
environments (] Funk, personal observation).

We found that nitrogen-fixation strongly influenced intra-leat N
allocation. Legumes had higher total protein content, higher
soluble protein content, and a higher ratio of soluble to
membrane-bound protein relative to non-legumes. As noted
above, this pattern of N allocation may be disadvantageous in a
light-limited habitat where membrane-bound protein will increase
light harvesting. However, we should note that A was not
correlated with membrane-bound protein across species in this
study. A study of nitrogen-fixing and non-fixing plant species in
the United States found that nitrogen-fixing species tended to be
less shade tolerant than non-fixers [61]; thus, high soluble protein
in these species may be beneficial in open canopies or for rapid
growth when gaps appear in the canopy. As discussed above,
legumes may store N as soluble protein for use when light becomes
available in the understory.

We acknowledge limitations in our study design. First, we were
unable to find seeds for co-occurring, phylogenetically related
pairs of native and invasive species or pairs of invasive and
noninvasive exotic species. Because more closely related taxa share
similar trait values, phylogenetic comparative designs minimize
trait differences associated with comparing unrelated species and
disparate life forms. Thus, future biochemical studies should
include more taxonomically based species comparisons. A second
limitation was that we did not directly measure relative growth
rates of our species. While many studies infer inter-specific
differences in hard-to-measure processes like growth from easy-to-
measure traits like LMA based on established leaf economics
spectrum relationships, e.g., [5], we assumed that our invasive
species were located closer to the “high return” end of the leaf
economics spectrum relative to native species based on differences
in LMA. Consequently, we were unable to directly link species
differences in amino acid and nucleic acid content to relative
growth rates. Third, our study was conducted at high N
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availability and we may expect to see greater differences in N
allocation, and stronger differences between native and invasive
species in N partitioning and leaf-level traits, under low N
conditions. Our experiment initially included a low N treatment
but high mortality resulted in too few replicates for our final
analyses.

Lastly, our estimates of protein fractions for the three species
with leaf phenolic content greater than 12% (Pipturus, Psidium,
Schinus) and low percent of N recovery for some species added
error to the data and, consequently, our interpretation. In
particular, we only recovered 38% of total leaf N from Schinus
which, along with Psidium, was an outlier with respect to several N
pools. Schinus is the only species we surveyed that contains leaf
resin which may have interfered with extraction and quantification
of soluble protein. Underestimates of soluble protein in Schinus and
Psidium would result in lower amounts of NH," and amino acids
than we report here, making the two species more similar in
biochemistry to the other invasive species measured. Additionally,
Sophora had lower soluble protein content relative to other legumes,
and low N recovery (64%) for this species may reflect an
underestimate of soluble protein.

Despite these limitations, our study is the first to examine
intra-leaf N partitioning in a suite of native and invasive species.
Our data suggest that invasive species employ a wide range of
mechanisms in N allocation. For example, some invasive species
(particularly Falcataria and Leucaena) may succeed as invaders in
low-light environments by storing N as protein and amino acids
that can be used when high-light conditions become available.
Conversely, our results suggest that one invader (Psidium) may
succeed by allocating N to growth at the expense of higher leaf-
level carbon assimilation. More studies are needed to confirm
these patterns across a larger number of native and invasive
species and to evaluate the potential importance of biochem-
istry, in combination with other factors (e.g., clonality, enemy
release, seed dispersal), in contributing to the success of invasive
species.
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