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Abstract
Purpose—Nonexperimental studies of treatment effectiveness provide an important complement
to randomized trials by including heterogeneous populations. Propensity scores (PS) are common
in these studies, but may not adequately capture changes in channeling experienced by innovative
treatments. We use calendar time-specific (CTS) PSs to examine the effect of oxaliplatin during
dissemination from off-label to widespread use.

Methods—Stage III colon cancer patients aged 65+ initiating chemotherapy between 2003–06
were examined using cancer registry data linked with Medicare claims. Two PS approaches for
receipt of oxaliplatin vs. 5-flourouricil were constructed using logistic models with key
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components of age, sex, substage, grade, census level income, and comorbidities: 1) a
conventional, year-adjusted PS and 2) a CTS PS constructed and matched separately within 1-year
intervals, then combined. We compared PS-matched hazard ratios (HR) for mortality using Cox
models.

Results—Oxaliplatin use increased significantly; 8%(n=86) of patients received it in the first
time period vs. 52%(n=386) in the last. Channeling by comorbidities, income, and age appeared to
change over time. The CTS PS improved covariate balance within calendar time strata and yielded
an attenuated estimated benefit of oxaliplatin (HR=0.75) compared with the conventional PS
(HR=0.69).

Conclusion—In settings where prescribing patterns have changed and calendar time acts as a
confounder, a CTS PS can characterize changes in treatment choices and estimating separate PSs
within specific calendar time periods may result in enhanced confounding control. To increase
validity of CER, researchers should carefully consider drug lifecycles and effects of innovative
treatment dissemination over time.

Introduction
Propensity scores (PS) are widely used to control confounding in comparative studies of
medical products. A PS is an estimate of the probability that a patient receives one treatment
over another, given characteristics of the patient and his/her condition at the time the
treatment decision is made.1,2 PSs are routinely estimated as averages of the effect of patient
characteristics on treatment choice over multiple study years. However, many drugs have a
dynamic lifecycle, experiencing changes in prescribing based on events and dissemination.
A patient characteristic that was once associated with treatment selection may become less
relevant over time, or vice versa.

The key assumptions underlying PS methods are that all confounders are accurately
measured and the model of treatment receipt given confounders is correct. If calendar time
(as a proxy for other changes) is a confounder and prescribing patterns are dynamic,
calendar time and its relations to other confounders must be correctly modeled. To our
knowledge, few studies consider specific lifecycle events for the drug of interest and
incorporate potentially heterogeneous effects of time into PS analyses.3 This may violate the
assumption that the score correctly reflects the underlying propensity for treatment given the
confounders.1 A direct comparison of PS approaches for handling calendar time in dynamic
settings has not been performed.

Oxaliplatin, an innovative chemotherapeutic, is a drug that saw striking uptake among stage
III colon cancer patients over a short time period, from off-label to widespread use. In this
setting, we construct and examine a calendar time-specific (CTS) PS within policy-based
time periods of a study cohort to understand possible validity benefits of accounting for
changes in confounding by indication over calendar time based on specific patient
characteristics. The CTS PS allows the effect of each covariate on the propensity for
treatment receipt to be non-uniform over time, taking into account changes in channeling
(used here to denote any degree of confounding by indication) relevant to a specific multi-
year cohort. Examination of the CTS PS provides insight into prescribing variations and
barriers to treatment receipt across calendar years.

Methods
We examined the CTS PS in the context of a CER study of oxaliplatin versus 5-fluorouracil
(5-FU) and all-cause mortality in patients with stage III colon cancer, focusing on the early
years of oxaliplatin adoption. Based on efficacy results from the MOSAIC trial4,5 and
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subsequent FDA approval in November 2004,6 FOLFOX, defined as the addition of
oxaliplatin to 5-FU and folinic acid, replaced 5-FU monotherapy as the standard of care.

Patients were drawn from the Surveillance, Epidemiology and End Results (SEER)-
Medicare linked data (described elsewhere)7,8 and included those diagnosed with stage III
colon cancer between 2003 and 2005, with follow-up through 31 December 2006. All
patients were traditional Medicare subscribers aged 65+ who received curative surgery and
initiated either oxaliplatin or 5-FU without oxaliplatin within 90 days of surgical resection.

We defined three study time periods, each one year in duration beginning in May 2003, the
month MOSAIC trial results were released (Figure 1). The second time period encompasses
FDA approval and spans the six months pre-approval as well as immediate post-approval
dissemination. Patients were categorized into time periods based on their receipt date of 5-
FU (referent) or oxaliplatin (exposed). Directed Acyclic Graph methodology9 and expert
knowledge were used to identify potential confounders of age, sex, race, tumor grade, tumor
substage at diagnosis (IIIA–IIIC), urban/rural status, income and 11 individual
comorbidities.10

Multivariable logistic regression was used to estimate PSs. A conventional PS, the primary
comparator, was estimated across all years, adjusting for time period. The CTS PS required
a separate model for each period to estimate the time-specific propensity of treatment receipt
per covariate. To understand if relations between patient characteristics and treatment
preference changed for individual covariates over time using the CTS PS, changes in odds
ratios (OR) and 95% confidence intervals (CI) for receipt of oxaliplatin were compared
graphically over each successive time period (from the CTS PS models) and for the full
cohort (from the conventional PS model).

Greedy 5-to-1 digit matching11 was used for covariate adjustment. CTS PS matching was
performed within each time period; matched pairs were pooled to create a full study cohort.
For the conventional PS, patients were matched across all three years and the matched
cohort was used for both overall and year-specific estimates. For the latter, matching was
ignored (broken). To evaluate confounding control, we examined covariate balance between
matched cohorts using the absolute difference in percentage by time period for each
covariate, with focus on strong confounders. We also report the cumulative balance for each
cohort, irrespective of the strength of covariate association with the outcome, and the
percent of oxaliplatin-exposed patients retained.12

We compared effectiveness of oxaliplatin vs. 5-FU for prevention of all-cause mortality by
constructing Cox models to estimate hazard ratios (HR) and 95% confidence intervals (CI),
in an intent-to-treat approach. Cox models used an origin of 90 days after surgery to
landmark the analysis.13 This origin avoids immortal time bias and systematic differences in
exposure time by treatment group, and excludes a small proportion of patients that likely
died due to surgical complications. An HR for the full study and separate HRs per time
period were generated using 4 PSs to adjust for confounding using matching: 1) the calendar
time-specific PS, 2) the conventionally estimated PS that adjusts for calendar time (primary
comparator), 3) a conventionally estimated PS with full interaction terms between calendar
time period and each covariate and 4) a conventional PS with no adjustment for calendar
time. For comparison, we also fitted unadjusted and adjusted Cox proportional hazards
outcome models. We compared HRs graphically and with percent and absolute differences.
The UNC Office of Human Research Ethics (Study number 12-0139) approved this study.
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Results
Oxaliplatin treatment increased significantly, from 8% (n=86) in 2003–2004 to 52% (n=386)
in 2005–2006. Overall, 71% of patients received 5-FU and 29% received oxaliplatin.
Exposure group characteristics were similar over the 3 years of the study with the exception
of diabetes, which increased in prevalence (Table 1).

Channeling
Comorbidities, race, income, urbanity, and age appeared to experience changes in
channeling over time. Results for selected covariates are shown to illustrate patterns (Figure
2). The adjusted relative odds of oxaliplatin receipt increased over the later two time periods
for patients with congestive heart failure (CHF) and decreased across all time periods for
those with diabetes. Residence in a high income census area appeared to increase patients’
odds of receiving oxaliplatin, particularly prior to FDA approval. Older age was consistently
associated with decreased odds of oxaliplatin receipt, and those above 79 became slightly
less likely over time to receive it. The effects of tumor grade, COPD and sex on channeling
were relatively constant (adjusted OR = 1.0, 0.8/0.9, and 1.0/1.1).

Cohort balance
The CTS PS retained 77% of oxaliplatin-exposed patients (100%, 91%, 59% for each time
period, ascending) and the conventional PS retained 79%. Patients were excluded if a
suitable match could not be found. In the first time period, the CTS PS was able to include
all oxaliplatin-exposed patients because there were relatively few patients receiving
oxaliplatin. In later years, the percentage of patients receiving oxaliplatin increased, and
therefore oxaliplatin-exposed patients were excluded due to lack of available unexposed (5-
FU) matches.

Variables were generally more balanced when using the CTS PS. For example, the balance
between 5-FU and oxaliplatin for census income>$60,000 in 2003–2004 was 30% vs. 37%
(balance=6.9) for the conventional PS cohort, compared with 36% vs. 37% for the CTS PS
(balance=1.2) (Appendix A. Supplemental Table 1). Because imbalance of the strongest risk
factors for mortality leads to more problematic confounding, we focused on the balance of
tumor substage (HR=1.8 and 3.6 for substage IIIB and IIIC vs. IIIA), older age (HR=1.2 for
ages 70–74, 1.3 for ages 75–79, and 1.8 for 80+, compared with ages 65–69),
undifferentiated/unknown tumor grade (HR=1.3), lower income (HR=1.2), CHF (HR=1.5),
COPD (HR=1.4) and diabetes (HR=1.2). Age, COPD, CHF, and income were more
balanced across the study years for the CTS PS cohort, although substage and diabetes were
less balanced. The balance statistics showing the distribution of the imbalance for each
covariate (Figure 3) show lower means in each time period for the CTS PS. The entire
distribution of balance (quartiles, means, medians) was lower for the CTS PS, showing less
imbalance in this cohort, with the exception of 2005–2006. In this time period, the CTS PS
cohort had a slightly higher median and maximum than the conventional PS (1.8 vs. 1.5; 8.3
vs. 6.5, respectively); however, it was lower in all other statistics (mean: 1.2 vs. 1.6; 25th/
75th percentiles: 0.3/1.6 vs. 0.4/2.5). Cumulative imbalances of 125 vs. 158 for the CTS
compared with the conventional PS further suggest improved balance in the calendar time-
specific cohort.

Comparison of hazard ratio estimates
For the CER analysis, patients receiving oxaliplatin (n=810) were compared with those on a
non-oxaliplatin 5-FU regimen (n=1990). Over a median follow-up of 2.65 years, 860
patients (31%) died. The crude mortality rate was 83/1,000 person-years in patients
receiving oxaliplatin and 129/1,000 person-years in patients receiving 5-FU. There was a
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22% change in HR (HR=0.69 vs. 0.75) between the conventional and CTS PS-adjusted
estimates (Table 2). Precision between the two methods was similar. The full interaction PS
(HR=0.73) generated results similar to the CTS PS in both magnitude and precision. When
comparing within time periods, CTS PS-estimated HRs differed more than conventional PS
estimates and were closer to the null, with the exception of 2004–2005, in which both
estimates moved farther from the null (HR=0.64 and 0.65, respectively) (Figure 4).

Discussion
Set in the context of a CER examination of a new chemotherapeutic agent, this study
examined a novel approach to propensity score estimation which addresses changes in
intervention adoption over time. During oxaliplatin’s first three years of rapid adoption for
stage III colon cancer, the CTS PS method proved to more adequately address subtle
changes in factors associated with treatment selection, under the assumption that calendar
time is a confounder or a proxy for confounders, than the commonly applied PS model that
assumes uniform effects of patient factors over multiple study years. The CTS PS
characterized changes in treatment choices and likely resulted in enhanced confounding
control.

Our research expands upon work by Seeger et al14,15 and Rassen et al16 by comparing
estimates, quantifying bias and defining time periods using policy-related timepoints.17 In
research examining statins and MI, Seeger et al accounted for changes in statin use by
estimating PSs and matching within half-year time blocks, then stratifying Cox models by
these blocks. They found that allowing flexibility in PS estimation showed changes in drug
use over time, but did not compare effect estimates with a conventional PS. Rassen et al
assessed the performance of an overall PS within subgroups based on patient characteristics
and found larger effect differences for small subgroups and few exposed outcomes.
Schneeweiss et al18 noted the particular importance of CER evidence immediately after
FDA approval and highlighted the methodological challenge of bias due to confounding by
indication of new medications. They describe a sequential cohort study which proposes
matching within quarterly19 or monthly blocks, but do not explicitly compare alternative
approaches.

Our results suggest oncologists may initially have been reluctant to give oxaliplatin to
patients with comorbidities such as CHF as they learned of this new drug’s effect in patients
with characteristics that may have been excluded from clinical trials. A decline in oxaliplatin
use was observed in patients with diabetes, suggesting that physicians may have observed
neurotoxicity20,21 that shaped their decision-making in subsequent chemotherapy decisions
for these already susceptible patients.22,23 Similarly, consistent channeling away from older
patients may suggest that age-correlated unmeasured variables such as frailty or age
discrimination24 were found to be increasingly relevant over time. Although all patients
were covered exclusively by Medicare, higher income areas had increased access to the
innovation. This difference dissipated after FDA approval but did not disappear.

The CTS PS produced results closer to the MOSAIC Randomized Controlled Trial (RCT)
(HR=0.80, 0.65–0.97),25 than did the conventional PS and recent observational study
findings.26 Because the true effect among older individuals is unknown, it is not possible to
empirically evaluate bias reduction.12,27 Increased validity of CTS PS estimates can be
inferred, however, as there was evidence of changes in confounding by indication over time
by individual patient characteristics. Because the CTS PS led to better overall balance of
observed covariates within calendar periods and we assume here that calendar time is a
confounder, the increased balance reduces confounding bias, at minimum within calendar
time period and possibly for the overall estimate. The closeness of the full interaction and
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CTS PS estimates was expected, as both account for changes in channeling; however, the
CTS PS provided the benefit of easier-to-interpret evidence of calendar time’s impact on
treatment choice.

The differences observed between the year-specific estimates of the CTS PS could be
attributed to several factors. In this population, there is evidence of modification by race,28

and the proportion of African Americans on oxaliplatin ranges from 6.5% to 8.1% per year.
Changes in population mix over time may lead to varied treatment effect estimates in the
presence of effect modification. Additionally, unmeasured confounding may change over
calendar years and estimating CTS PSs within time periods may allow better identification
and management of observations treated contrary to prediction.29

Overall matching of exposed patients was similar for both the CTS and conventional PS
groups, suggesting practical feasibility of this approach. In this examination, the CTS PS-
matched cohort demonstrated greater balance within years than did the conventional PS, as
measured by the statistical distribution of individual covariate imbalance, by cumulative
absolute difference, and for most, but not all, of the strong confounders. An alternative
approach would be to match on the conventional PS within calendar year, which could affect
balance comparisons even in the presence of a misspecified model. We matched on the
conventional PS across the full cohort after adjusting for calendar year under the assumption
that this implementation is most common.

As new drugs are continually entering the market, comparative effectiveness questions of
new versus old treatments will continue to arise. PS use has increased exponentially in the
last 2 decades12 and although variables are often liberally included in PS models, vigilance
is required in selection.30,31 Even in settings of dynamic prescribing, calendar time is often
not considered in CER specific to its possible role as an instrument, confounder, or modifier
of covariate effects on treatment choice. Our assumption is that most researchers would see
calendar year as a confounder and thus include it in the PS model; for example, the high-
dimensional propensity score algorithm documentation lists year of treatment as the
common example of a predefined variable.32 This is a reasonable assumption in many cases,
as time can serve as a proxy for changes in tumor staging, improvements in surgical
technique, increases in provider experience and the use of additional effective treatments
that affect common CER outcomes such as mortality and disease recurrence. These factors
are unmeasured in these data, as in many claims databases, and controlling for calendar time
will limit their potential to confound treatment effects. CTS PSs should be considered in
dynamic settings, when calendar time acts as a confounder between the exposure and the
outcome and is also a potential modifier due to non-homogenous prescribing or treatment
determinants. However, if time is not a confounder but instead an instrument for treatment
receipt,33,34,35 it should not be included in the propensity score model regardless of changes
in channeling of the treatment over time. Doing so would result in inflation of the variance
and bias if residual confounding is present.36 As in other settings, the important distinction
between a variable (here: calendar time) acting as a confounder or as an instrument cannot
be confirmed based on observed data.

Thoughtful consideration of time periods is warranted and ideal choice of calendar time
periods is not tested. In this specific example, it was most appropriate to anchor the time
periods around efficacy results, when off-label use commenced (period 1), the months
surrounding FDA approval (period 2), and the post-approval year when wide dissemination
had likely occurred (period 3). In general, drug lifecycle milestones or policy events (e.g.,
safety warnings) are good candidates for choosing calendar time periods. Providing buffer
time around events of interest is needed to allow for dissemination of new information.
There is also a need to have reasonable numbers of subjects in each of the treatment groups
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within time intervals to support estimating a multivariable PS in that interval. In some
settings, including pharmacovigilance, allowing for similar numbers of patients per time
period may be preferred because such a strategy may be optimal to compare the effect of the
treatment over time periods. In any setting, the ability to divide the full cohort into granular
time periods depends on the number of events in each cohort and time period.

While RCTs remain the gold standard for assessing an intervention’s effectiveness, they are
not always feasible, and their findings often have limited generalizability to the broader
population. Comparative effectiveness research using non-experimental data addresses many
of the limitations of RCTs, and method development to strengthen CER is critical.
Oxaliplatin provides a good practical example for investigating a CTS PS in a non-
experimental CER setting. The nature of chemotherapeutic use among oncologists is
particularly dynamic; due to rapid disease progression and high mortality, chemotherapies
are commonly used off-label, quickly approved for new indications, and rapidly
disseminated. These drugs are then used widely, despite unknown effects in populations not
included in RCTs such as the elderly and patients with high comorbidity.37 Age has been
associated with receipt of both chemotherapy in general as well as oxaliplatin
specifically.38,39 However, although the median age at colon cancer diagnosis is 72 years,
the key RCT establishing oxaliplatin’s efficacy had a median age of 6040,41 and these results
cannot be generalized to the older population, especially those over 75. The CTS PS method
allows us to not only examine age and other specific characteristics of the general non-RCT
population and their association with treatment decisions, but also to see how these things
may have changed as the health care community adopted this novel drug and became more
familiar with its side effects and clinical use over time.

Limitations of claims data such as lack of information on frailty,7,42 census-level
socioeconomic data, and inexact dates of diagnosis and service apply to these effectiveness
results. Medicare is estimated to have 75% sensitivity for picking up 5-FU,43 and therefore a
proportion of the referent group may have been missed. Comorbidity assessed through
claims may also be underestimated for this population, as older age is associated with less
aggressive treatment for a number of diseases.44

This examination was performed in a single setting and results could be due to chance. The
CTS PS should be examined in other settings and over more calendar years. If few potential
matches for treated observations exist, the CTS PS may decrease efficiency by diminishing
match options. Summary balance measures for PS matching are limited, as they may
upweight multi-level variables and ignore individual covariate effects on the outcome, a
prerequisite for confounding.

The construct of the calendar time-specific propensity score in the first years of a new drug
or after a policy event is likely beneficial to confounding control and validity of estimates in
non-experimental CER. The CTS PS allows transparent examination of changes in
channeling over time for many covariates at once and is thus useful for understanding
determinants of treatment receipt over a drug lifecycle. Creating a CTS PS also prompts
researchers to start on the drug life year, which is sensitive to changes in drug prescription
patterns, rather than the standard calendar year. Wider implementation of the CTS PS and
comparison of estimates with conventional methods is needed in order to further understand
the effects of accounting for time in studies of dynamic therapies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Calendar time periods for stage III colon cancer patients based on first date of 5-FU or
oxaliplatin receipt (N=2800) and FDA approval history of oxaliplatin
5-FU=5-Fluorouracil; FDA=Food and Drug Administration; CC=colon cancer
Efficacy results based on the MOSAIC clinical trial, presented in May 2003; FDA approval
for stage III colon cancer granted in November 2004.
Time period 1 (May 2003-April 2004) was used as referent time period in the conventional
PS model that adjusts for calendar time as a confounder.
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Figure 2. Changes in channeling by covariate over study time periods (adjusted OR, 95% CI)
comparing reciept of oxaliplatin with 5-FU
OR=Odds Ratio; CI=Confidence Interval. Time periods are May through April of the years
noted; time period specific estimates are from the calendar time-specific propensity score.
Estimates for all years encompass May 2003-April 2006 and are from the conventional
propensity score, adjusted for calendar time.
OR scale for CHF and Age at diagnosis is expanded due to wide confidence intervals or
extreme values.
* Odds ratios are adjusted for all variables included in the propensity score
** Referent patients for diabetes, congestive heart failure and COPD are those without the
condition
†Census median income modeled in quartiles as a continuous covariate, with highest income
level as referent
¥Age modeled as categorical variable, with age group 65–69 as referent
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Figure 3. Comparison of covariate balance between full (unmatched) population and matched
cohorts generated by the conventional and CTS PS from April 2003 through May 2006
CTS=Calendar Time-Specific; Time periods are May through April of the years noted. ◆
=Mean; Center line=median; Bottom/Top of box=25th / 75th percentile; Bottom/Top
lines=Minimum/Maximum;
Time periods are May through April of the years noted.
*Balance measured by absolute difference in percentage between exposed and unexposed
within covariate level for each time period.
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Figure 4. Estimated hazard ratios for different PS adjustment methods comparing oxaliplatin
with 5-FU for prevention of all-cause mortality, across all study years and within calendar-
specific time periods
PS=Propensity Score; HR=Hazard Ratio; CL=Confidence Limit; LCL=Lower Confidence
Limit; UCL=Upper Confidence Limit; CTS=Calendar Time-Specific.
Time periods are May through April of the years noted.
For conventional PS year-specific estimates, the matched cohort was used but matching was
broken for pairs that received first chemotherapy treatment in different time periods.
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Table 1

Characteristics and treatment receipt of Stage III Colon Cancer Patients in SEER-Medicare Study Population
by Time Period (N=2800)

Characteristic (N=2800)

May 2003–Apr 2004 May 2004–Apr 2005 May 2005–Apr 2006

N (%) N (%) N (%)

Treatment:*

 5-FU without oxaliplatin 1028 (92.3) 609 (64.3) 353 (47.8)

 Oxaliplatin 86 (7.7) 338 (35.7) 386 (52.2)

Race:

 Caucasian American 975 (87.7) 832 (87.9) 639 (86.6)

 African American 83 (7.5) 60 (6.3) 53 (7.2)

 Other 54 (4.9) 54 (5.7) 46 (6.2)

Age:

 Mean (sd) 75.1 (5.5) 74.5 (5.6) 74.8 (5.6)

Sex:

 Female 602 (54.0) 517 (54.6) 419 (56.7)

 Male 512 (46.0) 430 (45.4) 320 (43.3)

Urbanity:

 Metro 931 (83.6) 781 (82.5) 616 (83.4)

 Urban 166 (14.9) 146 (15.4) 108 (14.6)

 Rural 17 (1.5) 20 (2.1) 15 (2.0)

Substage:

 A 99 (8.9) 115 (12.1) 80 (10.8)

 B 662 (59.8) 542 (57.2) 412 (55.8)

 C 346 (31.3) 290 (30.6) 247 (33.4)

Grade:

 Differentiated 749 (67.2) 635 (67.1) 490 (66.3)

 Undifferentiated/Unk 365 (32.8) 312 (32.9) 249 (33.7)

Census Median Income:**

 Mean (sd) 49.8 (22.3) 50.5 (24.2) 50.6 (23.6)

Congestive heart failure (CHF): 37 (3.3) 42 (4.4) 30 (4.1)

Myocardial Infarction (MI): 32 (2.9) 21 (2.2) 15 (2.0)

Chronic obstructive pulmonary disease: 66 (5.9) 60 (6.3) 43 (5.8)

Cerebrovascular Disease (CVD): 31 (2.8) 17 (1.8) 16 (2.2)

Diabetes: 96 (8.6) 98 (10.3) 115 (15.6)

Peripheral Vascular Disease (PVD): 29 (2.6) 24 (2.5) 17 (2.3)

Abbreviations SD, standard deviation; SEER, Surveillance, Epidemiology, and End Results.

Peptic ulcer disease, mild liver disease, paraplegia/hemiplegia, chronic renal failure, and rheumatologic disease are not shown but were also
included in propensity score.

*
First chemotherapy treatment received by newly diagnosed patients (intent-to-treat)

**
USD, thousands
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Table 2

Mortality hazard ratios for stage III colon cancer patients treated with oxaliplatin versus 5-FU from May 2003
to April 2006

Outcome Models HR (95% CI)* Percent difference** (absolute change) from CTS PS

Outcome model, unadjusted 0.65 (0.54, 0.77) −35% (0.15)

Outcome model, adjusted for time† 0.71 (0.59, 0.87) −16% (0.05)

Outcome model, not adjusted for time† 0.67 (0.55, 0.80) −30% (0.12)

 Propensity Score Models

Conventional PS, adjusted for time 0.69 (0.54, 0.90) −22% (0.08)

Calendar Time-Specific (CTS) PS 0.75 (0.58, 0.98) --

Full interaction PS 0.73 (0.56, 0.95) −10% (0.03)

Conventional PS, not adjusted for time 0.67 (0.53, 0.84) −30% (0.12)

HR=Hazard Ratio; CI=Confidence Interval; CTS=Calendar Time-Specific; PS=Propensity Score;

*
Although a true estimate is unknown, results can be indirectly compared with MOSAIC RCT results of HR (95% CI)=0.80 (0.65, 0.97).

**
Percent difference calculated by: 

†
Outcome model comparators used conventional Cox proportional hazards regressionfor three estimates: unadjusted, adjusted for all covariates

included in the propensity scores including calendar time, and adjusted for all covariates included in the propensity scores excluding calendar time
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