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Abstract
The recently developed field of ligand homology modeling, LHM, that extends the ideas of
protein homology modeling to the prediction of ligand binding sites and for use in virtual ligand
screening has emerged as a powerful new approach. Unlike traditional docking methodologies,
LHM can be applied to low-to-moderate resolution predicted as well as experimental structures
with little if any diminution in performance; thereby enabling ~75% of an average proteome to
have potentially significant virtual screening predictions. In large scale benchmarking, LHM is
able to predict off-target ligand binding. Thus, despite the widespread belief to the contrary, low-
to-moderate resolution predicted structures have considerable utility for biochemical function
prediction.

Introduction
Over the past decade, the field of protein structure prediction has matured to the point where
a significant fraction of the proteins in a given proteome can be modeled at low-to-moderate
resolution [1]. On the other hand, the biochemical function of many proteins in a proteome,
most especially those associated with ligand binding and other intermolecular interactions,
are only partially known [2]. For example, the metabolic enzymes of well-studied organisms
such as yeast are not fully characterized [3,4]. Thus, a key question facing the field is can
predicted protein structures be successfully employed for the prediction of protein function?
Of course, function is multifaceted, but clearly the inference of biochemical function would
be the most direct application of structural information. In this review, we focus on the
utility of predicted protein structures in the identification of ligand binding sites, and having
identified these sites, their usefulness in virtual ligand screening to assist in drug discovery.
But, before embarking on a discussion of the utility of lower resolution structures, a brief
summary of the status of the field when high-resolution structures are used is appropriate as
it provides the standard by which newly developed approaches must be assessed.

Binding site detection in high-resolution structures
Having a three-dimensional structure in hand, one would like to identify its small molecule
binding sites. Some approaches locate binding sites by a geometric match to three-
dimensional descriptors or templates of biologically relevant sites [5,6]. More powerful is
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the evolutionary trace methodology that combines protein structure with conserved residue
patterns mapped onto the protein’s surface [7–9]. There are also geometric methods that
locate binding residues by searching for cavities/pockets in a protein’s structure [10,11].
Among the best pocket detection algorithms is LIGSITECSC [12] that calculates surface-
accessibility on the protein’s Connolly surface [13] and then re-ranks the pockets by the
degree of conservation of select surface residues. Other methods calculate titration curves
[14] or identify electrostatically destabilized residues[15]. These methods strictly focus on
the protein’s sequence and structural features and ignore the identity of the ligand, but they
are a necessary first step.

Virtual ligand screening using high-resolution structures
Having identified a binding site in a structure, the next step is to identify its binding ligands.
Most traditional approaches are docking-based and prioritize compounds by predicting their
binding mode [16] and then binding affinity [17]. Here, high-resolution structures of the
target protein receptor, preferably in its ligand-bound conformational state, are generally
required [18]. There are many successful self-docking studies where the ligand is excised
from its crystal structure and then redocked [19]. However, many proteins exhibit significant
motion upon ligand binding [20,21], and even small motions diminish docking accuracy. For
example, for trypsin, HIV-1 protease and thrombin, ~90% of initial docking accuracy is lost
when the mean protein structural rearrangement exceeds 1.5 Å [22]. These results raise the
following questions: Are ligand binding sites really so structurally unique in nature and if
not, why are high-resolution structures needed for ligand docking?

Does the need for high-resolution structures in binding site prediction and
virtual screening reflect physical principles or is it just a technical
limitation?

There is the widespread belief that predicted structures whose backbone RMSD ranges from
2–6 A are useless for either ligand binding site prediction or for virtual ligand screening
[22]. For example, the performance of the LigsiteCSC [12] pocket detection algorithm
deteriorates dramatically as one goes from crystal structures to predicted models in large
scale benchmark tests [20]. However, local structural distortions are routine in nature [23].
For example, the binding sites of distantly related native proteins that bind very similar, if
not identical ligands, with similar residues have an average pairwise backbone RMSD of
2.15 ± 0.77 Å [24]. As a specific example, for the subset of the kinome having holo crystal
structures, the structural variation of the “conserved” ATP-binding site is ~2.4 Å [25]. Thus,
there is significant structural plasticity of ligand binding sites [23,26]; it is unlikely that there
is a unique ligand-protein conformation, with other nearby conformations having an entirely
unfavorable binding free energy. The observed ensemble of native ligand binding
conformations also suggests that low-resolution models might be useful for binding site
identification/virtual screening provided that they capture the majority of the structural
features and essential interactions.

Why then do extant docking methods [16,27–31] require high-resolution structures? One
underlying cause is the fact that they are driven by steric and van der Waals interactions
[32]. A slight conformational inaccuracy could cause dramatic interaction change. If a
ligand fits into the binding site, then ligand ranking is dominated by the molecular weight of
the ligand, independent of whether the cognate ligand or a randomized version is used [32].
Thus, there is the need for a more accurate atomic force to be developed. However, if the
resulting force field is too complex, it would have limited practical utility as it must be able
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to screen millions of compounds across the thousands of proteins in the human or other
proteomes [33].

Ligand Homology Modeling: Binding site detection and virtual ligand
screening

To employ protein models requires approaches that can accommodate binding site structural
variations without a significant diminution in accuracy. As a first approximation, one might
imagine that global structural similarity between proteins would be sufficient to infer protein
function [34], most especially, common binding sites. In a recent study [35], for structurally
related proteins whose pairwise sequence identity is in the twilight zone, we concluded that
even at quite high levels of structural similarity, less than 25% of the targets share a
common binding pocket. Thus, structural similarity alone is insufficient to transfer binding
site location. A class of methods that exhibits the desired insensitivity to receptor structure
deformation and which allows one to infer binding site location and type of ligands bound is
Ligand Homology Modeling (LHM) [36–43]. LHM exploits the fact that the ideas of
homology modeling, as applied to protein structure prediction [44], are applicable to
functional inference, ligand binding pose prediction and virtual ligand screening. As shown
schematically in Figure 1, LHM consists of six steps:

1. Functional relationships between evolutionarily distant proteins are detected by
sequence profile-driven threading to identify common ligand binding pockets,
functionally important residues and structural conservation (anchors) of their ligand
binding modes [37].

2. These conserved features are used to construct a ligand fingerprint profile from the
identified template ligands [45].

3. Initial virtual screening of ligands is then done via fingerprint scanning.

4. The small molecule ligands are placed in the protein’s predicted binding site using
the conserved ligand anchor regions identified in (1) [37]. Interestingly, the pose of
the anchor in the ligand binding site tends to be strongly conserved, as are the
residues contacting the ligand. Furthermore, the B-factors of the residues touching
the ligand’s anchor are lower than those outside the anchor region.

5. The ligand’s pose is readjusted to optimize its interactions with the protein’s
structure [40]. We further found that the positions of the side chain functional
groups in contact with the ligand anchor functional groups tend to be strongly
conserved and act together as a structural unit [46]. Indeed, they can refine the
backbone geometry. This is in contrast to traditional ligand docking where the
protein’s structure is held fixed and the ligand conformation is adjusted to
accommodate the protein’s structure [32,47].

6. Using the refined conformations, the ligand library is then re-ranked via a machine
learning procedure [37,42].

One of the advantages of LHM is that binding site detection is quite insensitive to structural
quality. For example, consider the results when FINDSITE [20] was applied to a
representative benchmark set, none of whose templates are closer than 35% identical. We
consider the prediction of a binding site to be successful when the centers of mass of the
predicted and observed binding sites are < 4 Å. Using crystal structures, for the best of top
five predicted ligand-binding sites, the success rate for FINDSITE is 70.9% versus 51.3%
for LIGSITECSC. For TASSER [48] predicted models, FINDSITE has a 67.3% success rate,
whereas LIGSITECSC’s success rate is 32.5%. Similar results have been reported for binding
site detection by other LHM variants [41,43,49]. LHM has also been applied to predict metal
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binding sites [1,50]. For example, FINDSITE-metal identifies the metal binding site in
TASSER models in 59.4% of the cases. Moreover, when the metal is iron, copper, zinc,
calcium, and magnesium ions, the identity of the binding site metal can be predicted with
70% – 90% accuracy.

What happens when holo templates are unavailable for the target of
interest?

While contemporary structure prediction approaches provide sufficiently accurate models
for about 76% of the proteins in the human proteome < 1000 residues in length [1], because
of the relative scarcity of solved holo template structures in the PDB [51,52], one can only
infer ligand binding information for ~26% of the human proteome [53]. Thus, methods that
do not require holo template structures must be developed. To address this, FINDSITEX

[53], an extension of FINDSITE [20], was developed that uses predicted structures for
template proteins having experimental ligand binding information but which lack solved
structures. Thus, pseudo holo templates are generated. To provide predicted protein
structures, a fast and accurate version of TASSERVMT [54], TASSERVMT-lite, for template-
based structural modeling was developed and tested, with comparable performance as the
best CASP9 servers [55]. Then, a hybrid approach that combines structure alignments with
an evolutionary similarity score for identifying functional relationships between target and
template proteins with binding data was formulated.

FINDSITEX was applied to all identified human G-protein coupled receptors (GPCRs).
First, TASSERVMT-lite improved models of all previously modeled human GPCR structures
[56]. We then used these structures to screen against the ZINC8 [57] non-redundant
(Tanimoto coefficient [58], TC<0.7) ligand set of 88,949 compounds combined with ligands
from the GLIDA database[59]. Testing FINDSITEX (excluding GPCRs from the binding
data library whose sequence identity > 30% to the target protein) on a 168 protein human
GPCR set with known binders, the average enrichment factor in the top 1% of the
compound library (EF0.01) is 22.7, with encouraging results for off-target interaction
predictions. All 998 predicted human GPCR structures, virtual screening results and
predicted off-target interactions are available at [60].

Combined LHM approaches to proteome scale virtual ligand screening
To combine the advantages of information provided by distant holo templates when they are
available with experimental data and using pseudo holo templates when they are not,
FINDSITEcomb was developed [61]. A significant component of FINDSITEcomb, is an
improved version of FINDSITE, FINDSITEfilt that filters out false positive ligands in
threading identified templates by a better binding site detection procedure that includes
binding site amino acid similarity. For virtual ligand screening, FINDSITEcomb combines
FINDSITEfilt with FINDSITEX that uses the ChEMBL[2] and DrugBank[62] ligand binding
databases. The rank of each screened ligand is the best of its three ranks to ligands using
fingerprints derived from the PDB, ChEMBL, and DrugBank libraries. In what follows, we
summarize the results of FINDSITEcomb in benchmarking mode, where all template proteins
with > 30% sequence identity to a target are excluded. We note that in large scale testing
FINDSITEcomb produces significant virtual screening predictions for about 75% of an
average proteome [33].

Comparison of LHM to traditional docking approaches
The DUD set is designed to help test docking algorithms by providing challenging decoys
[63]. For each active, there are 36 decoys with similar physical properties (e.g. molecular
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weight, calculated LogP) but dissimilar chemical topology. Table 1 compares the relative
performance of FINDSITEcomb with traditional docking methods, including AUTODOCK
Vina [47] and DOCK 6 [31], in cross docking (a realistic scenario), where all 97,974 non-
redundant DUD ligands are screened against all targets, as well as in non cross docking,
where screening is just done against the experimentally determined active and inactive
molecules. Results are presented for crystal structures and TASSERVMT-lite modeled
structures. For both cases, each FINDSITE component performs better than AUTODOCK
Vina or DOCK 6. While the performance of traditional methods deteriorates when models
are used, FINDSITE based approaches do not. Finally, in [64], several docking programs
were compared for virtual screening accuracy in non cross docking on experimental
structures on DUD. FINDSITEcomb, whose mean average area under the ROC curve, the
Area Under the Accumulation Curve, AUAC=0.77, performs as well as the best performing
GLIDE (v4.5) [28] (mean AUAC=0.72). FINDSITEcomb performs better than all other
compared methods: DOCK 6 (mean AUAC=0.55), FlexX [30] (mean AUAC=0.61), ICM
[27] (mean AUAC=0.63), PhDOCK (mean AUAC=0.59) [29,65,66] and Surflex [64] (mean
AUAC=0.66). Table 2 shows the AUAC values using both experimental and modeled
structures for FINDSITEcomb with AUAC =0.77 and 0.75 respectively, as well as its
constituent components for both experiment and modeled structures. As in Table 1, the
dominant contribution to the success of FINDSITEcomb is due to FINDSITEfilt whose
AUAC=0.74 for experimental and modeled structures is the same.

In addition to being broadly applicable, FINDSITEcomb is considerably faster than
traditional docking methods. On a single state of the art CPU, for a 325 residue protein
screened against 100,000 compounds, FINDSITEcomb is ~ 30 times faster than
AUTODOCK Vina [47] and ~160 times faster than DOCK 6 [31]. Thus, FINDSITEcomb can
be applied to screen millions of compounds on a proteomic scale. Despite the fact that
predicted models rather than high-resolution crystal structures are used, LHM methods are
very strongly competitive with traditional docking approaches.

Large scale benchmarking tests on drug target proteins and the prediction
of off-target interactions

FINDSITEcomb was tested in benchmarking mode on all 3,576 DrugBank [67] targets <1000
residues in length. Target and template structures are modeled with TASSERVMT-lite [53].
The screened compound library consists of all 6,507 drugs (the true binders of all targets)
plus 67,871 ZINC8 non-redundant (culled to TC<0.7) compounds [57] as background. The
results of FINDSITEcomb along with its component methods and the original FINDSITE
[20] are compiled in Table 3. FINDSITEcomb is better than any of its component methods.
Table 3 also shows that FINDSITEfilt is better than FINDSITE [20] by a significant ~45%
for EF0.01 (46.0 vs. 31.7), as well as in its coverage of targets with EF0.01> 1 (58% vs. 43%).
FINDSITEcomb has an average EF0.01 of 52.1 and is better than random (EF0.01> 1) for 65%
of the targets. Finally, Table 2, column 4, shows the AUAC results for FINDSITE
FINDSITEcomb where AUAC=0.87 and its constituent components. As in the DUD
benchmark, the performance of FINDSITEcomb is dominated by FINDSITEfilt.

Another application of the LHM approach was in the structural and functional
characterization of the entire human kinome [25]. Encouraging virtual screening results
were presented for ligands predicted to bind to the conserved ATP-binding pocket [57]. In a
more rigorous test, cross-reactivity virtual profiling of the human kinome was done. For
almost 70% of the inhibitors, their alternate molecular targets can be effectively identified in
the human kinome with a high (>0.5) sensitivity, yet relatively low false positive rate (<0.5)
[68].
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Conclusions
Just as the field of protein structure prediction has greatly benefited by the development of
template based approaches [55,69], we argue that the ligand homology modeling
[1,20,37,38,41–43] has matured to the point where LHM is a powerful method for the
prediction of ligand binding sites and virtual ligand screening. It offers the advantages that
predicted as well as high-resolution structures can be successfully used, with minor
diminution in performance. While certainly not perfect, in virtual screening LHM results are
often considerably better than random and could be used to guide experimental screening
approaches.

As noted by Bourne and coworkers [70,71] and is evident from an analysis of DrugBank
[62] targets, the binding of ligand to a protein target other than the one for which the drug
was designed is quite common [67,72]. Moreover, in PDB structures, very similar binding
sites are found in globally unrelated proteins [73]. The challenge will be to extend these
observations to predicted low-to-moderate resolution protein structures and then to apply
them on a proteomic scale. If so, LHM could be a powerful tool to help repurpose FDA
approved drugs and could help with the elucidation of metabolic pathways [74]. These and
other related applications will undoubtedly be pursued in the near future.
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Highlights

• Ligand homology modeling, LHM, can use low-to-moderate resolution models
for binding site predictions and virtual screening.

• LHM performs better with protein models than traditional approaches do for
crystal structures.

• LHM is applicable to ~75% of an average proteome.

• LHM is a promising approach to repurpose FDA approved drugs.
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Figure 1.
Flowchart of Ligand Homology Modeling (LHM). Target and template proteins are colored
in blue and green, respectively, and ligands are colored in purple.
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Table 1

Comparison of virtual screening approaches on the DUD benchmark using experimental and modeled
structures

Cross Docking Non Cross Docking

Method Average EF0.01
a

Experimental Structures
Average EF0.01

a

Modeled Structures
Average EF0.01

a

Experimental Structures
Average EF0.01

a

Modeled Structures

FINDSITEX 16.89 20.05 5.92 8.24

FINDSITEfilt 22.32 21.26 11.0 11.3

FINDSITEcomb 27.69 23.10 14.1 13.3

AUTODOCK 8.92 2.17 5.45 2.48

Vina

DOCK 6 3.14 3.05 3.82 1.29

a
EF0.01 is the enrichment factor relative to random for the top 1% of ranked molecules.
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Table 2

AUAC values of different FINDSITE methods for DUD and 3,576 DrugBank targets

DUD non cross docking DrugBank

Experimental structures Modeled structures Modeled structures

FINDSITEcomb 0.77 0.75 0.87

FINDSITEfilt 0.74 0.74 0.86

FINDSITEX 0.67 0.70 0.69

FINDSITE - 0.60
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Table 3

Performance of different FINDSITE based methods for 3,576 DrugBank targets

Method Average EF0.01 # (%) of targets having EF0.01 > 1

FINDSITE(PDB) 31.7 1526 (43%)

FINDSITEX 36.6 1714 (48%)

FINDSITEfilt(PDB) 46.0 2080 (58%)

FINDSITEcomb 52.1 2333 (65%)
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