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Abstract
Purpose—Magnetic resonance spectroscopy (MRS) of hyperpolarized substrates allows for the
observation of label exchange catalyzed by enzymes providing a powerful tool to investigate
tissue metabolism and potentially kinetics in vivo. However, the accuracy of current methods to
calculate kinetic parameters have been limited by T1 relaxation effects, extracellular signal
contributions, and reduced precision at lower SNR.

Theory and Methods—To address these challenges, we investigated a new modeling technique
using Metabolic Activity Decomposition-Stimulated Echo Acquisition Mode (MAD-STEAM).
The MAD-STEAM technique separates exchanging from non-exchanging metabolites providing
twice the information as conventional techniques.

Results—This allowed for accurate measurements of rates of conversion and of multiple T1
values simultaneously using a single acquisition.

Conclusion—The additional measurement of T1 values for the reaction metabolites provides
further biological information about the cellular environment of the metabolites. The new
technique was investigated through simulations and in vivo studies of transgenic mouse models of
cancer demonstrating improved assessments of kinetic rate constants and new T1 relaxation value
measurements for hyperpolarized 13C-pyruvate, 13C-lactate and 13C -alanine.
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Introduction
Magnetic resonance spectroscopy (MRS) of hyperpolarized substrates shows great promise
in the development of new clinically relevant diagnostic indicators of disease [1–3].
Hyperpolarized (HP) MRS is advantageous over conventional radionuclide imaging in that it
detects not only the injected substrate, but also the products of its biochemical reactions
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providing additional biologically important information [3, 4]. Prior to the introduction of
HP MRS, noninvasive measures of flux through specific enzyme-catalyzed reactions have
been limited by low SNR. Measurement of these fluxes could profoundly aid in the
understanding of physiology and clinical medicine [4]. The 10,000 fold sensitivity
enhancement gained by hyperpolarization of 13C nuclei offers the possibility to non-
invasively measure fluxes through individual enzyme-catalyzed reactions in vivo and in real-
time [4, 5].

Recently, time-resolved methods have been used to observe kinetics providing improved
sensitivity to altered metabolism [6–16]. In ex vivo experiments, hyperpolarized 13C
substrates have been used to measure flux through single enzyme-catalyzed steps [4]. In
vivo, however, the acquired signal is affected by flow, perfusion, diffusion, and membrane
transport, in addition to metabolism [1, 6–8]. To address these confounding factors, the
stimulated echo acquisition mode (STEAM) approach included a diffusion preparation
scheme, which can suppress signals from the vasculature and improve contrast for tissue
metabolism [16,17].

Even with isolation of the signal to stationary tissue, robustly quantifying metabolism with
kinetic parameters using HP MRS in vivo is difficult due to the lack of complexity of the
dynamic curves and the number of free parameters that need to be estimated [9]. This
problem arises from spin-relaxation occurring concurrently with exchange, making it
difficult to differentiate metabolic conversion from relaxation [9]. This allows for linear
dependency between parameters, which can contribute to poor conditioning for least squares
minimization (LSM), and ultimately leading to reduced accuracy in estimation of rates of
conversion and spin-relaxation.

Furthermore, the precision and accuracy of the quantitative analysis deteriorate as the signal-
to-noise ratio (SNR) decreases [18]. This is important even in the field of hyperpolarized
MRS, in which spatial resolution and time constraints in vivo may lead to lower SNR.
Recently, saturation or inversion magnetization transfer (MT) [9,10], has been applied to
hyperpolarized Carbon-13 MR to improve accuracy in the measurement of rates of
conversion and observe real-time conversion. MT adds more linearly independent equations,
requiring at least one extra excitation. Here, we applied a new modeling technique using
Metabolic Activity Decomposition for reconstruction and a STEAM sequence for
acquisition (MAD-STEAM). MAD-STEAM can be used to directly observe real-time
conversion and separate exchanging from non-exchanging metabolites within a single
acquisition [19]. The additional information from the MAD-STEAM experiment has the
potential to improve the accuracy and precision of kinetic measurements even with low SNR
by adding more linearly independent equations. The goal of this study was to investigate this
new approach in both simulations and in vivo animal studies with quantitative comparisons
to prior methods.

Hyperpolarized [1-13C]-pyruvate, in particular, has shown great promise as a potential probe
for the presence of disease and its response to treatment [20–23]. Pyruvate is an important
product of the glycolytic pathway, playing a central role in cellular metabolism. In most
normal tissues under aerobic conditions, pyruvate dehydrogenase catalyzes the
decarboxylation of a significant fraction of pyruvate to produce acetyl-coenzyme A, which
is then used in the tricarboxylic acid cycle (TCA). Alternatively, pyruvate can be reduced to
lactate in the reaction catalyzed by lactate dehydrogenase (LDH). In the presence of disease,
however, the relative fluxes through these enzymes can be significantly altered [3]. For
instance, even under aerobic conditions, the glycolytic flux in tumors is often upregulated, a
phenomenon known as the Warburg effect, which leads to higher concentrations of lactate
and an acidic tumor microenvironment [24–26]. This increased LDH flux is thought to be
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responsible for the increased labeling of lactate observed in tumors, as compared to the
normal surrounding tissue, following injection of hyperpolarized [1-13C]-pyruvate [1–3].
Recently, it has been shown that there is a reduction in HP lactate detection in tumors
responding to therapy [20–23]. It is widely accepted that these changes observed in lactate
labeling are due to flux and exchange through the LDH enzyme [3]. To accurately quantify
these changes in metabolism, a new modeling method was developed utilizing the extra
information available with MAD-STEAM.

In addition to the high conversion to [1-13C]-lactate observed in many tumors, increased
[1-13C]-alanine has been observed during tumor formation in a Myc-driven liver cancer
model [27]. While it is well known that most cancers depend on a high rate of aerobic
glycolysis for survival and proliferation [11, 12], surprisingly some cancers display
glutamine addiction, having high glutamine uptake into the cell despite the fact that
glutamine can be produced from glucose [28]. The conversion of [1-13C]-pyruvate to
[1-13C]-alanine via alanine transaminase (ALT) is affected by the availability of the
glutamate cofactor, produced from conversion of glutamine via glutaminase inside the cell.
Using the new information available with MAD-STEAM, we sought to investigate the rate
of conversion of pyruvate-to-alanine for the first time during disease progression in a Myc-
driven model, in which both the Warburg effect and glutamine addiction have been reported
[24,27–29].

This project was designed to increase specificity and accuracy in the measurement of spin-
relaxation and multiple conversion pathways by applying MAD-STEAM to kinetic
modeling and then evaluate the new information gained in transgenic models of cancer. A
key benefit of measuring kinetics with the additional information from MAD-STEAM is
that spin-relaxation and multiple rates of conversion can be measured simultaneously within
a single acquisition. The additional parameters provided, such as the T1 spin-relaxation for
the reaction metabolites, may yield further information about the cellular environment
experienced by the metabolites. This new technique is also desirable since it improves
accuracy by reducing sensitivity to background noise and moving spins within the
vasculature. In this study, we applied our new modeling technique to measure real-time
metabolic conversion and T1 spin-relaxation as kinetic markers of malignancy in vivo in
transgenic mouse cancer models.

Theory
The MAD-STEAM Experiment

Recently Larson et al. showed that STEAM in the presence of metabolic conversion creates
a phase shift that depends on the resonance frequency shift and echo time (TE), Δφ = 2πΔf
(TE / 2)[19]. By choosing Δφ = ±π / 2, the metabolic conversion and exchange during a
mixing time (TM) can be directly detected within a single acquisition [19]. The pulse
sequence is shown in Figure 1. MAD-STEAM, which only uses a single acquisition, is
advantageous for detecting hyperpolarized signals in vivo because magnetization cannot be
renewed making it difficult to acquire multiple encoding steps. Ultrafast 2D NMR [30–32]
could also be used to acquire similar information, however spatial inhomogeneity in vivo
may cause distortion of the data [19].

The MAD-STEAM experiment can be viewed as an extension of a 2D Exchange
Spectroscopy (EXSY) NMR experiment [19,33]. The EXSY experiment also uses a
stimulated-echo from three 90° pulses, in which the time between the first two 90° pulses, t1,
is incremented to sample a entire 2D spectrum [19]. Instead of acquiring multiple
acquisitions of incremented t1 durations, the MAD-STEAM experiment only samples t1 =
TE / 2 such that the phase shift between the resonances of interest is ±π / 2 [19]. In other
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words, MAD-STEAM acquires the projection of a 2D EXSY spectrum storing cross peak
information in phase. The MAD-STEAM approach is similar to 1D EXSY experiment
except that it stores cross peak information in phase rather than interpreting spectra after an
inversion [34]. A spin is “phase tagged” when there is an exchange reaction available and
the acquired phase after exchange is Δφ = ±π / 2.

Here we used the “phase tagging” information encoded through the MAD-STEAM
experiment to separate the total signal of a metabolite, Mx (t), into the signal contributions
from spins that have not gone through exchange, Orig{Mx (t)}, and spins that have gone
through exchange, New{Mx (t)}, to improve kinetic measurements for the first time.
Recently Chen et al. and Larson et al. showed that a stimulated echo based MRS approaches
could also be used to isolate signal in stationary tissue from spins within the vasculature
[16,17,19], providing improved observation of active cellular metabolic conversion for
hyperpolarized carbon-13 MR in vivo.

Kinetic Models
Previously, it has been shown that the lactate and pyruvate peak intensities can be fit to a
simple two-site exchange model to give apparent rates of conversion [4, 7, 10, 11, 14],

(1)

where MPyr and MLac denote the pyruvate and lactate peak integrals, t is time, ρPyr and ρLac
are pyruvate and lactate spin-relaxation rates, 1/ T1,x. KPyr→Lac and KLac→Pyr are the
pyruvate and lactate apparent rates of conversion. Using MAD-STEAM the two-site
exchange system can be described by the following equation:

(2)

where Orig{MPyr (t)} and Orig{MLac (t)} denote the pyruvate and lactate peak integrals
with no phase shift Δφ = 0. New{MPyr (t)} and New{MLac (t)} denote the pyruvate and
lactate peak integrals of z-magnetizations with phase shifts Δφ = −π / 2 and Δφ = +π / 2,
respectively. The ±π / 2 phase shift will put the Orig{MPyr (t)} and Orig{MLac (t)} in the
real channel and the New{MLac (t)} in the imaginary channel, such that they can easily be
separated during reconstruction. For all models we assume that pyruvate and lactate are at
steady state such that there is no significant influx into the slab. This is a valid assumption
because the vascular component was suppressed by the STEAM sequence [16, 17], and the
acquisition was started after the arrival of pyruvate into the tissue.

This technique can be expanded to a three-site exchange system, such as the conversion of
pyruvate to either lactate or alanine. Using the total signal from the peak areas for each
metabolite, the following equations can be used to describe the system:

(3)

Because pyruvate generated from lactate and pyruvate generated from alanine are in small
amounts in the liver relative to the forward reactions, they were assumed to be negligible,
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and thus New{MPyr (t)} is not part of the model. This constrains the number of free
parameters to the number of linearly independent equations per time point to a 1:1 ratio.
Using MAD-STEAM, the three-site exchange system can be described by the following
system of equations:

(4)

The Orig{MAla (t)} and New{MAla (t)} were calculated based on the complex alanine peak
integral and separated using the phase shift, ΔφPyr→Ala = −π / 2.21 at 3T and TE=14ms,
using the equations below:

(5)

and

(6)

Parameter Estimation
Common methods, such as Gauss-Newton algorithm (GNA), Levenberg-Marquardt
algorithm (LMA), the Newton method and Generalized Gradient Descent, to estimate
parameters from non-linear systems use the Jacobian Matrix, J, iteratively to linearize the
least squares problem Jx = b, where x is the matrix of parameters to be solved and b is the

data. When the condition number, , is large (e is
error), even a small error in b (noise) may cause a large error in the solution, x. Thus, if the
Jacobian becomes ill-conditioned, the least squares estimate amplifies the noise by a factor
of κ, and results may be grossly inaccurate [35,36].

Linearization has been used to simplify calculations in exchange systems [15]. Linearization
could also be used along with MAD-STEAM to simplify calculations. In these comparisons,
linearization was not used to avoid error in sum of squares minimization. Because the error
on the linearized data is different than the error on the actual data, the linear least squares
solution to linearized models minimizes the sum of squares of residuals for the nonlinear
form of the dependent variables rather than the actual dependent variable.

The number of parameters a system can estimate reproducibly and accurately is related to
the number of unique eigenvalues of the matrix K from the general equation,

. The following matrix was obtained with using only the total peak area of
the data (Eq 1),

(7)
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This matrix has two distinct real eigenvalues for the following range of parameters:
KPyr→Lac = 0.05 − 0.5s−1, KPyr→Lac = 0.001− 0.05s−1, T1,Pyr = 10 − 50s, and T1,Lac =10 −
50s. Meanwhile, the following matrix obtained from using Metabolic Activity
Decomposition (Eq. 2) has four distinct real eigenvalues:

(8)

This matrix should be much more reliable for the prediction of more parameters because it
has more unique eigenvalues.

Methods
Data Fitting

To solve the non-linear inverse problem, an iterative LMA was used in Matlab (The
MathWorks Inc., Natick, MA), which interpolates between the method of gradient descent
and the GNA [37–39]. This algorithm uses a trust region such that a reasonable
approximation is always produced. Reasonable starting parameters, such as T1, x = 20s,
KPyr→Lac = 0.05s−1, and KLac→Pyr = 0.01s−1, were used to speed up computation and
improve convergence. A single simulation and fit are shown in Figure 2. All dynamic curves
were normalized to the total carbon during the experiment not including 13C-Urea.

Simulated Data
Data were simulated for a 20s experiment over a range of parameters: KPyr→Lac = 0.01 −
0.1s−1, KLac→Pyr = 0.002 − 0.02s−1, KPyr→Ala = 0.005 − 0.1s−1, T1,Pyr = 10 − 40s, T1,Pyr =
10 − 40s, and T1,Ala =10 − 40s. Each combination was simulated over a range of SNRs (25–
250 with five iterations each). The SNR was determined using the average signal of
pyruvate at the first time point and dividing by the noise root mean square (rms) for both
simulated data and in vivo data.

Hyperpolarization of [1-13C ]-Pyruvate and 13C -Urea
[1-13C]-Pyruvate mixed with the trityl radical OX063 (Tris[8-carboxyl-2,2,6,6tetra[2-
(1hydroxyethyl)]-benzo(1,2-d:4,5-d)bis(1,3)dithiole-4-yl]methyl sodium salt, Oxford
Instruments, Abingdon UK) and 13C-urea mixed with the trityl radical OX063 were
simultaneously hyperpolarized [40] for phase correction [19] using conventional dynamic
nuclear polarization (DNP) methods and a HyperSense DNP polarizer (Oxford Instruments,
Abingdon, UK) operating at 3.3T and a temperature of 1.3K. This yields more than 40,000
fold increases in the pyruvate and urea signals [5]. The sample was dissolved to produce
solutions with 80mM pyruvate and 80mM urea and a biologically appropriate pH (~7.4)
with TRIS/NaOH/EDTA dissolution media.

Acquisition and Reconstruction
All data were acquired with a STEAM sequence slab selection, TE = 14ms, TMs starting at
50ms, 20 acquisitions, 1s temporal resolution, 256 spectral points, 2.5 kHz spectral
bandwidth, a progressive flip angle scheme, and an adiabatic double spin echo [41]. A
symmetrically sampled full echo was acquired to preserve phase information [19].
Copolarized 13C-urea was used as a phase reference to correct for phase shifts caused by
homogeneous, bulk motion such as respiration, which would affect all metabolites [19].
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For animal experiments, a 3T MRI system (GE Healthcare, Waukesha, WI, USA) was used
with a dual-tuned mouse birdcage coil based on a design used previously [2, 27, 42]. Given
the main field of 3T, the echo time TE=14ms was chosen. With TE=14ms, the phase of
pyruvate to lactate conversion will be ΔφPyr→Lac = +π / 2 such that the new and original
lactate are in quadrature. Since new and original alanine are not exactly in quadrature, the
magnitude was broken into its components (Equation 5 and 6) based on ΔφPyr→Ala = −π /
2.21 in order to separate original and new alanine. This information was used for modeling
three-site exchange in the liver cancer model, in which there is known high alanine
production.

Animal Experiments
All animal studies were performed under a protocol approved by the UCSF Institutional
Animal Care and Utilization Committee. Mice were anesthetized with 1–1.5% isoflurane
and placed on a pad heated to 37°C during the MR experiment. Transgenic prostate cancer
(TRAMP) mouse models at different stages of progression (n=5) and normal mice (n=5)
were imaged for the two-site exchange study [2]. Data were acquired from a slab containing
predominately the tumor or from a 20mm slab of the abdomen for normal mice. In the
reproducibility study, data were acquired from a slab containing the liver of a normal mouse.
For the three-site exchange study, a switchable transgenic liver cancer model was used
(n=5). Following a baseline scan and hyperpolarized 13C study, doxycycline was removed
from the diet to allow induction of expression of the human oncogenes Myc [43, 44] or Myc
and Ras transgenes [45] and initiation of tumorigenesis. Data were acquired from a slab
containing the entire liver but excluding the lungs and abdomen. During each study, 350 µL
of the hyperpolarized [1-13C]-pyruvate solution was injected into the mouse over a 12s
period, followed by a 0.15 mL normal saline flush. To reduce artifacts from the inflow of
pyruvate, data acquisition began 25–30s following the start of injection of pyruvate. Axial,
coronal, and sagittal T2-weighted fast spin-echo (FSE) images were acquired as anatomical
references.

Enzyme Assays
LDH activity was measured in the transgenic liver cancer model (n=5) by observing the
decrease in absorbance of reduced nicotinamide adenine dinucleotide (NADH) at 340 nm
using a spectrophotometrical microplate reader (Saphire2, Tecan, Maennesorf, Switzerland).
Multiple samples from tumor and adjacent tissue were frozen in liquid nitrogen and
homogenized in modified RIPA buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.5 % Na-
deoxycholate, 1% Triton X 100, 0.1 % SDS, 2mM EDTA). Protein determination was
performed using a BCA Protein Assay Kit (Pierce, Rockford, IL, USA). For determination
of LDH activity, a standard curve was acquired using L-LDH from bovine heart (1000 units
× mL−1, Sigma-Aldrich, St. Louis, MO, USA). Activity was measured in the presence of
0.15 mM NADH (Sigma-Aldrich) and 0.8 mM pyruvate (Sigma-Aldrich) in 50 mM Tris-
HCl, pH 7.4 for 5 min.

Results
Simulations

Conventional two-site exchange yields four unknowns but only two equations at each time
point, causing unstable conditioning of the Jacobian matrix (Figure 3). When using
conventional modeling, the condition number of the Jacobian matrix dramatically worsened
when both the forward and backward rates are slow and the relaxation rates are similar,
suggesting linear dependency between parameters. Intuitively, in these parameter ranges,
conventional modeling is unable to distinguish forward from backward conversion and
relaxation. Simulated data, shown in Figure 3 and Table 1, demonstrated that using only the
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total peak areas for a two-site exchange and three-site exchange model results in a
miscalculation of the rate of conversion and is less accurate in calculating multiple effective
T1s even when the model fits the data well (coefficients of correlation >0.8). For these
nonlinear systems, goodness of fit does not necessarily correlate with accuracy.

To improve the fit, the number of free parameters can be constrained by assuming T1,Pyr =
T1,Lac and KLac→Pyr = 0 [10,20]. However, in the case of low SNR, this approach can often
underestimate the conversion rate KPyr→Lac compensating with inaccurate relaxation rates
which do not describe the actual kinetics of the system, as shown in Table 1. At SNRs
values typically seen in vivo [6] using Metabolic Activity Decomposition, the precision of
quantitative analysis is high as shown in Table 1. Even at very low SNRs, the error
measured was less than 20%.

Two-Site Exchange In Vivo
Using Metabolic Activity Decomposition, higher production of lactate in the tumor can be
observed in the time series data, as shown in Figure 4. We observed high rates of conversion
of pyruvate to lactate in a prostate tumor model (0.110±0.014s−1) versus the abdomen of a
normal mouse (0.033±0.008s−1). In vivo, calculations with MAD-STEAM yielded apparent
KPyr→Lac values with a larger effect size compared to conventional modeling (Table 2).
Decreased apparent KLac→Pyr rates of conversion were also observed in tumors suggesting
an increased unlabeled lactate pool-size and a high availability of NADH. Not only were the
rates of conversion different in tumor tissue, but also, the effective T1,Lac s were different in
tumors as shown in Table 2.

Multiple MAD-STEAM experiments were acquired in a single normal mouse liver using
two-site exchange. This data showed reduced intrasubject variance in estimating KPyr→Lac
using Metabolic Activity Decomposition (Mean = 0.079, σ = 0.012, Percent Error = 16.7%)
versus using the magnitude of the spectra (Mean = 0.077, σ = 0.039, Percent Error = 50.2%)
or the magnitude of the spectra with assumptions (Mean = 0.051, σ = 0.024, Percent Error =
46.9%). Large percent errors in parameter estimation in the three modeling techniques were
attributed to the low SNR of lactate in normal tissue. Even with the lower SNR, Metabolic
Activity Decomposition demonstrated improved reproducibility.

Three-Site Exchange In Vivo
Representative data from a MAD-STEAM experiment and three-site exchange using
Metabolic Activity Decomposition are shown in Table 2. Using Metabolic Activity
Decomposition, real-time alanine conversion can be detected as seen in Figure 5D and 5F.
Using Metabolic Activity Decomposition, changes in the rate of conversion of [1-13C]-
pyruvate to [1-13C]-alanine were observed in addition to conversion to [1-13C]-lactate as
shown in Figure 6. In this mouse model experiment, a three fold increase in KPyr→Ala was
observed following oncogene expression in the pre-tumor state compared to baseline and a
further three fold increase was detected when the tumor was at a late stage (baseline = 0.046,
pre-tumor = 0.131, late tumor = 0.398). There was a 37.3% decrease in the effective T1,Ala
from baseline to the pre-tumor state and a 26.8% increase in the effective T1,Ala from the
pre-tumor to late state as shown in Figure 6. Additionally, there was a 17.3% decrease in the
T1,Lac from baseline to the pre-tumor stage.

As supporting data, KPyr→Lac measurements were compared to enzymatic assays. KPyr→Lac
measured with Metabolic Activity Decomposition (R2 = 0.809) demonstrated a higher
correlation with LDH activity than modeling with the total signal of each metabolite (R2 =
0.343). KPyr→Lac measured with Metabolic Activity Decomposition also had a higher
correlation to LDH activity assays than metabolite ratios such as the lactate-to-total carbon
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ratio (R2 = 0.530) excluding 13C -urea and the lactate-to-pyruvate ratio (R2 = 0.662) over the
entire dynamic experiment and the lactate-to-pyruvate (R2 = 0.687) after perfusion of the
pyruvate bolus (t=3s after start of acquisition, acquisition started at 30 seconds after start of
pyruvate injection).

Discussion
Metabolic Activity Decomposition kinetic modeling of hyperpolarized MR data
demonstrated improved precision in estimation of both rates of conversion and relaxation
rates (Table 1). This improvement is attributed to additional information from the Metabolic
Activity Decomposition method, which provides a well-conditioned system and reduces
sensitivity to linear dependency from similar parameters (Figure 3). There is some bias in
the data for all methods presented due to fitting to the data magnitude. The magnitude was
used for fitting in vivo data because it is commonly used in the literature [3,8,10], and a
main goal of this work was to compare to previous approaches. This bias could be removed
by using complex data instead of using the magnitude.

Simulations over a wide range of relaxation and conversion rates demonstrated that this new
modeling technique not only more accurately calculated these parameters, but it also was
robust to noise with SNRs down to 10:1. Even though all models showed high goodness of
fit, a good fit did not necessarily correlate with accurate estimates, suggesting that caution
should be taken when evaluating the accuracy of these nonlinear models based on goodness
of fit alone [46].

Even with the inherent 50% loss in SNR using a STEAM sequence compared to some other
acquisition strategies [16], the accuracy gained from new “phase tagging” information with
Metabolic Activity Decomposition far overcame any loss of accuracy from decreased SNR.
For instance, at an SNR=100 the average error in estimation of KPyr→Lac for the two-site
exchange was 113.0% with conventional modeling, but only 2.7% using Metabolic Activity
Decomposition both with simulated data. Using only the conventional modeling, accuracy
was improved to 44.7% error by assuming KLac→Pyr = 0 and T1,Pyr = T1,Lac. Even at a 50%
lower SNR (SNR=50) using Metabolic Activity Decomposition, the average error was far
less than all conventional approaches, 5.0%, as shown in Table 1. Similarly, the average
error in estimation of KPyr→Lac for three-site exchange model was 13.21% at an SNR=100
using conventional modeling, but only 1.4% at an SNR=50 using Metabolic Activity
Decomposition. Also, alternate preparation schemes have been shown improve SNR for the
stimulated echo acquisition [16] and thus could substantially reduce such losses for
MADSTEAM experiments as well.

In a comparison of tumor versus normal, using Metabolic Activity Decomposition to solve
for rates of conversion and relaxation times had a larger effect size in both conversion and
relaxation rates, allowing the new method to better distinguish changes in metabolism and
cellular environment. In tumors, the measured KPyr→Lac values were significantly higher
than normal, which agrees with prior findings that cancerous tissues have higher LDH-A
expression [47]. Interestingly, effective T1,Lac was shorter in tumors compared to normal
tissues suggesting an altered cellular environment for lactate in the tumors. Because the b-
value increases during the experiment, the effective T1s measured in these experiments are a
combination of both diffusion weighting as well as the longitudinal relaxation.

Improved reproducibility was also observed. The KPyr→Lac measured using Metabolic
Activity Decomposition had an improved correlation with the measured enzyme activity
compared to conventional modeling. This suggests that the new technique more accurately
reflects enzymatic activity. Even with isolation of the detected signal to stationary tissue and

Swisher et al. Page 9

Magn Reson Med. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



“phase tagging,” other factors such as membrane transport were not accounted for in this
model. Prior studies have isolated intracellular and extracellular metabolites and have shown
that membrane transport can play a role in the measured rate of conversion [7]. The
combination of this work with these methods would provide even further specificity for
enzyme activity. Another future direction is the minimization of the voxel volume, which
would allow for improved localization of tissue areas and could enable the study of smaller
tumors and smaller regions of normal tissues.

When the modeling technique was used in a liver cancer model known to have high
pyruvate conversion to alanine in the pre-tumor stage [13], the two-site exchange model is
no longer valid. Here, the conversion rate of [1-13C]-pyruvate to [1-13C]-alanine was
investigated for the first time during tumor formation. Because the phase shift of [1-13C]-
pyruvate to [1-13C]-alanine with a 14ms echo time at 3T is approximately −π / 2, Metabolic
Activity Decomposition could be used to model the three-site exchange system to obtain
improved measurements of KPyr→Ala. In a transgenic oncogene-driven liver cancer model,
changes in KPyr→Ala were observed between baseline, two weeks (pre-tumor), and five
weeks (late tumor) off doxycycline in addition to changes in KPyr→Lac during progression,
as shown in Figure 6.

Conclusions
This technique improved accuracy, simultaneously measured conversion rates and effective
T1s, and suppressed vascular effects, thus providing new quantitative measures of relaxation
and conversion rates. The ability to quantify rates of conversion with increased accuracy can
improve current hyperpolarized kinetic models and could aid in the understanding of
metabolic alterations in diseases including cancer. Meanwhile the T1 relaxation
measurements obtained in this approach provide additional parameters for the investigating
the effects of the intracellular environment on the metabolites of interest.

In vivo, the increased accuracy resulted in a larger effect size between tumors and normal
tissue. KPyr→Lac increased in tumors, the back reaction KLac→Pyr decreased, and T1,Lac was
shorter in tumors suggesting an altered cellular environment in the tumors. Moreover, the
ability to detect changes between different stages of progression suggests that KPyr→Ala may
also be valuable in addition to KPyr→Lac in investigating metabolism alterations with
disease, particularly in case of liver cancer. Since it provided better measures of tumor
kinetic parameters, this new acquisition and modeling technique demonstrated biomedical
potential for monitoring cancer progression and response to therapy.
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Figure 1.
Metabolic Activity Decomposition with Stimulated Echo Acquisition Mode (MAD-
STEAM) pulse sequence.
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Figure 2.
Single simulation data and fitting results with Metabolic Activity Decomposition and simple
two-site exchange with and without assumptions. Two-site Exchange with Assumptions
assumes that KPyr→Lac = 0 and T1,Pyr = T1,Lac.
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Figure 3.
Comparison of stability and condition of (Left) two-site exchange with Eq. 1 using the total
metabolite signal and two-site exchange with Eq. 2 using Metabolic Activity Decomposition
and (Right) three-site exchange with Eq. 3 using the total metabolite signal versus three-site
exchange with Eq. 4 using Metabolic Activity Decomposition. Comparison is over a wide
range of parameters and all combinations in that range: T1,Pyr =10 − 40s, T1,Lac =10 − 40s,
T1,Ala =10 − 40s, KPyr→Lac = 0.01 − 0.5s−1, KPyr→Ala = 0.005 − 0.1s−1, and KLac→Pyr = 0.01
− 0.1s−1. The condition number comes from Jacobian Matrix at the solution x.
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Figure 4.
(a) Sample spectra from tumor and normal locations and their corresponding slab locations.
(b) Dynamic curves from Metabolic Activity Decomposition showing increased conversion
of lactate to pyruvate and faster decay of the original lactate signal in TRAMP tumors versus
normal tissue. Data was normalized to total carbon, excluding 13C-urea (n=5).
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Figure 5.
(a) T2 -weighted axial anatomical image within the slab where data was acquired. (b)
Schematic of the three-site exchange system. Stacked plots of the successively acquired (c)
magnitude spectra, (d) real (Δφ = 0) and imaginary (Δφ = π/2) spectra from a MADSTEAM
pulse sequence with TE=14ms. The areas under the curve from (e) the magnitude spectra
with the corresponding three-site exchange fit Eq. 3 using only the total amount of each
metabolite and (f) the areas under the curve from the real and imaginary spectra with the
corresponding three-site exchange fit to Eq. 4 using original and new metabolite information
provided by Metabolic Activity Decomposition.
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Figure 6.
T2-weighted axial and coronal anatomical images showing progression in a switchable
oncogene driven model of liver cancer and the corresponding rates of conversion calculated
from three-site exchange using MAD-STEAM and Eq. 4 at each time point: baseline, two
weeks (pre-tumor) and five weeks (late tumor) off doxycycline. Yellow lines contain the
liver where data was acquired.
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Table 2

Comparison of rates on conversion in tumors versus in normal with Metabolic Activity Decomposition and
conventional Two-site Exchange.

KPyr→Lac Tumor Normal P-value

Metabolic Activity Decomposition: 0.110 ± 0.014 0.033 ± 0.008 0.005*

Conventional with Assumptionsb: 0.068 ± 0.011 0.054 ± 0.008 0.385

Conventional: 0.150 ± 0.061 0.264 ± 0.069 0.164

KLac→Pyr

Metabolic Activity Decomposition: 0.001 ± 6.11×10−4 0.025 ± 0.007 0.028*

Conventional: 0.153 ± 0.073 0.264 ±0.145 0.080

T1,Pyr

Metabolic Activity Decomposition: 0.120 ± 0.020 0.198 ± 0.035 0.123

Conventional: 0.197 ± 0.033 0.169 ± 0.020 0.271

T1,Lac

Metabolic Activity Decomposition: 0.105 ± 0.009 6.13×10−2 ± 0.007 0.026*

Conventional: 0.038 ± 0.009 5.26×10−2 ±0.027 0.500

T1,Both

Conventional with Assumptionsb: 0.137 ± 0.011 0.170 ± 0.027 0.274

a
Data is reported as the mean ± mse with units s−1.

b
Assumes KLac→Pyr = 0 and T1,Pyr = T1,Lac

c
Two-sided unpaired students t-test (n=5,α=0.05).

*
Denotes significant differences (p-value < α).

d
Comparison of rates on conversion in tumor versus normal with Metabolic Activity Decomposition and conventional Two-site Exchange from

slabs in the abdomen of TRAMP mice and normal mice. With this small sample size, significant differences were only detected when using
Metabolic Activity Decomposition.
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