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Abstract
In the Life Sciences ‘omics’ data is increasingly generated by different high-throughput technologies. Often only the
integration of these data allows uncovering biological insights that can be experimentally validated or mechanistic-
ally modelled, i.e. sophisticated computational approaches are required to extract the complex non-linear trends
present in omics data.Classification techniques allow training a model based on variables (e.g. SNPs in genetic asso-
ciation studies) to separate different classes (e.g. healthy subjects versus patients). Random Forest (RF) is a versatile
classification algorithm suited for the analysis of these large data sets. In the Life Sciences, RF is popular because
RF classification models have a high-prediction accuracy and provide information on importance of variables for clas-
sification. For omics data, variables or conditional relations between variables are typically important for a subset
of samples of the same class. For example: within a class of cancer patients certain SNP combinations may be
important for a subset of patients that have a specific subtype of cancer, but not important for a different subset
of patients. These conditional relationships can in principle be uncovered from the data with RF as these are impli-
citly taken into account by the algorithm during the creation of the classification model. This review details some
of the to the best of our knowledge rarely or never used RF properties that allowmaximizing the biological insights
that can be extracted from complex omics data sets using RF.
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BACKGROUND
Development of high-throughput techniques and

accompanying technology to manage and mine

large-scale data has led to a revolution of Systems

Biology in the last decade [1–3]. ‘Omics’ technolo-

gies such as genomics, transcriptomics, proteomics,

metabolomics, epigenomics and metagenomics

allow rapid and parallel collection of massive

amounts of different types of data for the same

model system. Software tools to manage [4], visualize

[5] and integratively analyse omics-scale data are cru-

cial to deal with its inherent complexity and
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ultimately uncover new biology. For example,

knowledge on both gene expression and protein

abundance may better explain a phenotype than

gene expression or protein abundance separately.

Particularly machine learning algorithms play a cen-

tral role in the process of knowledge extraction [6,

7]. They are applied for supervised pattern recogni-

tion in data sets: typically they are used to train a

classification model that allows separating samples

of different classes (e.g. healthy or ill) based on vari-

ables (e.g. SNPs in a Genome-Wide Association

Study or GWAS), and to estimate which variables

were important for this task (see below).

The Random Forest (RF) algorithm [8] has

become very popular for pattern recognition in

omics-scale data, mainly because RF provides two

aspects that are very important for data mining:

high prediction accuracy and information on variable

importance for classification. The prediction per-

formance of RF compares well to other classification

algorithms [7] such as support vector machines

(SVMs, [9, 10]), artificial neural networks [11–13],

Bayesian classifiers [14, 15], logistic regression [16],

k-nearest-neighbours [17], discriminant analysis such

as Fisher’s linear discriminant analysis [18] and reg-

ularized discriminant analysis [19], partial least

squares (PLS, [20]) and decision trees such as classi-

fication and regression trees (CARTs, [21]). The the-

oretical and practical aspects of many of those

algorithms and their application in biology have

been discussed elsewhere (for example [6, 22, 23]).

SVM and RF are arguably the most widely used

classification techniques in the Life Sciences.

Comparisons between the prediction accuracy of

SVM and RF have been made several times [e.g.

24–29]. Although the performance of carefully

tuned SVMs is generally slightly better than RF

[24], RF offers unique advantages over SVM

(see below). Further comparisons between SVM

and RF will not be discussed here.

Life Science data sets typically have many more

variables than samples. This problem is known as the

‘curse of dimensionality’ or the small n large p prob-

lem [30]. For instance, genomics, transcriptomics,

proteomics and GWAS data sets suffer from this

problem with in general thousands of measurements

of genes, transcripts, proteins or SNPs determined for

only dozens of samples [31–33]. RF effectively han-

dles these data sets by training many decision trees

using subsets of the data. Furthermore, RF has the

potential to unravel variable interactions, which are

ubiquitous in data sets generated in the Life Sciences.

Interactions can for example be expected between

SNPs in GWAS [34], between microbiota in meta-

genomics [35], between physicochemical properties

of peptides in proteomic biomarker discovery studies

[36] and between cellular levels of gene-products in

gene-expression studies [25]. Additionally, the com-

binations of variables that together define molecules,

e.g. mass spectrometry m/z ratios or Nuclear

Magnetic Resonance chemical shifts, can distinguish

phenotypes in metabolomics and metabonomics

[37]. A final example includes combinations of sev-

eral protein characteristics influencing the success

rate in structural genomics [38]. In summary, its ver-

satility makes RF a very suitable technique to inves-

tigate high-throughput data in this omics era.

Recent reviews aimed towards a more specialized

audience have discussed the use of RF in (i) a broad

scientific context [7], (ii) genomics research [39] and

(iii) genetic association studies [40]. Here, we focus

on the application of RF for supervised classification

in the Life Sciences. In addition to reviewing the

different uses of RF, we provide ideas to make

this algorithm even more suitable for uncovering

complex interactions from omics data. First, we

introduce the general characteristics of RF for the

reader who is not familiar with RF, followed by its

use to tackle problems in data analysis. We also dis-

cuss rarely used properties of RF that allow deter-

mining interaction between variables. RF even has

the potential to characterize these interactions for

sample subclasses (e.g. groups of patients for which

a SNP combination is predictive, while for a differ-

ent group of patients the same SNP combination is

not). Here, we discuss several research strategies that

may allow exploiting RF to its full potential.

HOWDOES RFWORK?
Predictive RF models (from now on referred to as

RFM) are non-parametric, hard to over-train, rela-

tively robust to outliers and noise and fast to train.

The RF algorithm can be used without tuning of

algorithm parameters, although a better classification

model can often easily be obtained by optimization

of very few parameters (see below) [8]. RF trains an

ensemble of individual decision trees based on sam-

ples, their class designation and variables. Every tree

in the forest is built using a random subset of samples

and variables (Figure 1), hence the name RF.
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The RF description by Breiman serves as a general

reference for this section [8, 41].

Suppose a forest of decision trees (e.g. CARTs) is

constructed based on a given data set. For each tree, a

different training set is created by randomly sampling

samples (e.g. patient samples) from the data set with

replacement resulting in a training set, or ‘bootstrap’

set, containing about two-third of the samples in the

original data set. The remaining samples in the ori-

ginal data set are the ‘out-of-bag’ (OOB) samples.

The tree is grown using the bootstrap data set by

recursive partitioning (Figure 1). For every tree

‘node’, variables are randomly selected from the set

of all variables and evaluated for their ability to split

the data (Figure 1). The variable resulting in the

largest decrease in impurity is chosen to separate

the samples at each ‘parent node’, starting at the

top node, into two subsets, ending up in two distinct

‘child nodes’. In RF, the impurity measure is the

Gini impurity. A decrease in Gini impurity is related

to an increase in the amount of order in the sample

classes introduced by a split in the decision tree. After

the bootstrap data has been split at the top node, the

splitting process is repeated. The partitioning is fin-

ished when the final nodes, ‘terminal nodes’ or

‘leafs’, are either (i) ‘pure’, i.e. they contain only

Figure 1: Training of an individual tree of an RFM. The tree is built based on a data matrix (shown within the
ellipses). This matrix consists of samples (S1^S10; e.g. individuals) belonging to two classes (encircled crosses or
encircled plus signs; e.g. healthy and ill) and measurements for each sample for different variables (V1-V5; e.g.
SNPs). Dice: random selection. Dashed lines: randomly selected samples and variables. For each tree, a bootstrap
set is created by sampling samples from the data set at random and with replacement until it contains as many sam-
ples as there are in the data set. The random selection will contain about 63% of the samples in the original data
set. In this example, the bootstrap set contains seven unique samples (samples S3^S9; non-selected samples S1, S2
and S10 are faded). For every node (indicated as ellipses) a few variables are randomly selected (here three; the
other two non-selected variables are shown faded; by default RF selects the square root of the total number of
variables) and evaluated for their ability to split the data. The variable resulting in the largest decrease in impurity
is chosen to define the splitting rule. In case of the top node, this is V4 and for the second node on the left hand
side this is V2 (indicated with the black arrows). This process is repeated until the nodes are pure (so called leaves;
indicated with round-edged boxes): they contain samples of the same class (encircled cross or plus signs).
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samples belonging to the same class or (ii) contain a

specified number of samples. A classification tree is

usually grown until the terminal nodes are pure,

even if that results in terminal nodes containing a

single sample. The tree is thus grown to its largest

extent; it is not ‘pruned’. After a forest has been fully

grown, the training process is completed. The RFM

can subsequently be used to predict the class of a new

sample. Every classification tree in the forest casts an

unweighted vote for the sample after which the

majority vote determines the class of the sample.

Although a single tree from the RFM is a weak

classifier because it is trained on a subset of the data,

the combination of all trees in a forest is a strong

classifier [8]. Random selection of candidate variables

for splitting ensures a low correlation between trees

and prevents over-training of an RFM. Therefore,

trees in an RFM need not be pruned, in contrast to

classical decision trees that do not use random

selection of variables [8]. The expected error rate

of classification of new samples by a classifier, is usu-

ally estimated by cross-validation procedures, such

as leave-one-out or K-fold cross-validation [42].

In K-fold cross-validation, the original data are ran-

domly partitioned into K subsets (folds). Each of the

K folds is once used as a test set while the other

K� 1 folds are used as training data to construct a

classifier. The average of the K error rates is the

expected error rate of the classification of new sam-

ples when the classifier is built with all samples. In

leave-one-out cross-validation a single sample is left

out from the training set. General cross-validation

procedures are unnecessary to predict the classifica-

tion performance of a given RFM. A cross-validation

is already built-in, as each tree in the forest has its

own training (bootstrap) and test (OOB) data.

IMPORTANT VARIABLES FOR
CLASS PREDICTION
In addition to an internal cross-validation RF also

calculates estimates of variable importance for classi-

fication [8]. Importance estimates can be very useful

to interpret the relevance of variables for the data set

under study. The importance scores can for example

be used to identify biomarkers [36] or as a filter to

remove non-informative variables [25]. Two fre-

quently used types of the RF variable importance

measures exist. The mean decrease in classification

is based on permutation. For each tree, the classifi-

cation accuracy of the OOB samples is determined

both with and without random permutation of the

values of the variable. The prediction accuracy after

permutation is subtracted from the prediction accur-

acy before permutation and averaged over all trees in

the forest to give the permutation importance value.

The second importance measure is the Gini import-

ance of a variable and is calculated as the sum of the

Gini impurity decrease of every node in the forest for

which that variable was used for splitting. The use of

different variable importance measures is discussed

below in more detail.

The importance of variables for classification of a

single sample is provided by RF as the local import-

ance. It thus shows a direct link between variables

and samples. As discussed in more detail below, the

differences in local importance between samples can

for example be used to detect variables that are

important for a subset of samples of the same class

(e.g. the important variables for a subtype of cancer

in a data set with cancer patients and healthy subjects

as classes). The local importance score is derived from

all trees for which the sample was not used to train

the tree (and is therefore OOB). The percentage of

correct votes for the correct class in the permuted

OOB data is subtracted from the percentage of votes

for the correct class in the original OOB data to

assign a local importance score for the variable of

which the values were permuted. The score reflects

the impact on correct classification of a given sample:

negative, 0 (the variable is neutral) and positive.

Local importances are rarely used and noisier than

global importances, but a robust estimation of local

importance values can be obtained by running the

same classification several times [43] and for instance

averaging the local importance scores.

PROXIMITY SCORESALLOW
DETERMINING SIMILARITY
BETWEEN SAMPLES
RF not only generates variable-related information

such as variable importance measures, but also calcu-

lates the proximity between samples. The proximity

between similar samples is high. For proximity cal-

culations, all samples in the original data set are clas-

sified by the forest. The proximity between two

samples is calculated as the number of times the

two samples end up in the same terminal node of a

tree, divided by the number of trees in the forest.

Provided sufficient variables are included in the

RFM, outliers or mislabelled samples can be defined
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as samples whose proximity to all other samples from

the same class is small. Identification of outliers or

mislabelled samples serves as important feedback for

the biologist who, if necessary, can correct for

experimental mistakes. Similarly, subclasses can in

principle be identified by finding samples that have

similar proximities to all other samples of the same

class. Subclasses in a data set with healthy and dis-

eased subjects can for example be severe and mild

subtypes of the disease. Proximity scores also allow

the identification of prototypes, representative sam-

ples of a group of samples. The variable values of

prototypes may explain how those variables relate

to the classification of the group. Proximity scores

may also be used to construct multidimensional scal-

ing (MDS) plots. MDS plots aim to visualize the

dissimilarity (calculated as 1 – proximity) between

samples typically in a two-dimensional plot, so that

the distances between data points are proportional to

the dissimilarities. A good class separation may be

obtained by plotting the first two scaling coordinates

against each other, provided they capture sufficient

information.

RF IMPLEMENTATIONS
The RF algorithm is available in many different open

source software packages. Conveniently, the

‘randomForest’ package [44] is available as an R im-

plementation [45] of the original RF code by

Breiman and Cutler [41]. It is probably the most

referred RF implementation because it is easy to

use and the user benefits from other R data process-

ing functionality. Recently, a framework for tree

growing called Random Jungle (RJ) was developed

[46]. It is currently the fastest implementation of RF,

allows parallel computation of trees and is therefore

very suited for the analysis of genome-wide data.

The Willows package was also designed for

tree-based analysis of genome-wide data by maxi-

mizing the use of computer memory [47]. The

WEKA workbench [48] is a data mining environ-

ment that includes several machine learning algo-

rithms including RF. The workbench allows for

easy pre-processing of data and comparison between

RF and other algorithms.

RF IN THE LIFE SCIENCES
Table 1 lists a non-exhaustive, yet in our opinion

representative, number of studies that applied RF Ta
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in different areas of the Life Sciences. A summary of

the use of RF features in these areas is also provided

in Table 1. The publications include many highly

cited papers and papers that we included because

they describe noteworthy use of RF properties. A

detailed overview of the use of RF in these publica-

tions as well as meta data on them can be found in

Supplementary Table S1.

Three-quarters of the studies exploited the vari-

able importance output of the RF algorithm

(Table 1). For example, information on variable im-

portance has been used to identify risk-associated

SNPs in a genome-wide association study [56], to

determine important genes and pathways for the

classification of micro-array gene-expression data

[27] and to identify factors that can be used to predict

protein–protein interactions [29]. Very few studies

report on the use of an iterative variable selection

procedure [25] to select the most relevant variables

and optimize the prediction accuracy of the RFM,

although the classification accuracy improved when

such a protocol was applied [24, 25, 68, 98]

(Supplementary Table S1). In several data mining

pipelines, important variables were selected from an

RFM, which were subsequently used in other ana-

lysis techniques [50, 71].

Improving prediction accuracy has also been

researched. In addition to a better separation of the

samples of different classes, the variables of an accurate

RFM are likely to be more relevant than those of a less

accurate RFM. The number of variables to select for

the best split at each node, mtry, was already marked as

a tuning parameter by Breiman [6]. Varying the

number of trees in the forest may also improve the

OOB-error. One-fourth of the papers tuned and

optimized the value of mtry and the number of trees.

A single study not only regulated the size of the forest

but also the size of the trees by varying the minimal

node size [25]. The improvement of the prediction

accuracy however was negligible. In contrast, Segal

reported a better prediction accuracy may be achieved

by regulation of the tree size via limiting the number

of splits or the size of nodes for which splitting is

allowed [99]. Boulesteix et al. [100] also recom-

mended tuning tree depth and minimal node size in

the context of genetic association studies. Alternative

voting schemes, such as weighted voting, may im-

prove classification accuracy [101] too, but have not

been applied in the papers listed in Table 1.

Zhang and Wang pointed out that the interpret-

ation of an RFM may be less practical than the

interpretation of a single decision tree classifier due

to the many trees in a forest. In a single tree, it is clear

in which level of the tree and with what cut-off a

variable is used to make a split. In a forest, a variable

may or may not be present in a given tree, and if it is

present, it may be so at different levels in the tree and

have different cut-offs. They proposed to shrink a

full forest to a smaller forest having a manageable

number of trees and a level of prediction accuracy

similar to the original RFM [102]. The smallest forest

is one of the attempts to modify RF or use RF in

combination with other methods in order to increase

the prediction accuracy or model interpretability of

RFMs (Table 1). Several other modifications were

reviewed by Verikas et al. [7]. RF has not only been

used in combination with other techniques, but sev-

eral studies also combined multiple RFMs in a pipe-

line for better classification results (Table 1, [55, 72,

87]). RF has also been used in conjunction with di-

mension reduction techniques [33, 54]. For example,

RF has been applied after PLS (PLS-RF, [33]).

Sampson and colleagues argued the loadings (relative

contribution of variables to the variability in the data)

produced by PLS allow for meaningful interpretation

of the association between variables and disease. De

Lobel et al. [54] have used RF as a pre-screening

method to remove noisy SNPs before multifactor-

dimensionality reduction in genetic association

studies. Additionally, RF has been incorporated in

a transductive confidence machine [95], a framework

that allows the prediction of classifiers to be comple-

mented with a confidence value that can be set by

the user prior to classification [103].

NEGLECTEDRF PROPERTIES
RF has several properties that allow extracting rele-

vant trends from data with complex variable rela-

tions, such as omics data sets. Nevertheless, these

properties have according to our knowledge not

yet been exploited to their full extent and only a

few studies have explored their potential. Below

we discuss the most important ones.

PROXIMITY
Proximity values are a measure of similarity between

samples. A few studies used proximity values to

detect outliers [27, 73, 74] resulting in an RFM

before and after removal of outliers. The OOB pre-

diction accuracy may improve after removing the

outliers [74]. However, not in all cases a comparison
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was reported between the OOB errors of the second

and the first model [73].

In addition to outlier detection, studies listed in

Table 1 used proximity scores in MDS plots [27, 67,

96] and for class discovery from RF clustering results

[91]. Analogous to their role in clustering, proximity

scores also in supervised classification have the

potential to allow discovering subclasses of data sam-

ples and even to identify corresponding prototypic

variable values. However, we did not come across

literature examples of utilization of the RF proximity

measure for identification of subclasses or variable

prototypes.

LOCAL IMPORTANCE
The global variable importance generated by RF

captures classification impact of variables on all sam-

ples. The local variable importance is an estimate of

the importance of a variable for the classification of a

single sample. Local importance may therefore reveal

specific variable importance patterns within groups

of samples that may not be evident from global im-

portance values. In other words, variables that are

important for a subset of samples from the same

class could show a clear local importance signal,

while this signal would be lost in the global measure.

Nevertheless, only one study in the Life Sciences

reported the use of local importances in data analysis

(Table 1). In this study, the local importance measure

was exploited to predict microRNAs (miRNAs) that

are significantly associated to the modification of

expression of specific mRNAs [76]. Local import-

ance instead of global importance was used in a re-

gression RF analysis because the authors assumed

that only a subset of miRNAs would significantly

contribute to the regression fit. Recently, we

developed PhenoLink, a method that links pheno-

types to omics data sets [43]. Local importances were

applied for variable selection using two criteria: (i) a

removal criterion: having a negative or neutral local

importance for the majority of class samples remov-

ing variables that do not positively contribute to the

classification and (ii) a selection criterion: having a

positive local importance for at least a few samples

(typically 3) or for a percentage of samples (at least

10%) of a class. Classification of a metabolomics data

set consisting of 9303 headspace (gas-phase) GC-MS

metabolomics-based measurements (variables) for 45

different bacterial samples resulted in a classification

(OOB) error of 71% (results not shown). After

removal of 8587 ‘garbage’ variables the classification

error was reduced to 18%. This dramatic reduction

of classification error is due to the ‘garbage’ variables

that make it more difficult for RF to recognize the

informative variables. The positive selection criterion

resulted in the same classification error but with an

additional 210 variables removed and a total of 506

variables relevant for separating the bacterial samples

based on headspace metabolites. PhenoLink was used

effectively to remove redundant or even confusing

variables and to detect variables that were important

for a subset of samples in a number of studies ranging

from gene-trait matching, metabolomics-transcri-

ptomics matching and identification of biomarkers

based on a variety of data sources [43]. Altogether,

utilization of local importances is promising for many

omics data sets and has the potential to uncover vari-

ables important for subsets of samples.

CONDITIONALRELATIONSHIPS
ANDVARIABLE INTERACTIONS
For data sets generated in the Life Sciences, e.g. for

metabolomics and proteomics measurements, gene

expression data and GWAS studies, variables

(e.g. SNPs in genetic association studies) are typically

important for a subset of samples of the same class

(e.g. patients) and conditional relations between vari-

ables might be important for a subset of samples. For

example, certain SNPs or SNP combinations may be

important for the first subgroup of patients and not

important for the second subgroup.

Variable interactions have been reported to

increase the global variable importance value [56].

The importance value itself however only provides

the combined importance of the variable and all its

interactions with other variables, but does not specify

the actual variable interactions. Interactions between

two variables can be inferred from a classification tree

if a variable systematically makes a split on the other

variable more likely or less likely than expected com-

pared to variables without interactions. A recent

paper reviewed the ability to identify SNP inter-

actions by variations of logic regression, RF and

Bayesian logistic regression [52]. For RF, an inter-

action importance measure was defined. However,

the actual SNP interactions were not identified by

the interaction importance, but rather by a relatively

high variable importance measure. As Chen and col-

leagues discussed, the problem with their interaction

importance measure was that two interacting SNPs

need to be jointly selected in a tree branch relatively
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often. Furthermore, in the branches further down

the tree the interaction of SNP A and B may

have to be prominent in the presence of other vari-

ables in order to show a signal in the interaction

importance [52].

Interactions between variables will often go hand

in hand with conditional dependencies between the

variables, i.e. variable B contributes to classification

given that variable A is present above B in the tree.

Conditional relations between variables are implicitly

taken into account by the conditional inference forest

algorithm (cforest, implemented in the party package

[104–106] in R). cforest is a variant of RF that has

been designed for unbiased variable selection (dis-

cussed below) [107]. Like RF, cforest generates a

variable importance measure. Variable importance

measures are currently subject of debate and rankings

produced using permutation importance may be pre-

ferred over Gini importance rankings when variables:

(i) are correlated [105, 108–110], (ii) vary in their

scale of measurement (e.g. continuous and categor-

ical variables) [104, 110] and (iii) vary in their

number of categories [104, 110]. These variable char-

acteristics are common in Life Science data sets, e.g.

for patient parameters (for instance a categorical vari-

able such as the dichotomous variable ‘has dog’: yes,

no; another discrete variable such as ‘number of chil-

dren’: 0, 1, 2, 3, 4; and a continuous variable ‘IgG

blood level’: 0–20 g/l) and gene expression (continu-

ous) versus SNP data (categorical). In combination

with subsampling instead of bootstrap sampling, the

splitting criterion of cforest has been reported to be

less biased than the RF criterion [105]. The algo-

rithm to determine the conditional importance meas-

ure generated by cforest explicitly takes into account

the conditional relationships. However, like in RF

conditional relationships are still implicit in the im-

portance value output of cforest.

Analysis of individual RFM tree structures might

be a good strategy to investigate interactions

between variables. If variable A precedes variable B

significantly more often than expected for variables

without interactions, B is likely conditionally

dependent on A. Recently, in a GWAS study the

genetic variants underlying age-related macular

degeneration (AMD) were investigated [111]. The

authors analysed tree structures and proposed an im-

portance measure based on associations between a

variable (SNP) and the response variable (trait), con-

ditional on other variables (other SNPs). For a given

SNP, the forest was searched for nodes where that

SNP was used as a splitting variable. A conditional

Chi-square statistic was calculated for each of those

nodes using SNPs that preceded the SNP in the same

tree. The maximal conditional Chi-square (MCC)

importance was defined as the highest Chi-square

value of all nodes where the SNP was used as a

splitting variable. The MCC value thus quantifies

the relationship between a phenotype and a SNP

given its preceding SNPs in the RFM.

The interactions between alleles of patients or

healthy people in these SNPs were shown in a

tree-like graph. The effects of the conditional rela-

tionships between variables for all samples of a given

class are directly visible in these graphs. Partial

dependence plots [112] may reveal the same

information as they show how the classification of

a data set is altered as a function of a subset of

variables (usually one or two) after accounting for

the average effects of all other variables in the

model. CARTscans [113] allow visualization of

conditional dependencies on categorical variables.

However, multidimensional partial dependence

plots or CARTscans have to be manually

inspected to derive concrete interactions between

variables.

The MCC importance can probably also be

applied to other high-throughput data with numer-

ous noisy and only a few important variables, as long

as the node size is sufficient [111]. To date, however,

no publicly available MCC implementation exists.

Importantly, none of the above-described studies

allow deriving a minimum set of variables and their

interactions required to classify a given data set. Such

minimum set is essential in reducing the complexity

of a biomarker and increasing its interpretability. In

addition, it could very well be that variable inter-

actions are relevant only for a subset of samples of

the same class. Generating this potentially crucial in-

formation for a given data set would require supple-

menting for instance the MCC algorithm of Wang

and co-workers with, e.g. a clustering of samples

based on, e.g. local variable importance or RF prox-

imity scores and subsequently selecting the variables

and/or variable interactions that explain the classifi-

cation of a given subset of samples of the same class.

A publicly available and validated MCC implemen-

tation might therefore be promising for the discovery

of variable interactions in proteomics, metabolomics,

genomics and transcriptomics data using RF, espe-

cially if the implementation would also include the

determination of variable interactions for subsets of
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samples and visualization tools that support interpret-

ation of such complex relationships.

For inspiration, we provide a concept visualization

of interacting variables, relevant for subsets of sam-

ples, different from the visualizations discussed ear-

lier. The visualization might be a typical result from

extensive omics data mining from the trees in an

RFM (Figure 2). Linking the samples of the same

subclass using evidence-based graphs, much like

those from STRING [114], could furthermore

allow the viewer to see and understand the (other)

biological connection(s) between samples that are

found to be linked by (interacting) variables identi-

fied in this data-driven approach.

CONCLUSION
The RF algorithm has been widely used in the Life

Sciences. It is suited for both regression and classifi-

cation tasks, for example the prediction of disease

state of patients (samples) using expression character-

istics of genes (variables). However, RF has predom-

inantly been used in a straight-forward way as a

classifier without preceding variable selection and

parameter tuning, or as a variable filter prior to

using other prediction algorithms. RF is an elegant

and powerful algorithm allowing the extraction of

additional relevant knowledge from omics data,

such as conditional relations between variables and

interactions between variables for subsets of samples.

Exploiting local importances, proximity values and

analysis of individual trees could prove to be a com-

pass to unlocking this information from complex

omics data.

Key points

� RF is widely used in the Life Sciences because RF classification
models areversatile, have a highprediction accuracy andprovide
additional information such as variable importances.

� RF is often used as a blackbox, withoutparameter optimization,
variable selection or exploitation of proximity values and local
importances.

� RF is a unique and valuable tool to analyse variable interactions
andconditionalrelationships fordata sets inwhich (combinations
of) variables are important for subsets of samples, typically for
omics data generated in the Life Sciences.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Figure 2: Concept visualization of how relations between variables and samples could be represented following
the dissection of the trees in a random forest. In this hypothetical case, a supervised classification was performed
on samples from two classes (encircled crosses or encircled plus signs; e.g. healthy individuals or patients).
Dissection of the random forest trees might result in the further (unsupervised) distinction of subsets of samples.
Top panel: variables (V1-Vn; e.g. SNPs in a GWAS study), their values (1or 0) and interactions. Bottom panel: subsets
(separated by the dashed lines) of samples from the pure classes that are predicted by a given interaction between
variables. An interpretation example: provided that SNP4 (V4) is present, SNP2 (V2) allows the distinction between
two subsets (consisting of healthy individuals 6, 7 8, 9 and patients 2, 5 and s). If SNP4 is absent, then the patient sam-
ples1, 3, 4 and t can be classified. In case SNP1 (V1) is absent and SNP5 (V5) is present, a subset of healthy individuals
consisting of samples a, b, c and d can be classified. Note that in this example, there can apparently no subset be
distinguished if SNP1 (V1) is present or SNP5 (V5) is absent.
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