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ABSTRACT

Muscular dystrophy comprises a group of genetic diseases that cause progressive weakness and
degeneration of skeletal muscle resulting from defective proteins critical to muscle structure and
function. This leads to premature exhaustion of the muscle stem cell pool that maintains muscle
integrity during normal use and exercise. Stem cell therapy holds promise as a treatment for mus-
cular dystrophy by providing cells that can both deliver functional muscle proteins and replenish the
stem cell pool. Here, we review the current state of research on myogenic stem cells and identify the
important challenges that must be addressed as stem cell therapy is brought to the clinic. STEM
CELLS TRANSLATIONAL MEDICINE 2012;1:833-842

INTRODUCTION

Muscle wasting diseases affect millions of people
worldwide. Among these, the various types of
muscular dystrophy (MD) caused by mutations in
structural proteins are characterized by loss of
functional muscle due to muscle fiber damage,
inflammation, and deposition of fibrotic tissue
[1]. With Duchenne muscular dystrophy (DMD)
in particular, muscle tissue begins to deteriorate
early in childhood, pushing the resident muscle
stem cell pool to its limit, leading to the exhaus-
tion of normal muscle repair mechanisms [2, 3].
Current treatments are palliative and primarily
target the inflammatory response. Cell therapy
has the potential to replace damaged tissue by
fusion of healthy cells with damaged fibers while
replenishing the adult stem cell pool for long-
term muscle maintenance. In the 1990s, several
moderately successful clinical trials with isolated
myoblasts demonstrated the feasibility of cell
therapy for DMD while also highlighting the lim-
itations [4—8]. Transplanted myoblasts were
able to fuse with host myofibers and deliver nor-
mal proteins; however, long-term engraftment
was limited because of low cell survival, the in-
ability of myoblasts to migrate throughout the
damaged tissue, and failure to restore the stem
cell pool.

In this review, we describe the aspects of em-
bryonic and postnatal myogenesis that have in-
formed recent work with myogenic stem cells,
the identification and evaluation of various
stem-like cells shown to have myogenic proper-
ties in vitro and in vivo, current work being done
to drive pluripotent stem cells toward muscle

progenitors for therapeutic purposes, and ad-
vances in biomaterials research and tissue engi-
neering that leverage new information about the
role of the tissue environment in controlling
myogenic cell fate.

PRIMARY MYOGENESIS DURING EMBRYONIC
DEVELOPMENT

Investigations with muscle stem cells have pro-
ceeded from an understanding of embryonic
myogenesis developed over the past two de-
cades (Fig. 1). In vertebrates, skeletal muscle de-
velopment begins in the embryo with the forma-
tion of presomitic mesoderm from primitive
paraxial mesoderm flanking the notochord [9].
At embryonic day 8, somitogenesis occurs in an
anterior-posterior sequence as signals from the
surrounding tissues further organize the somites
in a dorsal-ventral direction. The origins of skel-
etal muscles corresponding to various parts of
the body are diverse. The facial muscles are de-
rived from unsegmented paraxial head and
prechordial mesoderm [10, 11], whereas the
dermomyotome formed at the dorsal part of the
somite contributes to skin and skeletal muscle
formation of the body and limbs [9]. The ventral
part of the somites gives rise to the sclerotome,
the foundation for cartilage and bone tissue [12].
Delamination of cells from the hypaxial myo-
tome results in a sheet that gives rise to precur-
sor cells forming the intercostal and ventral body
wall musculature [13—-15]. Muscle precursors
similarly have distinct origins, including the ven-
trolateral (hypaxial) region of the epithelial der-
momyotome (trunk and limb muscles), rostral
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head) [16-20].

The molecular development of skeletal muscle involves a di-
verse set of transcriptional networks (Fig. 2). At the center of the
dermomyotome, a proliferating cell population arises to form
the myotome that expresses the paired-box transcription factors
Pax3 and Pax7. This forms an uncommitted reservoir of cells that
support muscle growth during embryogenesis. Pax3™ cells that
coexpress the basic helix-loop-helix muscle regulatory factors
Myf5 and MyoD arise from the borders of the dermomyotome
and coordinate myogenesis [21, 22]. Pax3 is typically expressed
first and initiates expression of Pax7, a marker of adult muscle
stem cells, or satellite cells. The Pax proteins are upstream reg-
ulators of Myf5, MyoD, and muscle-specific regulatory factor 4
(MRF4), which act as determination genes directing progenitor
cells into the myogenic program. Progenitor cells that express
MyoD and/or Myf5 are considered myoblasts, which differenti-
ate with expression of myogenin into postmitotic myocytes that
fuse to form multinucleated myotubes.

Defects in Pax gene expression have profound effects on
skeletal muscle formation. Pax3 is essential for migration of mus-
cle progenitor cells, whereas Pax7 directs myogenic specification
[23-25]. Pax3 mutant mice are characterized by the loss of hy-
paxial dermomyotome. The ensuing lack of myogenic progenitor
cells results in the absence of limb musculature [26]. Pax7 mu-
tant mice show a reduction in the number of satellite cells, but
fiber size and quantity is normal in adult mice [27]. However,
secondary myogenesis in response to injury, as discussed below,
is compromised. This suggests a specific role for Pax7 in satellite
cell self-renewal and maintenance of the muscle stem cell pool.

The roles of Myf5 and MyoD have also been studied in vivo.
Although mice lacking either Myf5 or MyoD alone are capable of
primary myogenesis, Myf5~ /MyoD~ mice demonstrate a com-
plete lack of skeletal muscle [21, 28, 29]. Myogenin knockout

will give rise to the muscles of the ventral
body wall, the intercostal muscles, and
the limb muscles.

mice contain myoblasts, but muscle fiber formation is affected,
indicating that myogenin is critical for myotube formation and
myofiber maturation [30, 31].

SECONDARY MYOGENESIS: THE RESPONSE TO MUSCLE INJURY

Satellite Cells

During embryogenesis, the dermomyotome is a transient struc-
ture and therefore produces a limited number of muscle progen-
itor cells. Prior to birth, some of these precursors migrate into
position between the sarcolemma (plasma membrane) and
basement membrane of the muscle fiber [32]. These resident
satellite cells constitute the stem cell pool in adult muscle tissue
and are characterized by Pax7 expression (Fig. 2) [22, 33]. Satel-
lite cells remain quiescent until regular maintenance, muscle in-
jury, or disease triggers their activation and subsequent prolifer-
ation. Upon activation, these cells express Myf5 and MyoD,
which initiate differentiation into fusible myoblasts. Myogenin
controls terminal differentiation by orchestrating fusion of post-
mitotic, mononucleated myocytes into myotubes or fusion of
myoblasts with existing myofibers (Fig. 2) [21, 28, 34—41].
Heterogeneity has been observed within the satellite cell
population based on age and body location [42]. After birth, sat-
ellite cells proliferate to support growth and repair in response to
environmental signals. As such, the satellite cell niche plays an
essential role in maintaining muscle homeostasis. However, in
aged muscle the niche diminishes in its capacity to activate sat-
ellite cells, affecting their function and proliferative capacity. In
addition to age-dependent differences, the function and ana-
tomic localization of satellite cells vary according to the embry-
onic origins of the adult muscle; this includes variation in vascu-
larization, innervation, fiber composition, and gene expression.
Satellite cells also vary in their degree of myogenic commitment.
Recently, Rocheteau et al. identified subpopulations of prolifer-
ating satellite cells with high Pax7 expression levels (Pax7"€")
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exhibiting lower metabolic activity that appear less mature with
respect to myogenic commitment compared with satellite cells
with low levels of Pax7 expression (Pax7'°") [43]. This diversity is
based on template DNA strand segregation, where Pax7'°" cells
inheriting the daughter DNA strand upregulate differentiation
genes and Pax7"e" cells inheriting the parental DNA strand be-
come dormant with respect to differentiation [43].

Asymmetric Cell Division During Secondary Myogenesis

With satellite cell activation and expansion, asymmetric division
occurs where both satellite cells and differentiating myoblasts
are formed. This maintains the population of resident satellite
cells while repairing damaged muscle and is determined by cell
polarity with respect to the tissue niche [44, 45]. During asym-
metric division, the mitotic spindle is oriented perpendicularly
with respect to the muscle fiber axis. Two different cell types are
formed: a Pax7"&" cell apposing the basal lamina that will be-
come a satellite cell capable of self-renewal, and a Pax7 " /Myf5 "
cell with apical orientation toward the surface of the host fiber
that will continue to differentiate along the myogenic lineage.
Activated satellite cells where the mitotic spindle remains paral-
lel to the muscle fiber axis give rise to two Pax7"/Myf5™ cells
through symmetric division [44].

During embryonic and early fetal development, symmetric
division plays a dominant role in populating the stem cell pool.
During wound repair, symmetric cell division is critical to the
restoration of damaged tissues [46]. Under steady-state condi-
tions, however, satellite cells divide asymmetrically, in order to
maintain the resident stem cell pool [44].

GENETIC MUSCLE DISEASE: MUSCULAR DYSTROPHIES

MD refers to a group of destructive inherited muscle-wasting
diseases that lead to skeletal muscle weakening and degenera-
tion caused by defective proteins essential to muscle integrity
[1]. The absence of these critical proteins leads to loss of tissue,
hampering normal muscle activity and, more critically, causing
premature exhaustion of the reservoir of muscle stem cells that
contribute to muscle maintenance and integrity during daily ac-

www.StemCellsTM.com
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Figure 2. Transcriptional regulation of
skeletal muscle cell differentiation. Meso-
dermal progenitor cells expressing Pax3
and Pax7 proliferate and differentiate into
proliferating myoblasts, which express
the myogenic transcription factors Myf5
and MyoD. With the expression of myoge-
nin and MRF4, myoblasts further differen-
tiate into myocytes, which cease prolifer-
ation and fuse to form multinucleated
myotubes. Myotubes undergo further
maturation and innervation as they bun-
dle together in myofibers, where Pax7-ex-
pressing satellite cells, also derived from
mesodermal progenitors, localize be-
neath the basal lamina and remain quies-
cent until activated in adult muscle to dif-
ferentiate into proliferating myoblasts. In
adult muscle, activated satellite cells un-
dergo asymmetrical division to both re-
populate the quiescent satellite cell pool
and give rise to proliferating myoblasts.

Myofiber

tivity and exercise [2, 3]. MD occurs in several different forms.
Duchenne MD and Becker MD are caused by mutations in the
dystrophin gene [47], although Becker MD appears later in child-
hood or adolescence and demonstrates much slower progres-
sion. Emery-Dreifus MD, which is caused by mutations in genes
encoding emerin, lamin Aand C, nesprin, and “fourand a half LIM
domains protein 1, ” affects similar types of muscle, but it usually
manifests later in life with more variability in phenotype; inheri-
tance patterns depend on the affected gene [48, 49]. Limb-girdle
MD manifests as weakness and atrophy of the muscles of the
hips and shoulders and results from pleiotropic molecular de-
fects in a number of genes encoding muscle structural proteins,
including myotilin, lamin, calpain, dysferlin, and titin [50].

DMD is the most severe and prevalent form of dystrophy
affecting the body’s striated muscle tissue. Therefore, DMD has
been the most broadly studied form of muscle disease and is the
focus of this review. DMD is an X-linked recessive disease that
occurs worldwide, affecting approximately one in 3,500 male
births of all races [1]. One-third of DMD cases are caused by a
new mutation [1, 47, 51]. The disease onset is early, with observ-
able difficulty with walking as early as 2 years of age in some
patients. Muscle failure begins in the lower extremities and pro-
gresses to the upper extremities, where multiple rounds of re-
generation result in fibrosis and fixation of muscles. Eventually,
distal muscle disease leads to asymmetric spinal deformities and
respiratory insufficiency. By adolescence, DMD patients are con-
fined to wheelchairs, and death occurs by the fourth decade
because of respiratory failure and/or dilated cardiomyopathy.

DMD is caused by mutations in the dystrophin gene [52],
which encodes a cytoskeletal protein found in skeletal muscle,
smooth muscle, cardiac myofibers, and brain [53]. Dystrophin
deficiency primarily leads to the pathologic perturbation of myo-
fibers; however, the disease also is associated with absence of
several glycoproteins that interact with dystrophin. Although the
precise sequence of the events is incompletely understood, the
mechanical weakness leading to sarcolemmal lesions causes ab-
normal calcium influx and inflammation, which in turn alter the
composition of structural glycoproteins in the extracellular ma-
trix (ECM). This disruption of the ECM causes resident muscle
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Table 1. Intramuscular myoblast transplant studies in Duchenne muscular dystrophy patients

Dystrophin-positive fibers

No. of patients No. cells per
(immune injection (no. of No. of Percentage of Follow-up duration (months)/
suppression) Myoblast preparation injections) patients myofibers (p)* functional results (p)? Reference
4 (none) HLA matched 6 X 107 (1) 3/4 25%—-80% (ND) 4/moderate increase in muscle [7]
strength (ND)
8 (cyclosporine) HLA matched NCAM™* 8 X 107 (1) 7/8 1% (ND) 1-6/function not evaluated [6]
8 (cyclophosphamide) 50% HLA matched NCAM™* 5.5 X 107 (1) 1/8 5% (<0.01) 2/function not evaluated [5]
12 (cyclosporine) HLA matched 95% NCAM* 1.1 X 108 (1) 1/12 10.3% (ND) 12/function not evaluated [4]
3 (cyclosporine) HLA matched CD56™ 5.5 X 107 (1) 0/3 <1% (ND) 3/function not evaluated [58]
5 (none) HLA matched ND ND 1.5%-36% (ND) 1-18/function not evaluated [8]
10 (cyclosporine) HLA matched 1 X 108 (1) 1/10 <1% (ND) 7/increased force [65]
generation® (<0.05)
9 (tacrolimus) HLA matched 3 X 107 (25-100) 8/9 3.5%—-26% (ND) 1/function not evaluated [109]

?Reported probability (p) of random result in test of significance.
BThis was attributed to immunosuppression.

Abbreviations: HLA, human leukocyte antigen; NCAM, neural cell adhesion molecule; ND, not determined.

stem cells to undergo fibrogenesis, rather than myogenesis,
leading to abnormal collagen deposition and subsequent necro-
sis; multiple cycles of fibrosis and necrosis result in exhaustion of
the stem cell pool [54, 55].

Progressive telomere shortening also has been associated
with exhaustion of the muscle stem cell pool. Shorter telomeres
have been reported in muscle cells from DMD patients com-
pared with those of healthy individuals [56, 57]. Interestingly,
human telomeres are shorter then mouse telomeres, which may
explain why the X-linked muscular dystrophy (mdx) mouse
model of DMD exhibits a less severe degenerative phenotype
compared with the human disease. To test this, Sacco et al. en-
gineered the mdx/mTR mouse strain, which lacks the RNA com-
ponent of telomerase as well as dystrophin, and showed that
muscle wasting and a decline in muscle stem cells parallels hu-
man DMD when telomerase function is disturbed in the mouse
[57].

HuMmAN CLINICAL TRIALS

In the 1990s, promising results of preclinical studies in mdx mice
led to human clinical trials of stem cell therapy for DMD at six
institutions in the United States, Canada, and Italy [4-7, 58] (Ta-
ble 1). Huard et al. demonstrated the feasibility of cell transplan-
tation by injecting myoblasts isolated from 11 normal, unrelated
donors into the tibialis anterior muscle of 4 human leukocyte
antigen (HLA) I- and HLA [I-DR-matched recipients with DMD [7].
Variable numbers of dystrophin-positive myofibers were de-
tected in three recipients, with an immune reaction in only one
patient. Gussoni et al. demonstrated the molecular efficacy of
myoblast transplant by injecting HLA 1/ll-matched donor myo-
blasts from family members into eight DMD recipients [6]. Three
recipients had evidence of engraftment after 1 month, as deter-
mined by polymerase chain reaction analysis of normal dystro-
phinin muscle biopsies. The subsequent use of fluorescent in situ
hybridization improved the sensitivity of donor nuclei detection
in transplant recipients. A later study showed that donor nuclei
could be detected in almost all recipients and that these were
fused to recipient myofibers [59]. However, very low cell reten-
tion rates were seen, and not all donor cells produced dystro-
phin.

Although these early clinical studies varied with respect to
transplanted cell numbers, diversity of patient populations, and
evaluation of tissue response and muscle function, the combined
clinical outcomes were encouraging: they showed that donor

myoblasts could deliver normal muscle protein to dystrophic
myofibers. However, they also uncovered the limitations of cell
therapy at the time [4, 7, 8, 59—65]. These included the inability
of transplanted myoblasts to self-renew and repopulate the
stem cell pool, poor myoblast survival, and the lack of myoblast
migration within the musculature, which limits their usefulness
for systemic MD therapy. To address these, the focus of the re-
search community turned toward the derivation of muscle stem
cell candidates that might overcome these obstacles.

THERAPEUTIC POTENTIAL OF RESIDENT MYOGENIC CELLS

The limitations encountered with myoblast transplantation have
led many groups to pursue the identification of other popula-
tions of stem-like cells with myogenic properties for potential
therapeutic application (Table 2). These various progenitor cells
differ in anatomical location, self-renewal, and differentiation
potential, as well as cell surface marker expression [66]. Whether
these are derived from muscle resident satellite cells or other
remnants of primary myogenesis is unclear. Some progenitor
cells are associated with the circulatory system, suggesting that
they may have the advantage of easy access to the vascular net-
work throughout the muscle tissue, whereas others are in closer
contact with myofibers. The phenotypes of these various resi-
dent stem cells have suggested specific modes of delivery to
which they might be best suited.

Cells Amenable to Intramuscular Delivery

A population of resident cells known as muscle-derived stem
cells (MDSCs) can be distinguished from satellite cells by their
broad multilineage differentiation potential. In addition to their
myogenic potential, they are capable of differentiating into os-
teogenic, adipogenic, chondrogenic, hematopoietic, cardiac, en-
dothelial, smooth muscle, and neural lineages, both in vitro and
in vivo [67—69]. MDSCs have higher survival rates than satellite
cells and myoblasts in transplant studies, likely because of their
resistance to oxidative stress and in vivo proliferation capacity.
MDSCs also release high levels of vascular endothelial growth
factor, which promotes vascularization and thus facilitates tissue
restoration in vivo [70].

Side population (SP) cells, which reside in skeletal muscle as
well as in bone marrow, are characterized by their ability to ex-
clude Hoechst 33342 [71]. The ATP-binding cassette G subfamily
transporter responsible for dye efflux is not characteristic of
standard satellite cells but is present in up to 3% of resident
muscle stem cells [72]. Furthermore, SP cells are found in Pax7

STEM CELLS TRANSLATIONAL MEDICINE
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Table 2. Cell transplant studies with resident myogenic cells
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Abbreviations: i.a., intra-arterial; i.m., intramuscular; i.v., intravenous; MDSC, muscle-derived stem cell; mdx, X-linked muscular dystrophy; NCAM, neural cell adhesion molecule; ND, not determined; SC,

satellite cell; SCID, severe combined immunodeficiency; SP, side population.

knockout mice that lack satellite cells, providing evidence that SP
cells are distinct from the satellite cell population [25]. SP cells
localize outside the muscle fiber and have the capacity to regen-
erate tissue and to engraft in skeletal muscle [71, 73].

A subset of satellite cells in adult muscle that coexpress
markers associated with the vascular system have been identi-
fied as myoendothelial cells [66, 74]. These are capable of long-
term expansion in vitro and appear to support muscle regenera-
tion at rates superior to myoblasts [75]. Myoendothelial cells
represent ~0.4% of resident muscle stem cells and, on the basis
of cell surface marker expression, share myogenic as well as en-
dothelial features [66]. The myoendothelial cell population
(CD56", CD34", CD144") can be purified from myogenic
(CD56", CD34~, CD144™) and endothelial (CD56~, CD34",
CD1447) cell populations on the basis of surface marker expres-
sion [66].

Cells Amenable to Systemic Delivery

Other blood vessel-associated cells called pericytes, located be-
neath the basal lamina of small vessels [74, 76], lack endothelial
markers but express NG2 proteoglycan, platelet-derived growth
factor receptor (PDGFR)-$, and CD146. They can be derived by
outgrowth from tissue explants and purified by sorting for alka-
line phosphatase expression in the absence of CD56 expression.
Although pericytes lack expression of myogenic markers (Pax7,
Myf5, MyoD), they differentiate into multinucleated myotubes
when exposed to myogenic differentiation medium. Pericytes
injected intra-arterially into immunodeficient mdx mice after in
vitro expansion have led to formation of large numbers of new
dystrophin-expressing muscle fibers [76].

A circulating subpopulation of CD133™ muscle progenitor
cells also has been found in human peripheral blood that ex-
presses a variety of adhesion molecules, including CD34, very
late antigen-4 (VLA-4), and L-selectin. These cells also express
muscle-specific transcription factors such as Pax7, Myf5, MyoD,
and myogenin [24, 77, 78]. Coculture with C2C12 mouse myo-
blasts prior to intramuscular or intra-arterial injection resulted in
cellular muscle regeneration and satellite cell replenishment in
mdx mice [77]. Specific homing of CD133™ cells to muscle tissue
was seen in these experiments, presumably directed by expres-
sion of L-selectin and VLA-4 on their surface, both of which serve
as chemoattractant receptors expressed in response to exercise-
induced muscle inflammation and damage [78].

DIRECTED DIFFERENTIATION OF PLURIPOTENT STEM CELLS

Studies in animals and humans have demonstrated both the fea-
sibility and the potential effectiveness of cell therapy for MD [4,
7, 8,59-65]. However, few available stem cell sources are capa-
ble of ex vivo expansion to provide cell numbers sufficient to
treat a systemic disease. In fact, only one therapeutic trial for MD
listed on ClinicalTrials.gov uses cell replacement as an approach
to treating myopathic disease: a trial to treat dysphagia in pa-
tients with oculopharyngeal MD by transplanting autologous
myoblasts isolated from unaffected limb muscles into pharyn-
geal muscle [79]. This emphasizes the need for continuing the
search for an expandable source of cultured cells with myogenic
properties in order to approach MDs affecting larger muscle
groups, such as DMD.

Pluripotent stem cells provide an alternative therapeutic
agent to treat MD that affects large muscle groups because of
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Table 3. Evaluation of pluripotent stem cell derivatives

In vivo
Cell type Derivation In vitro Treatment/strain/route Outcomes References
hiPSC, hESC ~ PAX7-induced MHC™ myotubes None/NOD-SCID Dystrophin™ myofibers, [84]
y-C(NGS)/i.m. satellite cell
repopulation
hESC 10% FBS 10% HS 5- No myotube formation Irradiation, cardiotoxin/ Myf5"NCAM™ M- [80]
azacytidine EGF NOD-SCID/i.m. cadherin™ cells;
dystrophin™ myofibers
hESC TGFp inhibition MRFs, NCAM, fMHC expression; None/NOD-SCID/i.m. Pax7™ cells; dystrophin™ [91]
multipotency (bone, fat) myofibers
hESC ITS medium CD737 Twitching myotubes; MyoD, Cardiotoxin/SCID-beige/ Long-term cell engraftment  [86]
selection NCAM™ myogenin expression i.m. (6 months)
selection
miPSC, Pax3/7-induced PDGFRa™  Myotube formation; MHC Cardiotoxin/mdx/i.m., Dystrophin™ myofibers; [83]
mESC VEGFR2™ selection expression i.a., iv. functional improvement
Myotube formation Cardiotoxin/mdx/i.m. Myf5* cells; dystrophin™ [83]
myofibers; functional
improvement
mESC aMEM, 10% FBS Mesp2, Tbx6, mesogenin Diethyl ether/KSN Pax7 ™" satellite cells [85]
PDGFRa™ selection expression; absent Pax3, nude/i.m.
Pax7, MRF expression
mESC, Purification for SM/C2.6"  Contracting myotubes; Pax3/7,  Cardiotoxin/mdx/i.m. Pax7 ™" satellite cells; [113,114]
miPSC Pax7" satellite-like Myf5, m-cadherin, cMet dystrophin™ myofibers

cells expression

Abbreviations: EGF, epidermal growth factor; FBS, fetal bovine serum; fMHC, fetal myosin heavy chain; hESC, human embryonic stem cell; hiPSC,
human induced pluripotent stem cell; HS, horse serum; i.a., intra-arterial; i.m., intramuscular; ITS, insulin-transferrin-selenium; i.v., intravenous;
mdx, X-linked muscular dystrophy; «MEM, a-minimal essential medium; mESC, mouse embryonic stem cell; MHC, myosin heavy chain; miPSC,
mouse induced pluripotent stem cell; MRF, muscle regulatory factor; NCAM, neural cell adhesion molecule; NOD-SCID, nonobese-severe combined
immunodeficiency; PDGFR, platelet-derived growth factor receptor; TGF, transforming growth factor; VEGFR, vascular endothelial growth factor

receptor.

their capacity for migration and self-renewal. Pluripotent stem
cells, such as embryonic stem cells (ESCs) and induced pluripo-
tent stem cells (iPSCs) derived from somatic cells, differentiate
into tissue precursors arising from all three embryonic germ lay-
ers. As such, they have the potential to both repair existing dam-
aged muscle and regenerate healthy muscle from a pool of mus-
cle stem cells.

Several groups have reported the derivation of myogenic
progenitor cells from human ESCs (hESCs) (Table 3). Zheng et al.
showed that exposure of hESC-derived embryoid bodies to se-
rum in the presence of epithelial growth factor directed their
differentiation toward myogenic precursors [80]. The differenti-
ated cells were characterized by cMet, Pax7, and MyoD expres-
sion but lacked other muscle proteins, such as neural cell adhesion
molecule (NCAM), Myf5, and desmin. Subsequent exposure to the
DNA demethylating agent 5-azacytidine further directed the cells
toward a myogenic fate, with diminished expression of the satellite
cell marker cMet and increased MyoD expression. Although termi-
nal differentiation and fusion into myotubes was not observed in
vitro, hESC-derived cells transplanted into injured tibialis anterior
muscle underwent terminal differentiation to form new muscle and
localized into the satellite cell compartment as well.

Darabi et al. used inducible Pax7- and Pax3-overexpressing
mouse ESC (mESC) lines to direct myogenic commitment [81].
Myogenic progenitor cells produced by Pax7 or Pax3 overexpres-
sion were identified on the basis of Myf5, MyoD, and myosin
heavy chain expression. Pax3-overexpressing mESCs were then
sorted for expression of the mesodermal marker PDGFR« and
depletion of vascular endothelial growth factor receptor 2
(VEGFR2), which is downregulated in paraxial mesoderm. The
therapeutic potential of these mESC-derived PDGFRa " VEGFR2 ™~
cells was shown by intramuscular injection or systemic intravas-
cular delivery in mdx mice, which resulted in engraftment with

dystrophin-expressing myofibers and improved muscle function.
Similar results were obtained in mice with a more severe form of
facioscapulohumeral MD [82]. Although these experiments con-
firmed the regenerative potential of mESC-derived muscle pro-
genitors, tissue maintenance by resident stem cells is critical for
long-term treatment of dystrophic muscle. To address this, these
investigators evaluated whether mESC-derived myogenic cells
could repopulate the satellite cell compartment. In transplanted
animals, single fiber staining showed colocalization of the satel-
lite cell marker M-cadherin with green fluorescent protein ex-
pressed by the mESC-derived cells in cells localized beneath the
basal lamina of recipient myofibers. Serial transplantation of re-
isolated mESC-derived cells confirmed subsequent engraftment,
as well as satellite cell compartmentalization [83]. Next, they
derived Pax7-induced satellite cells from hESCs and human iPSCs
using a doxycycline-inducible lentiviral vector encoding Pax7
[84]. EB differentiation over 7 days and monolayer outgrowth
allowed them to purify highly engraftable cells for injection into
dystrophic muscle. Functional improvement, as well as dystro-
phin restoration, validated this stem cell population. Engraft-
ment of ESC-derived muscle progenitors was confirmed by de-
tection of Pax7 and human laminin in cells localized to the
satellite cell compartment.

Another approach taken to direct the differentiation of
mESCs toward paraxial mesoderm has been the selection of
PDGFRa " VEGFR2 ™ cell populations from cultured mESC mono-
layers [85]. Sakurai et al. found that VEGFR2 expression was ex-
cluded from paraxial mesoderm, whereas PDGFRa"VEGFR2™
cells were committed to lateral mesoderm [85]. Although
PDGFRa"VEGFR2 ™ cells did not express Pax3, Pax7, Myf5, or
MyoD, transplantation into damaged muscle tissue resulted in
engraftment, localization adjacent to myofibers, and subsequent
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expression of the satellite cell-associated markers Pax7 and
CD34.

Barberi et al. enriched for a myogenic progenitor cell fraction
from hESC-derived mesenchymal precursors [86]. To induce
mesenchymal lineage differentiation, single hESCs were plated
at low density on mouse embryonic feeder cells in serum-rich
medium containing insulin, transferrin, and selenium. Following
enrichment for CD73 expression, mesenchymal cells were sorted
for myogenic affiliation on the basis of NCAM expression. NCAM
is involved in neuromuscular development and has been widely
used to identify myoblasts [87-90]. Transplantation of the
CD73"NCAM™ cells to hind limb muscle of immunodeficient
mice resulted in long-term survival and myofiber commitment.

Other groups have taken advantage of known molecular
cues to guide the differentiation of myogenic cells from hESCs.
Activation of the transforming growth factor-g8 (TGFB)/activin/
nodal pathway through activin A and serum enhances endoder-
mal specification of hESCs [91]. In the early stages of hESC differ-
entiation, inhibition of TGFS signaling with the small molecule
SMAD2/3 inhibitor SB431542 directs mesoendodermal induc-
tion and blocks neuroectodermal differentiation. Mahmood et
al. blocked the TGFB pathway with SB431542 to obtain hESC-
derived mesenchymal progenitors [92]. Embryoid body out-
growths subsequently cultured on fibronectin-coated plates in
the presence of lower concentrations of SB431542 differenti-
ated into myotubes. Cell transplantation into immunodeficient
mice showed muscle differentiation; however, the transplanted
cells did not fuse to the host muscle tissue.

Preliminary experiments have been performed with several
pluripotent stem cell-derived myogenic cells, and these have
shown their ability to form muscle in vivo, but the next steps are
clear. Long-term integration into adult muscle and functional
improvement need to be evaluated. Repopulation of the de-
pleted muscle stem cell compartment needs to be demon-
strated. Methods to mitigate the host immune response to do-
nor cells need to be refined. Large-scale production of these cells
using good manufacturing practice needs to be demonstrated.

THE USE OF SYNTHETIC BIOMATERIALS

The satellite cell niche is a unique microenvironment that sup-
ports communication between the plasma membrane of the cell
and the adjacent basal lamina of the muscle fiber. The niche
contains an ECM consisting of laminin, type IV collagen, fibronec-
tin, heparan sulfate, and other proteoglycans [93, 94]. The mus-
cle cells initially secrete the ECM, with subsequent binding of cell
surface integrins to the assembled network of niche proteins.
The ECM also binds growth factors (basic fibroblast growth fac-
tor, hepatocyte growth factor, insulin-like growth factor 1, epi-
dermal growth factor) and ligands (e.g., Wnts) through cova-
lently attached heparin sulfates present in the matrix. These
growth factors are known to play an important role in controlling
muscle stem cell fate [95, 96].

In diseased tissue, overexpression of ECM components may
occur in response to inflammation, altering the rigidity of the
microenvironment. This has been seen in muscular dystrophies,
as well as arthritis, atherosclerosis, osteoporosis, and fibrotic
diseases of the heart, liver, kidney, and lung [97]. Such changes in
the tissue environment can have a negative impact on stem cell
engraftment and differentiation, as has been shown specifically
in cardiac muscle [98].
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Matrix structure and organization influence focal-adhesion
and interactions between the ECM with the intracellular cyto-
skeleton through integrin signaling. These interactions are af-
fected by the structural rigidity, or stiffness, of the tissue. In fact,
recent work has shown that ECM stiffness plays a major role in
directing cell differentiation [99-101]. Synthetic ECM that
mimics the elasticity of muscle tissue (~12 kPa) can maintain
satellite cell self-renewal in vitro; this has been accomplished
with inert polyacrylamide gels in which the concentration of
bis-acrylamide cross-linker sets the elasticity [102]. Tissue ri-
gidity also has been shown to drive myogenesis in mesenchy-
mal stem cells; muscle proteins are expressed when mesen-
chymal stem cells are cultured on substrate with stiffness of
11 kPa, mimicking the in vivo muscle environment [100]. En-
gler et al. demonstrated that more elastic matrices (0.1-1
kPa) commit the cells to a neurogenic lineage, whereas a more
rigid environment (25—-40 kPa) promotes osteogenic differen-
tiation [100].

Transplantation of stem cells alone may not be practical for
traumatic injury that requires regeneration of larger tissue vol-
umes. For these situations, tissue engineering efforts have fo-
cused on generating large tissue grafts to be transplanted into
the injured tissue. This has been advanced by hydrogel technol-
ogy using synthetic polymers that contain biological factors to
support cell adhesion, proliferation, and differentiation [103].
Porous, biodegradable scaffolds have been shown to support
myogenic cell alignment and subsequent myotube formation to-
gether with the formation of a vascular network formed by en-
dothelial cells [104]. These could potentially support a satellite
cell niche as well, by creating a three-dimensional matrix with
specific stiffness and cell adhesion properties. Synthetic ECM
containing type 1 collagen has been shown to support myogenic
and osteogenic differentiation [105, 106], whereas Matrigel (BD
Biosciences, San Diego, CA, http://www.bdbiosciences.com), a
protein mixture secreted by mouse sarcoma cells resembling the
complex extracellular milieu found in some tissues, promotes
robust myogenic differentiation [107, 108].

CONCLUSION

Although palliative therapies have been used to treat patients
with MD, no curative treatment currently exists for these pa-
tients. Many criteria must be met to achieve restorative therapy
with stem cells. Depending on the nature of the specific MD
phenotype, its age of onset, course of degeneration, and distri-
bution of affected muscles, muscle progenitors stratified by spe-
cific stage of development may be needed. Clearly, one cellular
reagent may not suffice for all diseases. Several general goals
have been identified, however, in developing stem cell therapy
for skeletal muscle disease. Efficient fusion of donor cells to ex-
isting myofibers will be necessary to deliver normal muscle pro-
teins into affected fibers and to contribute healthy muscle mass
by new fiber formation. Large quantities of potent myogenic
cells will have to be delivered to affected muscles, either through
large-scale culture in vitro or in vivo expansion and dissemina-
tion. Normal myogenic cells will have to repopulate the stem cell
reservoir residing in the muscle fiber and self-renew to achieve
long-term muscle homeostasis. Immune rejection will need to be
addressed, through either immunosuppression or patient-spe-
cific cell reagents, to sustain long-term survival of donor cells. In
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addition, secondary organ failure, such as MD-associated cardio-
myopathy, will need to be addressed, since the requirements for

other organs may not be met by skeletal muscle stem cells. Al-

though these aims may seem daunting, the process of basic dis-

covery informing clinical translation, as well as clinical studies in

animals and humans guiding subsequent experiments at the

bench, has already led to significant progress.
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