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ABSTRACT

The recent discovery of neural stem cells (NSCs) in the adult mammalian brain has fostered a
plethora of translational and preclinical studies to investigate future therapeutic approaches for the
cure of neurodegenerative diseases. These studies are finally at the clinical stage, and some of them
are already under way. The definition of a bona fide stem cell has long been the object of much
debate focused on the establishment of standard and univocal criteria to distinguish between stem
and progenitor cells. It is commonly accepted that NSCs have to fulfill two basic requirements, the
capacity for long-term self-renewal and the potential for differentiation, which account for their
physiological role, namely central nervous system tissue homeostasis. Strategies such as immortal-
ization or reprogramming of somatic cells to the embryonic-like stage of pluripotency indicate the
relevance of extensive self-renewal ability of NSCs either in vitro or in vivo.Moreover, the discovery
of stem-like tumor cells in brain tumors, such as gliomas, accompanied by the isolation of these cells
through the same paradigm used for related healthy cells, has provided further evidence of the key
role that self-renewal plays in the development and progression of neurodegenerative diseases and
cancer. In this review we provide an overview of the current understanding of the self-renewal
capacity of nontransformed human NSCs, with or without immortalization or reprogramming, and
of stem-like tumor cells, referring to both research and therapeutic studies. STEM CELLS TRANS-
LATIONAL MEDICINE 2012;1:298–308

INTRODUCTION

Neural stem cells are the most primitive cells in
the central nervous system (CNS). Since most
mature neural cells, with particular reference to
neurons, are very specialized cells and are quite
sensitive to environmental changes, such as oxy-
gen conditions or excitotoxic molecules, the im-
portance of neural stem cells (NSCs) in sustaining
the development and homeostasis of nervous
tissue is essential [1, 2]. The slow replenishment
of degenerating cells with newly generated neu-
ronal cells under physiological conditions in vivo
has suggested that NSCs basically rest in a state
of quiescence, which allows them to maintain a
balance between the ability to undergo self-re-
newal and to differentiate without depleting the
stem pool. When dividing, the NSC gives rise to
other neural stem cells and/or to transient-am-
plifying cells called progenitors, which display a
decreased proliferative potential and which pro-
gressively acquire a more restricted differentia-
tion capacity into neurons, astrocytes, and oligo-
dendrocytes. The dynamic equilibrium between
self-renewal and differentiation is critical to both
the maintenance of the stem cell pool and active

neurogenesis. In this regard, a key role in the reg-
ulation of stem cell behavior is played by the
niche [3], the CNS-specific compartment where
somatic adult neural stem cells reside and are
self-maintained throughout life. The isolation
and characterization of multipotent NSCs from
multiple locations within the mammalian brain
has represented one of the most significant ad-
vancements in neuroscience and has provided
accruing evidence of endogenous NSC potential
to respond to neurological injuries [4]. Thus far,
germinative zones have been identified in the
subgranular zone (SGZ) of the hippocampus [5],
the olfactory bulb [6–10], the subventricular
zone (SVZ) surrounding the ventricles [11], and
the subcallosal zone underlying the corpus callo-
sum [12]. Recent evidence has reported the pres-
ence of active neurogenesis even in the adult
cerebellum [13]. Among this evidence is the fact
that the SVZ is the adult brain region with the
highest neurogenic rate from which NSCs were
first isolated [14, 15] and characterized. Follow-
ing brain injury, NSC proliferation in the SVZ is
enhanced to provide novel neural precursors mi-
grating to the lesion [16, 17], thus suggesting
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that the mechanisms regulating self-renewal are pivotal to NSC-
mediated tissue repair.

SELF-RENEWAL OF NSCS

The self-renewal of NSCs is currently explained by twomain the-
ories: the stochasticmodel and the deterministicmodel. Accord-
ing to the former, the probability that a stem cell divides sym-
metrically into two stem cells or into two differentiating
progenitors is the same [18]. Conversely, the deterministic
model is based on the predetermination of the chances that a
stem cell will self-renew or differentiate by the occurrence of
extrinsic events. According to this theory, which is the most reli-
able in vivo, a stem cell can divide asymmetrically into one stem
cell and one progenitor cell, or into one stem cell and one apo-
ptotic cell, in response to specific environmental cues, such as
the extracellular matrix, cytokines, oxygen, chemokines, and so
forth [19–22]. However, the precise mechanism by which NSCs
and progenitor cells self-renew and generate neurons at the
same time is unclear. Because adult NSCsmaintain a glial identity
resembling that of embryonic radial glia [17], many studies sug-
gest that the principles elucidated during development can be
considered valid also for adult neurogenesis. During early neuro-
genesis of the embryonic mouse brain, most NSC divisions are
symmetric to expand theNSC pool and to establish a stable niche
compartment. With the progression of neurogenesis from the
dorsal and ventral telencephalon, an increasing fraction of asym-
metric divisions gives rise to progenitor cells (radial glia), which
migrate to form the neocortical layers. An active reorientation of
the mitotic spindle, according to vertical, horizontal, or oblique
axes, has beenproposed as being responsible for the asymmetric
segregation of specific transcription factors or regulators with
cell-fate determining function, although the precise correlation
between spindle orientation and the kinetics of stem cell division
remains unclear [22]. In the mammalian brain, as in Drosophila,
heterotrimeric G proteins have been identified as master regu-
lators of the mitotic spindle orientation, whereas multiple fac-
tors called segregation determinants, such as Numb and Numb-
like [23–26] and the ubiquitin ligase protein Neuralized (Neur)
[27], have been shown to be involved in the regulation of asym-
metric versus symmetric divisions. Whereas most NSC divisions
in vitro seem to be asymmetric [28], in the adult NSC niche,
self-renewal and multipotency are mutually regulated through
the secretion of molecules by surrounding nonstem cells [29–
31]. Hence, the elucidation of regulatorymechanisms, which un-
derpin the polarized distribution of these factors within the
NSCs, could contribute to manipulating the balance between
self-renewing and differentiating cells either in vitro or in vivo
and target neural precursors for a specific cell fate.

One of the most highly conserved and efficacious mecha-
nisms involved in regulating NSC function and development
throughout an individual’s lifetime is the family ofWnt and bone
morphogenetic protein (BMP), which have broad roles in stem
cell biology by regulating the balance between quiescent and
actively proliferating cells [32–34]. As a matter of fact, the large
family of Wnt proteins regulate neurogenesis [35, 36] by influ-
encing proliferation and lineage decisions of neural progenitor
cells and their progeny [37, 38]. Furthermore, BMPs, for their
part, cause differentiation of neural progenitors from the sub-
ventricular zone and olfactory bulb, inhibiting neurogenesis and
promoting exit from the cell cycle, which may be a result of dif-

ferentiation [39–41]. It has been demonstrated that in vitro cul-
tured NSCs exposed to BMPs show age-dependent disposition in
terminal fate choice that mimics the in vivo developmental dif-
ferentiation process [42]. In addition, self-renewal of NSCs re-
siding either in the SVZ or in the SGZ of the hippocampus is
regulated by the dynamic interplay of Notch- and epidermal
growth factor (EGF)-activated signaling pathways [43, 44]. In
particular, Notch regulates the NSC’s identity and self-re-
newal, whereas EGF receptor modulates proliferation and mi-
gration of the transiently amplifying progenitors (neural pre-
cursor cells [NPCs]) [34]. Other factors, such as CXCL12, basic
fibroblast growth factor, and pigment-epithelium derived fac-
tor, are known to contribute to NSC self-maintenance through
non-cell-autonomous effects or can modulate the prolifera-
tion and differentiation of NPCs [45, 46].

Recent studies have highlighted the novel definition of the
SVZ as a neurovascular niche consisting of two specific sublocal-
ized compartments within the SVZ niche: the apical ependymal
niche, which lines the ventricles and consists of ciliated ependy-
mal cells intercalated with stem cells; and, proximal to it, the
basal vasculature niche, a rich plexus of blood vessels [47]. En-
dothelial cells have been shown to secrete factors that enhance
self-renewal and neuron generation from progenitor cells [48],
suggesting that the vascular niche harbors mostly activated pro-
genitors and suggesting the concept of a niche-dependent self-
renewal. NSCs spontaneously arrest to proliferate and differen-
tiatewith increasing distance from the niche or, under restrictive
conditions, they even die. This behavior is likely due to the ab-
sence of factors promoting self-renewal and also to the presence
of signals fostering NSCs toward differentiation (Fig. 1).

Figure 1. Model of the niche-dependent self-renewal capacity of
neural stem cells and BCSCs. Untransformed cells, namely hNSCs or
IhNSCs, which display a growth factor-dependent self-renewal in
vitro, are able to self-renew in vivo only if implanted in proximity of
a stem niche area, whereas BCSCs maintain a cell-autonomous self-
renewal capacity both in vitro and in vivo. Red bars measure self-
renewal capacity of hNSCs, IhNSCs, and cancer stem-like cells by two
parameters: the kinetic and the long-term maintenance. In particu-
lar, red color gradations correlate with proliferation rate, which is
higher in IhNSCs and BCSCs than in hNSC. The thickness of the red
bars indicates the maintenance (for BCSCs) or the shortening (for
hNSC and IhNSC) of self-renewal capacity, dependent on the dis-
tance from the niche. Abbreviations: BCSC, brain cancer stem cell;
hNSC, human neural stem cell; IhNSC, immortalized human neural
stem cell.
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ISOLATION OF BONA FIDE NSCS EX VIVO

Following the acceptance of the existence ofmultipotent NSCs in
the adult mammalian brain able to self-renew and differentiate
in vitro [14, 49], questions arose about specific selection criteria
to establish stable NSC lines for either basic research or thera-
peutic purposes. NSCs are characterized by the expression of
markers such as Sox2, glial fibrillary acidic protein (GFAP), nestin,
andMusashi 1 and 2, but no specific combination of markers has
so far been identified to definitely distinguish an NSC from an
NPC. Much debate is now focused on the marker CD133 (also
called prominin-1). It is currently unclear which portion of the
CD133 population defines the relationship of CD133 to somatic
NSCs and the selectivity of this relationship. This transmembrane
glycoprotein, with a largely unknown function, has been used as
one of the major markers, although it has been shown that
clonogenic multipotent cells are also found in populations nega-
tive for CD133 [50–53]. However, lineage negativity remains as
important as other criteria in identifying bona fide NSCs; indeed,
cerebellar NSC have been isolated as CD133� and lin� (lack of
lineage marker expression) cells [13]. Alternatively, the neuro-
sphere assay is basedon the self-renewal capacity ofNSCs,which
is dependent on the presence of the mitogenic factors fibroblast
growth factor 2 and EGF [54, 55], and it was developed as a
procedure for the isolation and expansion of NSCs in vitro. Under
these culture conditions, NSCs grow in suspension as floating cell
clusters, called neurospheres, which are heterogeneously com-
posed of stem, progenitor, and differentiating cells. A caveat of
this method is that actively proliferating progenitors also gener-
ate neurospheres in vitro [56–58]. The neural-colony forming
cell assay [59], by which only large colonies are enumerated as
clonally derived from the extensive proliferation of NSCs, has
been designed to exclude the possibility that an NSC population
is composed exclusively of transient-amplifying progenitors.

Alternatively to the neurosphere assay, a number of groups
have established NSC cultures on adhesive substrates mimicking
the extracellular environment in the stem cell niche [60–62].
However, when establishing a renewable source of NSCs in vitro,
expansion of NSCs on adhesion should be carefully evaluated.
Monolayer cultures present the advantage of appearing as very
homogeneous cell populations thanks to the continuous expo-
sure of all the cells to the culture medium, but the adhesion
substrates are molecules expressed in vivo by the extracellular
matrix of the niche, such as laminin or collagen, which alter the
expression of key receptors associated with proliferation, adhe-
sion, migration, and differentiation of progenitor cell subtypes
[19, 20, 63, 64]. Under these conditions, long-term proliferation
of transient progenitors is most likely facilitated, and a neural
progenitor culture can be erroneously mistaken for a neural
stem cell culture. Soluble factors (such as growth factors, cyto-
kines, and chemokines) and cell density have to be considered
[19, 65–68].

EMBRYONIC STEM-DERIVED NSCS

During development, before the formation of the neural stem
cell niches, the cells of the inner cell mass (ESCs) generate the
three germinal layers of embryos andwill then give rise to tissue-
restricted stem cells [69]. Starting from these pluripotent ESCs, it
is possible to test, in vitro, the conditions by which ESCs can be
induced to generate a specific population of tissue-restricted

stem cells able to grow and differentiate. Several protocols have
been described for the derivation of a neural progeny from ESCs,
some of them allowing for a long-term expansion of transient
progenitors followedby terminal differentiation upon changes in
culture conditions. In summary, three methods have been re-
ported to generate neural progenitor cells from ESCs. The first
method leads to the formationof embryoid bodies (EBs) [70]; the
second generates neural rosettes under adhesion conditions and
by transient supplementation of Noggin to the culture medium,
without passing through the EB stage [71]; and the third is based
on the progressive differentiation of EBs into neural rosettes
under sequential exposure to retinoic acid, Sonic hedgehog
(Shh), and cAMP [72]. These protocols have been widely used to
originate a variety of differentiated neural cell types (such as
astrocytes; oligodendrocytes; and glutamatergic, GABAergic,
and dopaminergic neurons), thus providing a basal platform of
tools for preclinical studies. Nevertheless, the characterization
of the in vitro-derived neural progenitors still remains elusive,
and their single-cell clonogenic potential over time needs further
investigation.

FETAL AND ADULT NSCS

Somatic NSCs can be retrieved from the fetal neural tissue (8–12
weeks postconception) or from the neurogenetic regions of the
adult brain (described above), and they can extensively self-re-
new in vitro as neurospheres and differentiate into neuronal and
macroglial cells without altering their functional properties over
passaging. Given the slow-dividing feature of adult NSCs in the
mammalian brain, the isolation, in vitro, of stable human NSC
lines still remains infeasible. Sanai et al. were able to isolate NSCs
from different regions of the SVZ of a cadaveric autoptic brain,
but their expansion in vitro was far from generating a number of
cells amenable to preclinical studies [73]. Conversely, human
NSCs have been successfully isolated from the telencephalic-di-
encephalic region [55] or from the SGZ [9] of the fetal human
brain. Their self-renewal features have been widely character-
ized (Table 1).

INDUCED PLURIPOTENT STEM CELLS

Renewable sources of normal human neural cells with the func-
tional characteristics expected of bona fide NSCs have signifi-
cantly facilitated basic studies on humanneurogenesis, aswell as
drug discovery. Their use in clinical applications will most likely
eliminate the need for fetal human tissue [74]. A major obstacle
to the progression of neural transplantation from the experi-
mental level to clinical applications is the source of donor mate-
rial [75]. In addition to the significant moral and ethical issues
surrounding the procurement of human fetal tissue, other pa-
rameters, such as age, storage, viability, and contamination,
must be standardized, making elective surgery difficult to sched-
ule [76]. To further compound the problem, multiple fetuses are
usually required for a single transplant, thereby introducing het-
erogeneity in the donor tissue and increasing the probability of
immunological rejection or contamination [76]. Awareness of
these difficulties has driven the search for alternative donor
sources. Thus, immortalized brain precursors [77], xenogenic tis-
sue [78, 79], and genetically engineered cells [80] have been
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used in experimental neural transplantation, although autolo-
gous transplantation of non-neural stem cells or of somatic cell-
derived NSCs (induced pluripotent stem cells [iPSCs]) actually
represents the most desirable solution in overriding most of the
limitations described above.

Recently, iPSCs have been proposed as an alternative source
of neural cells, since they share embryonic stem characteristics
(i.e., self-renewal) and the potential to differentiate into any so-
matic cell type, and they could provide an escape from the risk of
immunorejection. OCT4, SOX2, and NANOG are among the few
of themost notable primitivemaster genes involved in themain-
tenance of the undifferentiated phenotype, through the simul-
taneous activation of genes promoting proliferation and repres-
sion of genes promoting cell cycle arrest and differentiation [81].
The combinatory overexpression of the fourmaster genesOCT4,
SOX2, C-MYC, and KLF4 has successfully reprogrammed adult
human fibroblasts to the pluripotent stage [82], thus triggering a
series of exciting studies mostly aimed at reprogramming so-
matic cells from patients affected by genetic or sporadic neuro-
degenerative diseases. Indeed, reprogramming of fibroblasts
from two elderly amyotrophic lateral sclerosis (ALS) patients has
allowed the generation of motor neurons potentially available
for autologous transplantation [83, 84]. Moreover, a recent
study by Chou et al. [85] has successfully established amethod to
generate integration-free human iPSCs frombloodmononuclear
cells. iPSCs currently offer multiple advantages: first, the ability
to derive stem cells from skin fibroblasts could override the limit
imposed by the need for human embryos to generate ESCs; sec-
ond, with respect to traditional stem cells, they are able to gen-

erate neurons, astrocytes, and oligodendrocytes from adult pa-
tients; third, they provide the opportunity to elucidate how
different cell types may be involved in a specific pathobiology
through either cell-autonomous or non-cell-autonomous ef-
fects; fourth, they can be exploited to identify and characterize
the cellular and biomolecular mechanisms that underpin the de-
velopment of a chronic or progressive disorder; and finally, they
represent an optimal tool for the discovery of novel drugs and
high-throughput screenings [86].

One roadblock to the promotion of these cells to the clinical
stage is represented by the genetic manipulation implied by the
procedure, that, in principle, can drive the iPSCs to final tumori-
genic modifications (Table 1). Accruing studies are currently in-
vestigating novel protocols for a higher grade of safety [87], so
that, besides the traditional Yamanaka reprogramming, other
methodologies are currently used: recombinant protein repro-
gramming [88, 89], consisting of administering each reprogram-
ming factor to the cells as recombinant proteins, and cut-in/cut-
out reprogramming by the use of the piggyBac transposon [89],
synthetic RNA [90], and episomal DNA method [91]. However,
when considering iPSCs as a source for autologous transplanta-
tion in human patients affected by neurodegenerative disorders,
it still has to be determined to what extent the original affected
microenvironment in the tissue from which iPSCs are derived is
able to condition the novel regenerated cells and whether these
are particularly sensitive when implanted back into the patient.
Alternatively to full reprogramming of terminally committed
cells into a pluripotent primitive stage, direct conversionwithout

Table 1. NSC basal properties

NSC type Tissue source Properties Caveats References

ES-derived NSCs
(ESCs)

Inner cell mass of blastocyst High rate of proliferation Ethical issues [70–72]

Pluripotency: high differentiation
potential and plasticity

Tumorigenic potential

Multiple passages are necessary to
commit ESCs to the neural
lineage

Risk of immunorejection
Fetal NSCs (hNSCs) Telencephalic-diencephalic

region from 8–12-week-
postconception fetal
brain

Stable profile of growth and
differentiation in vitro

Slow rate of proliferation [9, 55]

Multipotency: default
differentiation to astrocytes,
neurons, and oligodendrocytes

(Low) risk of immunorejection

No ethical limitations (obtained
from spontaneous
miscarriages)

Low immunogenic potential
iPSC-derived NSCs Skin fibroblast from adult

tissue
Optimal source for disease
modeling and drug screening

Tumorigenic potential [83–85]

Newborn cord blood and
adult peripheral blood
mononuclear cells

Candidates for future autologous
transplantation

Low efficiency of transduction

No risk of immunorejection
IhNSCs Fetal NSCs High rate of proliferation Viral recombination leading to

tumor formation
[97–101]

ES-derived progenitors Large-scale availability Risk of “leaky” events in
conditional vector-mediated
immortalization

Multipotency
Low tumorigenic potential

Abbreviations: ES, embryonic stem; hNSC, human neural stem cell; IhNSC, immortalized human neural stem cell; iPSC, induced pluripotent stem
cell; NSC, neural stem cell.
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reverting cells to a pluripotent state is being used to generate
neurons and NSCs [92, 93].

IMMORTALIZED STEM CELLS

Several clonal, genetically homogeneous human neural stem cell
(hNSC) lines have been obtained by genetic perpetuation meth-
ods [94–96]. Taking advantage of their nontransformed nature,
human origin, multipotency, fast but conditional growth, unlim-
ited availability, and suitability for molecular manipulation,
these cell lines offer a great opportunity for the development of
cell replacement and/or gene transfer-based therapies, such as
using assays for pharmacological studies, drug discovery, and
investigation of specific intracellular regulatory pathways, which
require large amounts of human brain cells to be generated in a
rapid and reproducible fashion. In particular, we have used stem
cell lines from the telencephalic-diencephalic region of the hu-
man fetal brain as a source for generating cell lines immortalized
with V-MYC or with the single-mutated variant C-MYC T58A,
which could be routinely available for extensive studies aimed at
elucidating the mechanisms of regulation of NSC development
[97, 98]. Immortalized human neural stem cells (IhNSCs) provide
an available source of human neural stem cells for pilot experi-
ments of transplantation into animal models of neurodegenera-
tive diseases [60, 61, 99, 100]. Recent studies have shown that
conditional induction of V-MYC gene expression suffices to en-
hance the self-renewal of neural progenitors derived from fetal
human brain with no tumorigenic potential either in vitro or in
vivo [101].

CNS CANCER STEM CELLS

One of the most prominent topics in the field of cancer biology
and therapy is that transformed stem/precursor cells, with the
cardinal properties of stem cells, such as the ability of self-re-
newal and to generate large numbers of progeny, are responsi-
ble for the origin and maintenance of solid malignancies [102–
104]. The idea that transformed stem cells initiate tumors was
initially confirmed in the 1990s, based on studies of acute my-
eloid leukemia [105, 106], andhas been strengthenedby findings
related to breast cancer [107]. A similar involvement of tumor
stem cells in brain cancer was also supported by the fact that
neural stem cells are nestin- and GFAP-positive precursors [108]
and the discovery that, when targeted to nestin- or GFAP-posi-
tive cells, alterations of critical G1 arrest regulatory pathways
cause the onset of high-grade gliomas [106, 109]. The ensuing
view that tumor stem cells underpin the development and/or
maintenance of brain cancer has been confirmed, once and for
all, by their identification in tumors of the central nervous system
[102, 110–113]. Like stem cells in normal tissues, these brain
cancer stem-like cells are relatively rare but have the capacity to
establish andmaintain glioma tumors at the clonal level and thus
are thought to be tumor-initiating cells (Fig. 2) [114, 115]. It is
currently unknown whether the molecular and functional char-
acteristics of these cancer stem cells are a reflection of their
origin from mutated normal NSCs or, rather, they emerge from
the acquisition of stem-like features by more mature CNS cells
following transformation [116–120].

By the application of the same culture system developed for
neural stem cells (i.e., neurosphere assay), long-term expanding
stable lines were isolated, propagated, and characterized in a

reproducible fashion from human high-grade gliomas, named
human glioblastomas (hGBMs) [55, 111]. Upon differentiation,
these hGBM stem-like cells gave rise to the three major neural
lineages in a way that is rather similar to NSCs [55], and they
demonstrated self-renewal capacity. These cells also bear tu-
mor-specific features, such as an exacerbated growth rate,
highly unbalanced karyotypes with a high degree of hyperdip-
loidy and telomerase reactivation, a dysfunctional segregation of
neural markers, and the activation of an aberrant differentiation
program (Fig. 2). Nonetheless, following either subcutaneous or
intracranial implantation, hGBM stem-like cells displayed the es-
sential requirement for a cancer stem cell, that is, the capability
of generating new tumors. Importantly, when injected into the
brains of immunocompromised mice, the resulting tumors reca-
pitulated the morphology, genotype, and gene expression pat-
terns of primary glioblastomas (GBMs) and had extensive migra-
tory and infiltrative capacity [114], thus being superior
pathological models of human disease. These findings indicate
that the in vitro cells, tentatively called hGBM stem-like cells or
stem-like tumor initiating cells, faithfully preserve the in vivo key
features of human pathology.

The complementary parallelism between the healthy behav-
ior of wild-type NSCs and the uncontrolled expansion of trans-
formed cancer stem-like cells has paved the way to the identifi-
cation and the study of future cancer therapies. Administration
of epigenetic factors, which are able to dampen or, hopefully, to
arrest tumor progression, represents the most feasible strategy.
The role of stem cells in the origination (i.e., initiation) of gliomas
remains controversial, but the identification of brain cancer
stem-like cells has led to new and specific cellular targets for
therapeutic intervention in primary brain cancers, raising the
possibility that specifically killing or blocking the proliferative po-
tential of the tumor-initiating stem cells may increase treatment
efficacy. Furthermore, it has stimulated the development of new
hGBM cancer stem-like cell-based preclinical experimental mod-
els with the potential to improve mechanistic and preclinical
therapeutic research [104, 121].

Nonetheless, the absence of maturity in the knowledge of
somatic NSC biology and the transition of stem cell progeny into
functional cells has stymied the study and characterization of the
complexity of cellular interactions in human gliomas, making it
difficult to develop targeted therapies if a specific target is still
missing. Despite this controversial issue, however, signaling
pathways that regulate self-renewal and cell fate in normal neu-
ral stem cells have been shown to be active and associated with
oncogenesis in cancer stem cells of GBMs and brain tumors
[122–124]. In addition to thewell-knownNOTCH, SHH, andWNT,
tumor suppressor genes such as PTEN (phosphatase and tensin
homolog on chromosome 10) and TP53 (tumor protein p53)
have been implicated in the uncontrolled self-renewal of brain
cancer stem-like cells, which might generate tumors that are
resistant to conventional therapies [125, 126]. Therefore, it has
been suggested that therapeutic agents targeting these path-
ways might effectively deplete cancer stem-like cell populations
in GBM as well [127–129].

An alternative approach is to activate specific differentiation
pathways in a small population of tumor-initiating stem-like cells
that drive proliferation and resistance, causing them to lose their
stem and proliferative qualities. This regimen would make tu-
mors less aggressive and more sensitive to cytotoxic treatment
[130].
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Amember of the bonemorphogenetic protein family, BMP4,
has been reported to be a potential heterogeneous/targeted
strategy that appears to block tumor initiation andprogression in
a xenogenic in vivomurinemodel [42]. In culture and in vivo, the
delivery of this protein to hGBM stem-like cells blocks prolifera-
tion and induces the cells to differentiate, as opposed to killing
them [131]. This result is similar to the outcome of exposing
somatic NSC to BMPs, which induces their differentiation down
an astrocyte pathway [40].

Finally, it has also been documented that endogenous NSCs
are naturally attracted to gliomas [132–134] and have the ability
to migrate into the tumor mass, even contributing to the tumor
bulk. As a matter of fact, Aboody et al. from the City of Hope’s
Department of Neurosciences demonstrated this inherent pro-
pensity (also known as tropism) of neural stem cells to home in
on invasive tumor cells [135], even migrating from the opposite
side of the brain or across the blood-brain barrier, and they har-
nessed the tumor tropism of neural stem cells to deliver thera-
peutic agents to invasive tumor sites. Because of the attraction
of NSCs to gliomas, NSCs can be used as cellular vehicles for the
delivery of therapeutic agents [135, 136]. In 2010, the FDA ap-

proved a phase I clinical trial for NSC-mediated therapy of high-
grade gliomas, by a genetically modified human NSC line, gener-
ated by Seung U. Kim (Division of Neurology, University of British
Columbia), which delivers a prodrug-activating enzyme (cytosine
deaminase) to brain tumor sites. It is imperative to design new
strategies based upon a better understanding of the signaling
pathways that control aspects of self-renewal and survival, both
in normal and cancer stem cells, to identify novel therapeutic
targets.

THERAPEUTIC RELEVANCE OF NSCS

As of now, thanks to the development of paradigms for the
isolation and expansion of NSCs ex vivo from different tissue
sources, NSCs have been transplanted in different animal
models as a tool for the cure of neurodegenerative diseases
[137–140]. Irrespective of their specific etiology, neurode-
generative disorders eventually lead to loss or functional al-
teration of mature cells of the brain parenchyma. Symptoms
vary significantly, depending on many parameters, such as

Figure 2. Expression of differentiation neural markers by normal (hNSC), v-myc-immortalized (IhNSC), and human glioblastoma (hGBM)-
derived stem-like cells. hNSCs, IhNSCs, and hGBM-derived stem-like cells (indicated as BCSCs) were differentiated onto an adhesive substrate
in the absence of mitogenic factors for 10 days. (A–C): Immunostaining showing the definite segregation of the early neuronal marker �tubIII
(red) and the astroglial marker GFAP in hNSCs (A) and IhNSCs (B) and, conversely, a partial colocalization of the twomarkers in BCSCs (arrows
in [C]). (D–I): Immunostaining of hNSCs, IhNSCs, andBCSCswith antibodies recognizing late neuronalmarkerMAP2 (D–F) andoligodendrocyte
marker GalC (G–I). Total nuclei are shown by Dapi staining (blue). Scale bars� 50�m. Abbreviations:�tubIII,�-tubulin III; BCSC, brain cancer
stem cell; Dapi, 4�,6-diamidino-2-phenylindole; GalC, galactocerebroside C; GFAP, glial fibrillary acidic protein; hNSC, human neural stem cell;
IhNSC, immortalized human neural stem cell; MAP2, microtubular-associated protein 2.
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age of onset, region of the brain, the type of cells being dam-
aged, and the origin and nature of the noxa—genetic, toxic,
traumatic, ischemic, hemorrhagic, infectious, or immunolog-
ical and inflammatory—to highlight the major examples. Sev-
eral studies have demonstrated that, following brain injury,
endogenous NSC proliferation is enhanced, and soon after it is
followed by an increased migration of progenitors from the
niche to the lesion site [16, 17]. However, given the inherent
(and perhaps functionally essential) resilience of the postna-
tal and, particularly, adult mammalian brain, in addition to
new cells of preexisting circuitry, repair of the damaged brain
tissue by endogenous cell replacement is very limited. One of
the current, most valued therapeutic hypotheses is to accom-
plish neuroregeneration by transplantation of exogenous
cells, that is, by cell-mediated therapy [141]. Perhaps coun-
terintuitively, it has now emerged that transplanted cells may
actually boost endogenous recovery, besides replacing and
partially repopulating damaged areas. One of the most prom-
ising approaches in cell therapy may exploit a plethora of
healing actions that the introduction of new and healthy cells
may elicit on damaged brain tissue. In the current scenario,
NSCs may act as a reservoir, providing trophic support to sur-
viving cells and synapses at various levels, perhaps by scav-
enging toxic compounds in genetic and metabolic disorders,
such as Tay-Sachs, Sandoff, Canavan, and Batten diseases, or
by releasing trophic factors at the level of post-traumatic or
ischemic injury in neurodegenerative diseases, such as ALS
[142]. Transplantation experiments in animal models of brain
lesions or neurodegenerations have revealed that NSCs are
capable of integrating into the host brain and ameliorate
functional defects. Local environmental cues produced by the
stem niche or by a damaged area, soon after injury, have been
identified as promoting exogenous cell survival and migration

to the lesion (pathotropism) [143]. Consistently, several studies
have shown that donor NSCs also display a tropism intrinsic to
the recipient stem niche (homing), matching signals resembling
their naive site of origin [100] (Fig. 1). Themechanisms determin-
ing the survival andmigration of exogenous NSCs into healthy or
lesioned adult brain have still to be identified and characterized,
but extensive self-renewal of exogenous NSCs appears depen-
dent on their proximity to the recipient stem niche (Fig. 1).
Therefore, in view of future clinical applications of NSCs for the
cure of neurodegenerative diseases, these findings suggest ac-
curately evaluating the site of transplantation, according to spe-
cific therapeutic aims. NSCs are able to provide a multitude of
therapeutic effects, and the extent to which and for how long
these effects are needed depend on the specific neurological
disorder [141]. In addition to the establishment of protocols for
the extensive culture of NSC lines ex vivo, the nontumorigenic
self-renewal of transplanted cells into the recipient CNS would
be an auspicious goal in chronic disorders. Contrary to this, upon
acute injury, such as stroke or focal demyelination, morbidity
developswithin a fewdays, togetherwith the development of an
acute inflammatory reaction. In this case, a limited or even ab-
sent self-renewal in vivo of transplanted cells together with an
inherent or epigenetically induced tendency to differentiate into
the proper phenotype could be the most appropriate therapeu-
tic strategy. The transplantation of multiple subpopulations of
neural precursors or of specific NSC-derived progenitors next to
the site of injury offers the chance for a rapid and targeted ther-
apeutic effect [100, 143] (Fig. 3). Several clinical trials harnessing
various sources of neural stem cells have been started in the last
few years (Table 2) [61, 144–148]. These important break-
throughs in the clinical application of NSCs demonstrate that a
continuous and standardized clinical-grade source of normal hu-
man CNS cells (hNSCs), combining the plasticity of fetal tissue

Figure 3. Neural stem cell-mediated therapeutic effects and their multiple clinical applications. Abbreviations: ALS, amyotrophic lateral
sclerosis; BBB, blood-brain barrier; CNS, central nervous system; SMA, spinal muscular atrophy.
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with extensive proliferative capacity and functional stability, is of
paramount importance.

CONCLUSION

The development of methods to establish NSC lines in vitro has
been one of the main goals of researchers since the discovery of
active neurogenesis in the adult mammalian CNS. Current pre-
clinical studies strongly suggest that the therapeutic efficacy of
stem cell transplantation mostly relies on NSC-mediated neuro-
protection, rather than replacement of damaged cells. For clini-
cal application, it is important that these protective strategies
are proven safe and effective in humans. Several clinical trials
using human embryonic stem-derived NSCs or fetal NSCs are
currently under way, and their outcomes will contribute to im-
proved transplant-based therapies.

Our greatest limitation in treating many neurodegenerative
disorders is the lack of understanding ofwhat causes the onset or
drives the progression of sporadic and idiopathic pathologies. In
this regard, one of the most significant advances in neural stem
cell biology has been the use of stem cells for understanding
pathobiological mechanisms and for the screening of novel ther-
apeutic drugs. To this end, both ESCs and iPSCs, which can be

cultured on a large scale in vitro, have been proven to be optimal
candidates.
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