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Abstract

Efforts to improve the production of a compound of interest in Saccharomyces cerevisiae have 

mainly involved engineering or overexpression of cytoplasmic enzymes. We show that targeted 

expression of metabolic pathways to mitochondria can increase production levels compared with 

expression of the same pathways in the cytoplasm. Compartmentalisation of the Ehrlich pathway 

into mitochondria increased isobutanol production by 260%, whereas overexpression of the same 

pathway in the cytoplasm only improved yields by 10%, compared with a strain overexpressing 

only the first three steps of the biosynthetic pathway. Subcellular fractionation of engineered 

strains reveals that targeting the enzymes of the Ehrlich pathway to the mitochondria achieves 

higher local enzyme concentrations. Other benefits of compartmentalization may include 

increased availability of intermediates, removing the need to transport intermediates out of the 

mitochondrion, and reducing the loss of intermediates to competing pathways.

Introduction

Metabolic engineering of cytoplasmic biosynthetic pathways to create industrial strains of S. 

cerevisiae is commonplace, whereas engineering of biosynthetic pathways that function in 

mitochondria has largely been ignored. Yet, mitochondria have many potential advantages 

for metabolic engineering, including the sequestration of diverse metabolites, such as heme, 

tetrahydrofolate, ubiquinone, α-ketoacids, steroids, aminolevulinic acid, biotin, and lipoic 

acid 1-15. In addition, mitochondria contain intermediates of many central metabolic 

pathways, including the tricarboxylic acid (TCA) cycle, amino acid biosynthesis and fatty 

acid metabolism3,8,16,17.

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
*To whom correspondence should be addressed: Prof. Gerald R. Fink, Whitehead Institute for Biomedical Research, 9 Cambridge 
Center, Room 561, Cambridge, MA 02142, USA. gfink@wi.mit.edu, Ph.: (617) 258-5214, FAX: (617) 258-9872; Prof. Gregory 
Stephanopoulos, Massachusetts Institute of Technology, Chemical Engineering Department, 77 Massachusetts Avenue, Room 56-469, 
Cambridge, MA 02139, USA. gregstep@mit.edu, Ph.: (617) 258-0398, FAX: (617) 258-6876. 

Editors summary: Relocation of metabolic pathways to yeast mitochondria can increase production levels compared with expression 
of the same pathways in the cytoplasm.

Author Contributions: J.L.A., G.R.F. and G.S. conceived the project, designed the experiments, analyzed the results and wrote the 
manuscript. J.L.A. designed and made the pJLA vectors, constructed all pathways and strains, and executed all the experiments.

Competing Financial Interests Statement: The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Nat Biotechnol. Author manuscript; available in PMC 2013 October 01.

Published in final edited form as:
Nat Biotechnol. 2013 April ; 31(4): 335–341. doi:10.1038/nbt.2509.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


The environment within the mitochondrial matrix differs from the cytoplasm, including 

higher pH, lower oxygen concentration, and a more reducing redox potential18-20. This 

environment may more closely match the optimal for maximal activity of many enzymes 

such as the iron-sulfur clusters (ISC), which are essential cofactors of enzymes in diverse 

pathways including branched chain amino acid and isoprenoid biosynthetic pathways, and 

which are synthesized exclusively in mitochondria21. Although ISCs can be exported to the 

cytoplasm, the molecular machinery that loads ISCs onto extramitochondrial enzymes is 

likely to be incompatible with most exogenous ISC-apoenzymes, especially those of 

bacterial, or archaeal origin 22,23. The smaller volume of mitochondria, could concentrate 

substrates favoring faster reaction rates and productivity and confine metabolic 

intermediates avoiding repressive regulatory responses, diversion of intermediates into 

competing pathways or even toxic effects of intermediates to cytoplasmic or nuclear 

processes.

To take advantage of the potential attributes of the mitochondrial environment, we 

engineered yeast mitochondria to produce three advanced biofuels, namely isobutanol, 

isopentanol and 2-methyl-1-butanol (collectively called fusel alcohols). Isobutanol is 

synthesized in yeast by the valine Ehrlich degradation pathway 24, but can also be produced 

from pyruvate in a biosynthetic pathway that recruits the upstream pathway of valine 

biosynthesis (Fig. 1). The upstream isobutanol pathway, between pyruvate and α-

ketoisovalerate (α-KIV), comprises acetolactate synthase (ALS, ILV2), ketolacid 

reductoisomerase (KARI, ILV5) and dehydroxyacid dehydratase (DADH, ILV3), (Fig. 1). 

The downstream isobutanol pathway comprises α-ketoacid decarboxylase (α-KDC) and 

alcohol dehydrogenase (ADH).

The complete biosynthetic pathway for isobutanol production has been engineered in 

bacteria25-30. In yeast, the isobutanol biosynthetic pathway is complicated by subcellular 

compartmentalization: the upstream part of the pathway is confined to mitochondria3, 

whereas the downstream part of the pathway is confined to the cytoplasm (Ehrlich 

pathway 24) (Fig. 1A). Therefore the simple overexpression of all the enzymes in the 

isobutanol pathway could create a significant bottleneck in which the transport of 

intermediates across membranes reduces productivity and enables these intermediates to be 

consumed by competing pathways. Nevertheless, the isobutanol pathway has been partially 

constructed in yeast, by overexpressing only some of the enzymes, and in their natural 

compartments, to increase isobutanol production31-33. Although efforts have been made to 

transfer the isobutanol pathway, partly or completely, to either compartment34 (upstream to 

cytoplasm35,36, or downstream to mitochondria37,38), there has been no direct comparison of 

the effects of mitochondrial versus cytoplasmic engineering of downstream enzymes in fully 

assembled pathways.

Yeast mitochondria have been exploited through gene targeting to produce 

hydrocortisone 39 and plant terpenoids 40; however, these pathways were split across 

multiple subcellular compartments. In this study we engineer strains with complete 

isobutanol pathways overexpressed in mitochondria to avoid pathway sub-

compartmentalization (Fig. 1B), and compare their fusel alcohol production levels with 

those of strains in which all enzymes of the isobutanol pathway are overexpressed in their 

Avalos et al. Page 2

Nat Biotechnol. Author manuscript; available in PMC 2013 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



natural compartments (divided into an upstream mitochondrial and downstream cytoplasmic 

pathways; Fig. 1A). We show that moving the complete pathway into a single compartment 

(mitochondria) results in a substantial increase in the production of fusel alcohols, and 

provide evidence that this increase is at least partly due to a higher availability of the key α-

KIV intermediate, and increased local enzyme concentrations due to mitochondrial 

compartmentalization.

To reconstruct multiple isoforms of the isobutanol pathway we developed a standard, 

flexible set of vectors (pJLA vector series) that facilitates targeting of identical pathways to 

either the cytoplasm or mitochondria. These new tools enabled rapid assembly and 

comparison of eighteen isoforms (or “isopathways”) of the complete isobutanol pathway, in 

which their downstream enzymes are targeted to either the mitochondria or the cytoplasm, 

but are in every other way identical. This approach enabled us to measure the effect of 

mitochondrial engineering of isobutanol pathways for the production of isobutanol, 

isopentanol and 2-methyl-1-butanol.

Results

Construction of partial and complete isobutanol pathways

The enzymes required for the synthesis of isobutanol were cloned using a standardized 

vector series (pJLA vectors) that we developed for gene overexpression in S. cerevisiae (see 

online Methods). This tool facilitated the assembly of multiple isobutanol isopathways, into 

single high copy (2μ) plasmids, such that each isopathway was introduced into yeast on a 

single vector.

The downstream enzymes were targeted to either the cytoplasm or mitochondria (Fig 1), 

using the N-terminal mitochondrial localization signal (MLS) from subunit IV of the yeast 

cytochrome c oxidase (CoxIV) 41 (Supplementary Tables 1 and 2). The parallel assembly of 

cytoplasmic and mitochondrial pathways using pJLA vectors allows for the overexpression 

of pathways and enzymes that are identical except for the subcellular compartment to which 

these enzymes are targeted (aside from a single N-terminal glutamine in enzymes targeted to 

mitochondria41).

We prepared multigenic plasmids containing partial or complete isobutanol pathways 

(Supplementary Tables 1 and 2), each with the same upstream pathway composed of the 

endogenous ILV2, ILV3 and ILV5 (ILV genes), driven by the TDH3, PGK1, and TEF1 

promoters respectively. Partial isobutanol pathways were constructed by adding to the 

upstream pathway construct one of three possible α-KDCs (LlKivd from L. lactis, KID1 or 

ARO10, both from S. cerevisiae) driven by the TDH3 promoter and targeted to 

mitochondria. Complete isobutanol pathway constructs contained, in addition to the 

upstream pathway, one of the three α-KDCs driven by the TDH3 promoter, and one of three 

possible ADHs (ADH7 from S. cerevisiae, EcFucO from E. coli, or LlAdhARE1 from L. 

lactis26) driven by the TEF1 promoter; with both downstream enzymes targeted to either 

mitochondria or the cytoplasm. This assembly produced a total of 4 partial and 18 complete 

isobutanol pathway constructs (see online Methods and Supplementary Information for 

details).
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Expression of the isobutanol pathway

Plasmids with partial or complete isobutanol pathways were transformed into yeast 

(Supplementary Table 3) and the transformants were analyzed for isobutanol production. 

The average isobutanol titers obtained in 24-hour-long high cell-density fermentations in 

minimal medium from the various isobutanol isopathways (see online Methods) were 

compared (Fig. 2A). The increased isobutanol titers are a reflection of increased isobutanol 

productivity per yeast cell (specific titers), (Fig. 2B), and reproducible (strains had stable 

productive phenotypes after being stored at 4°C or −80°C, with n ≥ 3).

The incremental addition of each component of the isobutanol pathway results in cumulative 

increases in isobutanol production in high cell-density fermentations, but only if the 

downstream enzymes are targeted to mitochondria (Fig. 2A and B), suggesting that these 

downstream enzymes are active in mitochondria. The background isobutanol production of 

yeast transformed with an empty plasmid (JAy2) in 24-hour high cell density fermentations 

in minimal medium is 28 ± 2 mg/L. When the upstream ILV genes are overexpressed 

(JAy38), isobutanol production increases approximately 5-fold, to 136 ± 23 mg/L. The 

additional overexpression of the first downstream enzyme (α-KDC), targeted to 

mitochondria in strains JAy49, JAy51 and JAy53, resulted in isobutanol titers as high as 244 

± 13 mg/L in JAy51, almost double the production from overexpression of the ILV genes 

alone (JAy38). The overexpression of the complete mitochondrial isobutanol pathway (by 

adding ADHs targeted to mitochondria in strains JAy153 to JAy161) resulted in isobutanol 

titers as high as 486 ± 36 mg/L and491 ± 29 mg/L in JAy153and JAy161 respectively, 

which is a further 2-fold increase from the 4-gene isobutanol pathway and almost 18-fold 

increase from JAy2 (the control strain harboring an empty plasmid). By contrast, yeast 

overexpressing the downstream α-KDCs and ADHs targeted to the cytoplasm (strains 

JAy166 to JAy174) produced isobutanol titers of only 151 ± 34 mg/L in JAy166, similar to 

the titers produced by JAy38, which overexpresses only the upstream ILV genes in 

mitochondria-(Fig. 2A and B).

The superiority of mitochondrial isobutanol production compared with cytoplasmic 

isobutanol production was also replicated in fermentations initiated at low cell densities 

(0.03 OD) both in minimal (Fig. 2C) and complete media (Supplementary Table 4), (see 

online Methods). The strains expressing mitochondrially-targeted isobutanol downstream 

pathways, JAy153 and JAy161, outperformed JAy166 and JAy174 in which the same genes 

were expressed in the cytoplasm, with isobutanol titers as high as 279 ± 16 and 635 ± 23 

mg/L in minimal and complete media respectively. Strains JAy166 and JAy174, which 

overexpress isobutanol downstream pathways in the cytoplasm, achieved titers similar to 

those obtained with JAy38 (overexpressing only the ILV genes in mitochondria), which 

reached 157 ± 12 mg/L of isobutanol in minimal medium, and 384 ± 15 mg/L in complete 

medium. By contrast, strain JAy2 (with empty plasmid) produced only 28 ± 1 and 67 ± 10 

mg/L of isobutanol in minimal and complete media, respectively (Fig. 2C and 

Supplementary Table 4).

To determine whether increased availability of α-KIV in mitochondria has a substantial role 

in improving the performance of those pathways that were targeted to the mitochondria, we 
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tested whether increasing the cytoplasmic availability of α-KIV, by adding this intermediate 

to the culture media, has an effect on cytoplasmic isobutanol production. Increased 

availability of α-KIV in the cytoplasm does increase isobutanol production of strains 

overexpressing α-KDCs in the cytoplasm (Fig. 3a), achieving titers that approach those 

obtained with strains engineered with mitochondrial isobutanol pathways (Fig. 3b). This 

indicates that α-KIV is normally a limiting intermediate in the cytoplasm, and that 

downstream enzymes targeted to mitochondria likely benefit from an increased availability 

of α-KIV in this organelle.

Mitochondrial isobutanol pathways produce other desirable branched alcohols

Yeast strains with mitochondrial isobutanol pathways also produce substantial amounts of 

isopentanol (3-methyl-1-butanol) and 2-methyl-1-butanol production, compared with strains 

overexpressing complete isobutanol pathways but with cytoplasmic downstream enzymes. 

The average isopentanol and 2-methyl-1-butanol titers in 24 hour-long high cell-density 

fermentations of the different isobutanol constructs show a pattern similar to the one 

observed in isobutanol production (Fig. 4A and B). In fermentations initiated at low cell 

densities, overexpressing the ILV genes alone (JAy38) or with cytoplasmic downstream 

pathways (JAy166 and JAy174) has little to no measurable effect on isopentanol and 2-

methyl-1-butanol production. However, measurable increases in the production of both 

alcohols were achieved when complete isobutanol pathways were overexpressed in 

mitochondria (Supplementary Table 4).

Overexpression of the ILV genes alone (JAy38) in high cell-density fermentations results in 

modest increases in isopentanol (28 ± 5 mg/L) and 2-methyl-1-butanol (19 ± 8 mg/L) 

production, compared with JAy2, which harbors an empty plasmid (16 ± 4 mg/L and 11 ± 1 

mg/L, respectively. Fig. 4a and b). The addition of plasmids harboring α-KDCs targeted to 

mitochondria further increased the production of these alcohols to as much as 65 ± 17 mg/L 

of isopentanol in JAy49, and 57 ± 9 mg/L of 2-methyl-1-butanolin JAy51. Furthermore, 

when both, α-KDCs and ADHs are targeted to mitochondria, we obtained titers as high as 

130 ± 21 mg/L and 113 ± 5 mg/L of isopentanol and 2-methyl-1-butanol in JAy153 and 

JAy161 respectively, which represent approximately 8- and 11-fold increases from empty 

plasmid respectively. In contrast, pathways with the same downstream enzymes targeted to 

cytoplasm produced only 28 ± 5 mg/L of isopentanol (JAy166), which is indistinguishable 

from overexpressing the upstream pathway alone (Jay38); and 8 ± 4 mg/L of 2-methyl-1-

butanol (JAy174), which is indistinguishable from background (JAy2), (Fig. 4a and b).

Higher local concentrations of enzymes targeted to mitochondria

To ensure that the CoxIV mitochondrial localization signal targeted enzymes to 

mitochondria, we quantified the amount of targeted enzymes in subcellular fractionations of 

our engineered strains. All enzymes fused to the CoxIV mitochondrial localization signal 

were detected in the mitochondrial fractions, whereas enzymes lacking the CoxIV signal 

were only detected in cytoplasmic fractions (Fig. 5). Furthermore, three of the four enzymes 

analyzed show increased local concentrations in mitochondria, compared to cytoplasm 

(overexpressed under the same promoter), reaching as much as a four-fold increase in Ll-

adhARE1 concentration when targeted to mitochondria. These results confirm not only that 

Avalos et al. Page 5

Nat Biotechnol. Author manuscript; available in PMC 2013 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the CoxIV mitochondrial localization signal is an effective signal to target the enzymes in 

this study to mitochondria, but also that it is possible to achieve higher local enzyme 

concentrations through targeting to this organelle, probably owing to the smaller volume of 

mitochondria compared to the cytoplasm.

Discussion

Our results show that targeting the entire isobutanol pathway to mitochondria significantly 

improves its titer, yield and productivity, compared with a partly cytoplasmic equivalent. 

Isobutanol production is substantially increased when the overexpression of the downstream 

enzymes (α-KDC and ADH) is targeted to mitochondria rather than to the cytoplasm. To 

measure the effect of mitochondrial engineering, we analyzed the isobutanol titers obtained 

in high cell-density fermentations in minimal media when downstream enzymes, 

supplementing the overexpression of ILV genes, are targeted to either mitochondria or the 

cytoplasm (Fig. 2a and b). In this manner, JAy153 (with mitochondrial Ll-kivd and Sc-adh7) 

produces 486 ± 36 mg/L of isobutanol, whereas JAy166 (with the same downstream 

enzymes targeted to cytoplasm) produces 151 ± 34 mg/L. Since JAy38 (which 

overexpresses only the ILV genes) produces 136 ± 23 mg/L of isobutanol, the effect of 

targeting Ll-kivd and Sc-adh7 to mitochondria is approximately a 260% improvement in 

isobutanol titers, as opposed to a maximum improvement of 10% seen when the same 

enzymes are targeted to the cytoplasm (JAy166 isobutanol titers are the highest of all strains 

overexpressing cytoplasmic downstream enzymes). (Fig. 2a and b).

Our combinatorial constructs permitted a rapid comparison of the efficacy of native and 

heterologous enzymes for isobutanol production. The choice of decarboxylase in the 

downstream isobutanol pathway produced significant effects, whereas the activity of the 

three selected dehydrogenases seemed equivalent (Fig. 2a and b). The specific α-KDC 

homologue used has an important impact on titers of isobutanol, with Ll-kivd and Sc-aro10 

being substantially more active than Sc-kid1. By contrast, the three ADHs selected in this 

study are roughly equally active, despite the reported NADPH dependence of Sc-adh7 42, 

the improved affinity for isobutyraldehyde of Ll-adhARE1 26, and the ability of Ec-fucO to 

reduce relatively large aldehydes 43.

Isopentanol and 2-methyl-1-butanol titers are also increased in strains containing 

mitochondrial isobutanol pathways. These increased titers are likely owing to: (1) 

expression of the upstream ILV genes (ILV2, ILV3 and ILV5), also involved in the 

biosynthetic pathways of leucine and isoleucine, resulting in the production of the relevant 

α-ketoacids (α-ketoisocaproate and α-keto-3-methylvalerate, respectively), (Fig. 4C); (2) 

the two α-ketoacid precursors to these alcohols being suitable substrates for the 

overexpressed α-KDCs, with Ll-kivd having a bias for isopentanol production, Sc-aro10 

higher activity for 2-methyl-1-butanol production, and Sc-kid1 no detectable activity; and 

(3) the aldehydes they produce being potential substrates for the three overexpressed ADHs, 

which have no apparent preference for the production of either alcohol (Fig. 4 and 

Supplementary Table 4).
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In common with isobutanol production, the overexpression of α-KDCs and ADHs increases 

the production of isopentanol and 2-methyl-1-butanol but only when these enzymes are 

targeted to mitochondria. Moreover, the effects of mitochondrial engineering on the 

production of isopentanol and 2-methyl-1-butanol in high cell-density fermentations are 

even larger than those observed for isobutanol. Overexpression of downstream enzymes of 

the isobutanol pathway in mitochondria increased isopentanol and 2-methyl-1-butanol titers 

(from the overexpression of ILV genes alone) by as much as 370% and 500%, respectively. 

In the case of 2-methyl-1-butanol (as with isobutanol), this is probably due to the fact that its 

α-ketoacid precursor, α-keto-3-methylvalerate, is synthesized in mitochondria, and thus has 

higher availability in this organelle. However, the case of isopentanol is paradoxical since its 

α-ketoacid precursor, α-ketoisocaproate, is synthesized in the cytoplasm. It is possible that 

mitochondrial pathways, by consuming α-ketoisovalerate in mitochondria, mitigate the 

repression that ILV gene overexpression is likely to effect on α-ketoisocaproate biosynthesis 

(and thus isopentanol production), due to the tight regulation of leucine biosynthesis3.

Mitochondrial engineering offers a more frugal way to direct metabolic flux towards 

isobutanol production, compared with other possible isobutanol pathway configurations. 

Pathways in which the downstream enzymes are expressed in the cytoplasm, and separated 

from the mitochondrial upstream pathway (as in strains JAy166-JAy174) might benefit from 

the overexpression of branched-chain aminoacid aminotransferases (BAT1 and BAT2, 

Fig1A), as suggested by the overexpression of cytoplasmic BAT231. However, in order to 

exploit the increased abundance of α-ketoisovalerate provided by the upstream pathway in 

this configuration, it would be necessary to overexpress at least one, and most likely two 

additional genes (BAT1 and BAT2), compared to fully mitochondrial pathways. This not 

only increases the engineering burden, but also increases the chances of off-target effects, 

such as the possibility of overproducing valine as a side product. Thus, mitochondrial 

engineering offers a more efficient way to direct the increased metabolic flux provided by 

overexpressed ILV genes towards isobutanol, without invoking valine as an intermediate.

Expression of the complete isobutanol pathway in the cytoplasm by overexpression of ILV2, 

ILV3 and ILV5 simply lacking mitochondrial localization signals does not increase 

isobutanol production 33,35,36, because these enzymes themselves are tailored for the 

mitochondrial environment. Increased isobutanol production in the cytoplasm might be 

achieved by other means but requires, among other things, extensive modifications of all 

upstream enzymes (all of heterologous origin), overexpression of native and heterologous 

iron-sulfur cluster assembly and insertion machineries (to obtain cytosolically active ILV3 

homologues), and overexpression of multiple native and heterologous chaperones36. These 

numerous manipulations contrast with the modest changes required to achieve an 

approximately 5-fold increase in isobutanol production by overexpressing the native ILV 

genes in their natural environment of mitochondria.

The titers, yields and productivities of isopentanol and 2-methyl-1-butanol we achieved 

(Table 1) with JAy161, are the highest ever reported. Our isobutanol productivity is more 

than double than the highest reported in the literature 35, and our titers are as high as the 

highest ever reported, but our strains required higher sugar concentrations. Furthermore, our 

strains produced substantial yields ofisobutanol in complete media containing valine, 
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whereas engineering the complete pathway for overexpression in the cytoplasm rendered it 

sensitive to inhibition by valine35, a nutrient that is likely to be present in industrial 

feedstocks. While these alcohols are known to be toxic, even our best isobutanol producers 

did not show any reduced fitness, measured by growth rate or maximal cellular density. The 

challenge to further improve yields, titers and productivities will require diverting more 

carbon flux, from ethanol to branched-chain alcohols production 32,44.

The strategy of organelle targeting has been applied in plants, where portions of the 

isoprenoid pathway have been targeted to plastids of the tobacco plant45. Unlike our study, 

the pathways compared in tobacco plant cytoplasm (mevalonate pathway) and chloroplast 

(methylerythritol pathway) were not identical, and only their downstream enzymes were 

overexpressed. Nevertheless, the targeting of a metabolic pathway to the plant plastid, as 

with our redirection of the isobutanol pathway to yeast mitochondria, resulted in marked 

increases in the production levels of the desired end-products. The sequestration of the 

isoprenoid pathway in plastids, in common with the confinement of the isobutanol pathway 

to mitochondria in yeast, might benefit from higher concentrations of enzymes, substrates 

and cofactors, which would favor higher productivities.

We have shown that for isobutanol production in yeast, sequestration of the pathway in the 

mitochondrion results in higher enzyme concentrations, probably due to their confinement in 

the relatively smaller volume of the mitochondrial compartment. Moreover, the key α-KIV 

intermediate is limiting in the cytosol, but not in mitochondria; thus targeting the full 

pathway to mitochondria benefits from increased α-KIV availability, eliminates the 

bottleneck of exporting α-KIV to the cytoplasm, and reduces the loss of α-KIV to 

competing reactions. Pathways targeted to mitochondria may be further enhanced by 

mutagenesis.

Pathways that are naturally cytoplasmic might also benefit from mitochondrial 

compartmentalization, as the confinement of enzymes and metabolites to subcellular 

compartments may result not only in an increase in their local concentrations and 

proximities, but also in the ability to reduce the toxicity of pathway intermediates, bypass 

inhibitory regulatory networks, or avoid competing pathways. Thus, subcellular metabolic 

engineering has the potential to provide multiple mechanisms to improve the performance of 

engineered pathways.

Methods

pJLA Vectors – New tools for yeast metabolic engineering

The challenges to re-engineering a biosynthetic pathway in yeast include the necessity of 

cloning the ensemble of enzymes required for the multiple steps in the pathway, 

overexpressing those enzymes, and, for the benefit of mitochondrial engineering, retaining 

the option to target enzymes to the mitochondrion. To expedite this process, permit the 

screening of enzymes and promoters, and facilitate the assembly and troubleshooting of 

engineered pathways, we developed a new standardized vector series, the pJLA vectors, for 

gene expression in S. cerevisiae, which are applicable to mitochondrial as well as classical 

metabolic engineering.
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The pJLA vectors are derived from the pRS vector series 46. A key feature in this series is a 

uniform multicloning sequence (MCS) array flanked by a variety of promoters and 

terminators; start and stop codons; and optional in-frame tags (Supplementary Figure. 1A). 

This assembly allows the parallel cloning of genes into any vector of the series to build 

constructs with different promoters, and the option to produce untagged protein, add an N- 

or C- terminal affinity tag (his-, HA- or Myc-tags), or the N-terminal mitochondrial 

localization signal (MLS) of the yeast cytochrome c oxidase, subunit IV, CoxIV.

A second key feature in pJLA vectors is the ability to insert multiple gene expression 

cassettes into a single plasmid, in tandem or inverted directions, so that an entire metabolic 

pathway may be introduced into yeast via a single vector (Supplementary Figure 1B). What 

makes this feasible is a triad of unique restriction sites (XmaI/MreI/AscI) that flank all 

expression cassettes. This feature allows the sequential insertion of multiple gene expression 

cassettes into the same plasmid by the iterative ligation of inserts obtained from XmaI/AscI 

digestions into vectors linearized with MreI/AscI, which produce a tandem insertion, an 

undigestable XmaI/MreI scar, and a new triad of XmaI/MreI/AscI unique sites, available to 

repeat the reaction for a subsequent insertion. Similar strategies to assemble multiple pieces 

of DNA have been applied in the BioBricks system 47. These pJLA vectors have another 

very useful feature: double digestion of assembled multigenic plasmids with SacI and AscI 

results in the excision of one DNA fragment per inserted cassette, whose characteristic 

restriction pattern is diagnostic (Supplementary Figure 2I).

The various applications of the pJLA vectors were indispensable for the expeditious 

combinatorial engineering of mitochondrial and partly cytoplasmic isobutanol pathways 

(Supplementary Figure 2 and Supplementary Table 2). A convenient numerical 

nomenclature (Supplementary Table 5) permits the rapid identification of the main features 

contained in each vector (see Supplementary Information for details), and facilitates the 

naming of vectors derived from future expansions to this series.

Cloning and screening of isobutanol pathway components

The pJLA vectors permitted assembly of various partial and complete isobutanol patways, in 

which the downstream pathway enzymes were targeted to either the mitochondria or the 

cytoplasm (Fig. 1). Initially gene expression cassettes in pJLA vectors were constructed for 

each individual enzyme (using three possible constitutive promoters and three possible 

affinity tags, Supplementary Table 1). The upstream isobutanol pathway was constructed by 

cloning the yeast endogenous ILV2, ILV3, and ILV5 genes in vectors pJLA121013C3F, 

pJLA121031C1F, and pJLA121022C2F, respectively. These vectors lack the engineered CoxIV 

mitochondrial localization signal of the pJLA series, as these enzymes are naturally targeted 

to mitochondria (Fig. 1).

To test multiple enzymes of the downstream isobutanol pathway (Ehrlich, pathway), we first 

used vectors pJLA121021C1F and pJLA121121C1F, which fuse a C-terminal his tag to genes 

driven by a TEF1 promoter, and target the gene products to the cytoplasm or mitochondrion, 

respectively. Using these vectors we screened α-KDCs and ADHs from various organisms 

to compare the levels of expression in yeast mitochondria and cytoplasm by Western blot 

(Supplementary Figure. 2A and B). We also evaluated the increase in isobutanol production 
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obtained with different α-KDCs overexpressed by themselves, or in combination with the 

upstream ILV genes, and targeted either to the cytoplasm or to mitochondria (data not 

shown).

Construction of a complete mitochondrial or partly cytoplasmic isobutanol pathway

The screens above, and the known biochemistry of candidate enzymes, informed the 

selection of three decarboxylases and three dehydrogenases used to build complete 

isobutanol pathways. The three α-KDCs we selected are KID1, and ARO10 from S. 

cerevisiae, both of which have been implicated in the Ehrlich pathway 24; and Llkivd from 

L. lactis, which has been successfully used in several constructions of the isobutanol 

biosynthetic pathway 48. Our selections for dehydrogenases are ADH7 from S. cerevisisae, 

which has also been implicated in fusel alcohol production in yeast 42; EcfucO from E. coli, 

which has been successfully used in the synthesis of heavy alcohols via the reverse beta-

oxidation of fatty acids in bacteria 43 and LladhARE1 from L. lactis, which has been 

engineered for increased affinity for isobutyraldehyde26. This set of enzymes was selected in 

the combinatorial assembly of complete isobutanol isopathways with their downstream 

components targeted to either mitochondria or cytoplasm.

Using the multigenic assembly tool of pJLA vectors, we prepared constructs containing 

partial or complete isobutanol pathways. The assembly of complete isobutanol pathways 

using the six selected downstream enzymes in all possible combinations yielded nine 

mitochondrial constructs and nine cytoplasmic counterparts (Supplementary Table 2). We 

also prepared partial pathways containing the three upstream ILV genes (ILV2, ILV3 and 

ILV5), either by themselves, or with each of the three selectedα-KDCs targeted to 

mitochondria.

Cloning

The cloning required to develop the pJLA vectors and isobutanol pathways was carried out 

using the DH5α strain of E. coli. Endogenous genes of the isobutanol pathway (ILV2, ILV3, 

ILV5, KID1, ARO10 and ADH7) were amplified with PCR, using primers containing NheI 

and XhoI restriction sites, which were used to insert all genes into pJLA vectors. Genes from 

other organisms were synthesized by Bio Basic inc., with codons optimized for S. 

cerevisiae. These genes were designed with flanking NheI and XhoI sites at the 5′ and 3′ 

ends respectively (used to insert them into pJLA vectors), and avoiding restriction sites for 

XmaI, MreI, AscI and other relevant restriction enzymes.

Enzymes were purchased from NEB (SacI, NheI, XbaI, XhoI, KpnI, T4-DNA ligase and 

Phusion polymerase) or Fermentas (XmaI, AscI, BspEI and MreI), and reactions were 

carried out following manufacturers' instructions.

The quality of all vectors was verified before using them for yeast transformation. First we 

carried out analytical digests of multigenic vectors using SacI/AscI double-digestion, which 

results in the excision of one DNA fragment per inserted cassette (Supplementary Figure 

2I); as well as XhoI digestion which cuts the vector once per inserted cassette (not shown). 
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The vectors that produced the expected restriction patterns were subsequently sequenced by 

the Koch Institute Biopolymers and Proteomic Facility at MIT.

Yeast strains and transformations

The parental strain in this work is the product of mating BY4741 with Y3929, to produce 

JAy1 (Supplementary Table 3). The only auxotrophic marker not complemented by this 

mating is ura3Δ0, which serves as a marker for all vectors used. All yeast transformations 

for isobutanol production studies were carried out on JAy1, using standard lithium acetate 

protocols, and the resulting strains are catalogued in Supplementary Table 3. Transformation 

reactions with plasmids containing partial or complete isobutanol pathways resulted in a 

highly heterogeneous collection of transformants, displaying a wide variability in colony 

size, growth rates and fusel alcohol productivities. To identify the transformants with the 

highest fusel alcohol production capabilities we screened multiple colonies of each 

transformation in high cell-density fermentations.

High Cell Density Fermentations

Single colonies were grown over night in synthetic complete medium minus uracil, and 2% 

glucose, at 30 °C. The next day, 4 mL of each overnight culture were centrifuged at 3000 

rpm for 3 minutes, the supernatant discarded, and the cells resuspended in 10 mL of minimal 

medium (1×YNB) with 10% glucose, in sterile 50 mL conical tubes. Cells were grown in 

this medium for 12 to 20 hr at 30 °C and 350 rpm agitation, after which they were 

centrifuged again at 3000 rpm for 3 min and resuspended in 10 mL of fresh minimal 

medium with 20% glucose. Fermentations were kept in semi-aerobic conditions in the same 

50 mL conical tubes, at 30 °C and shaking at 350 rpm for 24 hours. The initial and final 

optical densities at 600 nm were averaged to calculate the specific productivities of the 

heavy alcohols. Variations to this protocol, in which fermentations were carried out in 15% 

glucose, instead of 20%, produced the same heavy alcohol titers and productivities in all 

strains tested.

Fermentations Initiated at Low Cell Densities

Single colonies were grown overnight in 5 mL of synthetic complete medium, minus uracil, 

and 2% glucose, at 30 °C. These overnight cultures were used the next day to inoculate 15 

mL of minimal (1×YNB) or synthetic complete (minus uracil) media with 15% or 10% 

glucose, to an initial OD of 0.03. These fermentations were carried out in sterile 50 ml 

conical tubes, shaken at 350 rpm and kept at 30 °C for four days. Samples were taken at 0h, 

12h, 1d, 2d, 3d, and 4d to measure their optical densities at 600 nm, as well as 

concentrations of ethanol, isobutanol, isopentanol and 2-methyl-1-butanol.

Cytoplasmic isobutanol production from supplemented α-ketoisovalerate

To increase the cytoplasmic availability of α-ketoisovalerate (α-KIV), this intermediate was 

added to the fermentation medium. Cells overexpressing an α-KDC (Ll-kivd) in the 

cytoplasm were grown over night in SD medium (without uracil) with 2% glucose. These 

cells were used the following day to inoculate 10 mL of SD medium (without uracil) with 
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2% glucose, and containing 0, 4 or 8 g/L of α-KIV (Sigma). Fermentations were carried out 

in sterile 50 ml conical tubes, shaken at 350 rpm and kept at 30 °C for two days.

Analysis of heavy alcohols

The concentrations of heavy alcohols and ethanol were quantified with HPLC, using and 

Agilent 1100 series instrument. Samples were centrifuged and filtered to remove cells and 

other solid debris, and analyzed using an Aminex HPX-87H ion exchange column from Bio-

Rad. The column was eluted with 5mM H2SO4 at 55 °C, and 0.75 ml/min for 42 minutes, 

which provided adequate separation of all alcohols, including isopentanol from 2-methyl-1-

butanol. Alcohols were monitored with a refractive index detector, and their peak areas 

compared to those of standard alcohol solutions for quantification.

Protein blotting, immunodetection and quantification

To detect expression of tagged proteinin full cells by western blot, we collected 1 mL of 

cells at OD 10.0, (or its equivalent). Cells were centrifuged for 3 minutes at 3000 rpm and 4 

°C, and the pellets resuspended in 1 mL of 5% trichloroacetic acid (TCA) solution. After 

incubating in ice for 10 minutes, the cells were centrifuged again for 3 minutes at 3000 rpm 

and 4 °C, and the pellets resuspended in 150 μL of 10 mM Tris pH 7.5, 1 mM EDTA, 3 mM 

DTT. Then 150 μL of glass beads were added to each tube, and cells were broken on a 

fastprep cell disrupter (2 cycles of 45 seconds at 6.5 speed with a 5 minute ice incubation in 

between). Finally, 75 μL of 3× SDS sample buffer was added to each sample. Equal 

amounts of sample were loaded to polyacrylamide gels (typically 5 – 15 μL), and standard 

electrophoresis and protein transfer were used to blot proteins on to PVDF membranes.

For quantitative immunoblotting of subcellular fractions, we isolated the cytoplasmic and 

mitochondrial fractions of engineered strains, as previously described 49. We measured the 

total protein in each subcellular fraction using the Pierce BCA Protein Assay Kit (Thermo 

Scientific), following manufacturer's instructions, loaded 20 μg of total protein of each 

subcellular fraction to each lane of a polyacrylamide gel, and transferred the proteins to 

PVDF membranes.

Proteins tagged with his-, Myc- or HA- tags were detected using the antibodies: anti-His6-

Peroxidase (Roche), c-Myc (9E10):sc-40 (Santa Cruz Biotechnology) and anti HA-

Peroxidase, High Affinity (3F10), (Roche) respectively, following manufacturers' 

instructions. The anti-His6 antibody was used at a dilution of 1:10,000, the anti-HA was 

used at 1:100,000, and the anti Myc at 1:1,000. As control for subcellular fractionation 

experiments, anti yeast PGK (22C5D8, Invitrogen) was used at 1:10,000 dilution, and anti 

yeast porin (16G9E6BC4, Invitrogen) at 1:20,000 dilution, which are specific markers for 

the cytoplasmic and mitochondrial fractions, respectively. The secondary antibody for 

detection of c-Myc, anti-PGK or anti-porin was peroxidase labeled anti-mouse antibody 

(NA931V, ECL), used at a 1:20,000 dilution. The blots were developed using the 

SuperSignal West Femto developer kit (Thermo scientific). For quantitative measurements, 

the BIO RAD Chemi Doc XRS + imaging system and Image Lab 3.0.1 software were used 

to acquire image data, and the ImageJ software was used to quantify luminescent signals by 

analytical densitometry.
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Protein purification

Protein purification of some enzymes fused to C-terminally his tags was carried out from 

cells grown to stationary phase in synthetic complete media lacking uracil, with 15-20% 

glucose. Cells were lysed using a SPEX freezer-mill, model 6870, and the soluble fraction 

run through a TALON metal affinity resin column, following manufacturer's instructions.

Fluorescence microscopy

To validate the mitochondrial targeting capabilities of pJLA vectors, we used fluorescence 

microscopy of cells expressing GFP in either mitochondrial or cytoplasmic constructs. To 

compare the localization of GFP with that of mitochondria we used MitoFluor Red 589 

(Invitrogen), a red fluorescent dye that specifically stains mitochondria. Cells were 

incubated in a 1 mM solution of MitoFluor Red 589 at 30 °C for 30 minutes and washed in 

PBS before imaging.

Fluorescence microscopy was done with an inverted Nikon TE2000-s microscope equipped 

with a Spot RT Camera from Diagnostic Instruments. Samples were loaded on glass slides 

and visualized with a 100×/1.30 H/N2 oil immersion objective at room temperature. Green 

fluorescence (GFP) was monitored at 500nm using a HQ:F blocking filter (Nikon). Red 

fluorescence (MitoFluor Red 589) was monitored at 594nm with a G-2E/C blocking filter 

(Nikon). The imaging camera was set to capture 8-bit images that were subsequently 

processed with Photoshop (Adobe Systems).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Isobutanol pathways. The upstream pathway (composed of ILV2, ILV5 and ILV3) is part of 

the valine biosynthetic pathway (red arrows), while the downstream pathway (composed of 

KDC and ADH) is the Ehrlich valine degradation pathway (green arrows). The α-

ketoisovalerate (α-KIV) intermediate is interconverted to valine by BAT1 and BAT2. The 

upstream and downstream pathways are naturally separated between the mitochondria and 

cytoplasm, respectively (A). However, the pathway engineered via mitochondrial 

engineering targets the complete pathway to the mitochondrial compartment (B). Blue 

arrows depict transport across mitochondrial membranes.
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Figure 2. 
Isobutanol production by yeast engineered with mitochondrial and partly cytoplasmic 

isobutanol pathways. (A) Average isobutanol titers in 24-h high cell-density fermentations 

in minimal medium of the three highest producing colonies of each construct. The right 

panel summarizes the isobutanol titers obtained by the incremental addition of components 

of an isobutanol pathway targeted to mitochondria. (B) Isobutanol specific productivities vs 

isobutanol titers in 24-h high cell density fermentations of partial and complete isobutanol 

pathways containing only upstream ILV genes (yellow square); or also with their 

downstream enzymes targeted to mitochondria (filled markers) or cytoplasm (open 

markers). These include one of three α-KDCs: Ll-kivd (red), Sc-kid1 (cyan) or Sc-aro10 

(green); and either no ADH (diamond); or one of three ADHs: Sc-adh7 (circle), Ec-fucO 

(square), or Ll-adhARE1 (triangle); compared to empty plasmid (black full circle). Complete 

isobutanol pathways with their downstream enzymes targeted to the cytoplasm cluster with 
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pathways overexpressing only the ILV genes, and are shaded in grey. Partial 4-gene 

isobutanol pathways containing α-KDCs targeted to mitochondria are shaded in red; and 

complete (5-gene) isobutanol pathways targeted to mitochondria are shaded in blue. (C) 

Time course of fermentations initiated at low cell densities in minimal medium. Strains with 

complete isobutanol pathways targeted to mitochondria are shown in continuous red 

(JAy153) and green (JAy161) lines; strains with the same downstream enzymes targeted to 

cytoplasm are shown in red (JAy166) and green (JAy174) dashed lines, respectively; strain 

JAy38 overexpressing only ILV genes is shown in yellow; and the background strain with 

empty plasmid (JAy2) is shown in black.
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Figure 3. 
Cytoplasmic isobutanol production of a strain overexpressing Ll-kivd targeted to the 

cytoplasm, with or without addition of the α-ketoisovalerate intermediate to the culture 

media (A); compared to isobutanol production of strain Jay161 (which has a mitochondrial 

pathway) without adding α-ketoisovalerate (B).
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Figure 4. 
Isopentanol and 2-methyl-1-butanol production. Specific productivity vs titer plots of 

isopentanol (A) and 2-methyl-1-butanol (B) obtained in 24-h high cell-density fermentations 

in minimal medium. The plots show the average titers and productivities of the three highest 

producing strains of each alcohol, for each construct. The constructs include partial and 

complete isobutanol pathways containing only upstream ILV genes (yellow square); or also 

with their downstream enzymes targeted to mitochondria (filled markers) or cytoplasm 

(open markers). These include one of three α-KDCs: Ll-kivd (red), Sc-kid1 (cyan) or Sc-

aro10 (green); and either no ADH (diamond); or one of three ADHs: Sc-adh7 (circle), Ec-

fucO (square), or Ll-adhARE1 (triangle); compared to empty plasmid (black full circle). (C) 

The isobutanol, isopentanol and 2-methyl-1-butanol biosynthetic pathways have a 

significant overlap in their upstream pathways (blue arrows); and identical downstream, 

Ehrlich degradation pathways (red boxes).
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Figure 5. 
Subcellular distribution of α-KDCs and ADHs fused to –HA or –Myc tags respectively, and 

targeted to cytoplasm (CoxIV −) or mitochondria (CoxIV+). Gels were loaded with 20 μg of 

total protein from cytoplasmic (Cyt) or mitochondrial (Mit) fractions; or equal amounts of 

full cells (Full). Densitometry measurements of cytoplasmic and mitochondrial fractions are 

shown in histograms of relative intensities normalized to signals of enzymes targeted to the 

cytoplasm. Densitometry measurements of full cell samples (Full) are shown in separate 

histograms of relative intensities normalized to signals from strains with enzymes targeted to 

the cytoplasm. As controls, the distributions of PGK and porin, which are specific markers 

for the cytoplasmic and mitochondrial fractions respectively, were determined on the same 

blots.
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Table 1

Summary of the highest titers, yields, and productivities achieved for isobutanol, isopentanol and 2-methyl-1-

butanol with JAy161.

JAy161 Isobutanol* Isopentanol# 2-methyl-1-butanol# Total Fusel Alcohols

Titer (mg/L) 635 ± 23 95 ± 12 118 ± 28 850 ± 60

Yield (mg/g.glucose) 6.7 ± 0.2 1.0 ± 0.1 1.2 ± 0.2 9.0 ± 0.5

Productivity (mg/L.h) 20.5 ± 1.2 4.0 ± 0.6 4.7 ± 0.2 29 ± 2

*
The highest isobutanol production levels previously reported35 are: titer 630 ± 14 mg/L; yield 14.9 ± 0.6mg/g.glucose; and productivity 

(calculated) 6.6 ± 0.1 mg/L.h. These values correspond to fermentations in which valine was excluded from the media, as this nutrient inhibits 
isobutanol production of their strains.

#
Overproduction of isopentanol or 2-methyl-1-butanol in engineered yeast has not been previously reported.
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