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Abstract Recent experimental studies of protein folding
and binding under crowded solutions suggest that crowding
agents exert subtle influences on the thermodynamic and
kinetic properties of the proteins. While some of the crowd-
ing effects can be understood qualitatively from simple
models of the proteins, quantitative rationalization of these
effects requires an atomistic representation of the protein
molecules in modeling their interactions with crowders. A
computational approach, known as postprocessing, has
opened the door for atomistic modeling of crowding effects.
This review summarizes the applications of the postprocess-
ing approach for studying crowding effects on the thermo-
dynamics and kinetics of protein folding, conformational
transition, and binding. The integration of atomistic model-
ing with experiments in crowded solutions promises new
insight into biochemical processes in cellular environments.
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Introduction

The idea that the crowded conditions of cellular environments
can significantly affect the biophysical properties of proteins
and nucleic acids, promoted by Minton and others
(Zimmerman and Minton 1993; Kornberg 2000; Ellis 2001;
Zhou et al. 2008), is now bearing many fruits. The biophysical

community is largely convinced of the affirmative answer to
the question of whether macromolecular crowding makes
important contributions to cellular functions, and is now
working on the characterization and quantification of these
contributions, as well as on developing tools and techniques
for modeling these contributions experimentally, theoretically,
and through simulation (Elcock 2010). This review focuses
on recent progress in our understanding of macromolecular
crowding achieved through molecular simulations, with a
particular focus on the effects of crowding, calculated through
an approach known as postprocessing (Qin and Zhou 2009;
Qin et al. 2010), on the thermodynamics and kinetics of
protein folding, conformational transition, and binding.

Many experimental studies have been directed at mea-
suring the degree to which crowding agents affect the fold-
ing, conformational transition and binding equilibria (Qu
and Bolen 2002; Spencer et al. 2005; Roberts and Jackson
2007; Batra et al. 2009a, b; Phillip et al. 2009; Dhar et al.
2010; Miklos et al. 2011; Denos et al. 2012), often spurred
by Minton’s predictions of significant crowder-induced sta-
bilization of the compact states over the more open states
(Minton 1981, 1998, 2000, 2005). The predictions are large-
ly based on the scaled particle theory (Lebowitz and
Rowlinson 1964) for the free energy of transferring a test
protein into crowders, all of which are modeled as convex
hard particles. The experimental results have often validated
the qualitative aspect of Minton’s predictions, but the ob-
served magnitudes of crowding effects are usually smaller
than anticipated. Moreover, the subtle and complicated
influences of crowding agents revealed by some experi-
ments, such as a dependence on the chemical nature of the
crowders (Batra et al. 2009b; Miklos et al. 2011; Denos et
al. 2012), seem to be beyond the scope of simple theoretical
models. Recent experiments on the kinetics of protein fold-
ing and binding under crowded conditions (Kuttner et al.
2005; Schlarb-Ridley et al. 2005; Ai et al. 2006; Yuan et al.
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2008; Phillip et al. 2009, 2012a; Denos et al. 2012) pose
additional challenges, since the effects of crowders on the
thermodynamics and dynamics of test proteins can poten-
tially oppose each other, leading to a net effect on the
kinetics that is even more moderated than that on the equi-
libria (Zhou 2004; Qin et al. 2012).

Molecular simulations have further enriched our under-
standing of protein folding, conformational transition, and
binding under crowding conditions. Earlier studies took the
direct simulation approach (horizontal paths in Fig. 1a), i.e.,
as in an in vitro experiment, the test protein(s) in a biochem-
ical process of interest and the crowders are simulated
together (Fig. 1b). Because the simulation had to include a
large number of crowder molecules and was designed to
model rare transitions between stable states along the bio-
chemical process, the test protein(s) by necessity was (were)
represented at the coarse-grained level (e.g., one bead per
residue) (Cheung et al. 2005; Minh et al. 2006; Kim et al.
2010; Mittal and Best 2010). The alternative, postprocessing
approach (vertical paths in Fig. 1a) (Qin and Zhou 2009;
McGuffee and Elcock 2010; Qin et al. 2010) circumvents

the modeling of rare transitions between stable states and has
allowed the test proteins to be represented at the all-atom
level (Fig. 1c). Such atomistic modeling enables more quan-
titative interrogation by and closer integration with experi-
mental studies of crowding effects, hopefully leading to new
insight into biochemical processes in cellular environments.

Modeling crowding by direct simulations

Using direct simulations, Cheung et al. (2005) studied the
folding stability and kinetics of the 34-residue all-β WW
domain in the presence of purely repulsive spherical crow-
ders. The WW domain was coarse-grained to two beads per
residue (representing the Cα atom and the center of mass of
the side chain), with a Go-like potential (Ueda et al. 1978) in
which only native interactions were retained. At a crowder
volume fraction (ϕ) of 0.25, the melting temperature was
increased by as much as 24 °C. In contrast to the crowding
effect on folding stability, the folding rate constant (kf)
exhibited a non-monotonic dependence in ϕ, reaching a
maximum of a threefold increase at ϕ=0.1 (relative to the
crowder-free situation) and then slowing down to a 1.8-fold
increase. Cheung et al. (2005) attributed the latter slowing
down to restricted conformational fluctuations needed for
the folding transition.

A similar model was adopted by Mittal and Best (2010)
to study the effect of crowding on the folding free energy
surfaces of three small proteins. The potentials of mean
force along the fraction of native contacts were obtained
by umbrella sampling. For each protein, crowding increased
the free energy of the unfolded state well relative to that of
the folded state well. Also using direct simulations, Minh et
al. (2006) studied the effect of crowding on the flap opening
equilibrium of the HIV-1 protease dimer. The opening mo-
tion is essential for substrate and inhibitor binding. These
researchers found that repulsive crowders decreased the
flap-open population.

Feig and Sugita (2012) recently carried out all-atom
explicit solvent molecular dynamics simulations of chymo-
trypsin 2 (CI2) in the presence of either lysozyme or bovine
serum albumin as crowders. These simulations were moti-
vated by the experiments of Miklos et al. (2011), who used
nuclear magnetic resonance-detected amide proton ex-
change to probe residue-level local stability, i.e., the stability
of individual residues to withstand opening up for hydro-
gen/deuterium exchange (Englander and Kallenbach 1983).
Opening of the residues with the highest local stability
involves global unfolding; hence, the highest local stability
corresponds to the folding stability. The experiments
showed that the protein crowders decreased the local stabil-
ity of many of the monitored CI2 residues and the folding
stability, in contrast to an increase in folding stability by

Fig. 1 Two different approaches for modeling biochemical reactions
under crowding. a The direct simulation approach follows the horizon-
tal paths, whereas the postprocessing approach follows the vertical
paths, illustrated on the folding process of cytochrome b562. The same
free energy difference (ΔΔG), here representing the effect of crowding
on the folding free energy, is obtained by following either the horizon-
tal paths (ΔΔG=ΔGf – ΔGf0) or the vertical paths (ΔΔG=ΔμF –
ΔμU) (Zhou et al. 2008). b In the direct simulation approach, the
folding transition is followed in the presence of crowders. c In the
postprocessing approach, only the folded state and the unfolded
state are simulated, not their inter-conversion, and the simulations
are done in the absence of crowders (Qin and Zhou 2009). Snapshots of
the folded (unfolded) protein are then fictitiously inserted into the crow-
ders to calculate ΔμF (ΔμU)
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polymer crowders on CI2 and on a number of other proteins.
Miklos et al. (2011) attributed the decreased local and fold-
ing stability to attractive interactions between the test pro-
tein and the crowder protein molecules. The work of Feig
and Sugita (2012) corroborated this attribution, in that the
residues showing decreased local stability largely overlap
with residues showing increased conformational fluctua-
tions in the simulations in the presence of the protein crow-
ders. It should be noted that the simulations of the Feig and
Sugita (2012) probe nanosecond fluctuations in the folded
state, whereas the experiments of Miklos et al. (2011) pres-
ent measurements on the equilibria between the folded state
and the locally or globally unfolded state. A re-analysis of
these measurements has now suggested experimental tem-
perature as a contributing factor for the observed differ-
ences, and that all of the data can be explained by a
unified mechanism of action for protein and polymer crow-
ders (Zhou 2013).

Postprocessing approach: strategy and implementation

Instead of following the horizontal paths of Fig. 1a to obtain
ΔΔG, the effect of crowding on the free energy change of
the test protein(s) in a biochemical process (folding, confor-
mational change, or binding), in the postprocessing ap-
proach we follow the vertical paths. That is, we calculate
the free energy for transferring, from a dilute solution to a
crowded solution, the protein(s) either in the reactant state or
the product state (Qin and Zhou 2009; Qin et al. 2010). By
closing a thermodynamic cycle, the difference between the
two transfer free energies is the same as the ΔΔG between
the two horizontal paths, but we avoid simulating rare
transitions along the horizontal paths.

To implement the postprocessing approach, we carry out
separate simulations for the test proteins(s) in the reactant state
and in the product state, without any crowders. The latter
condition allows the test proteins to be represented at the all-
atom level and the simulations to be done in an explicit solvent.
A separate simulation of the crowder molecules is also carried
out to generate a configurational ensemble for the crowded
solution and can be used for the transfer of many test proteins.

To calculate the transfer free energy (Δμ) of the test pro-
tein(s) in a given state, we take snapshots from the simulation
in that state and fictitiously insert them into the crowded
solution (Fig. 1c). If the effective interaction energy between
a test protein and the crowders isU(X,R,Ω), whereX,R, and
Ω represent the conformation, position, and orientation, re-
spectively, of the test protein, then Δμ is given by

exp �Δμ kBT=ð Þ ¼< exp �U X;R;Ωð Þ kBT=½ �>0 ð1Þ
where kB is Boltzmann’s constant, T is the absolute tempera-
ture, <···>0 means averaging over the conformation, position,

and orientation of the test protein and over the configurations
of the crowders, and the subscript “0” emphasizes the fact that
the protein conformations are those sampled in the absence of
crowders. Postprocessing is simply a form of Widom’s inser-
tion method (Widom 1963). For the purely repulsive interac-
tion between crowders and test proteins, U(X, R, Ω) is either
0, when the test protein does not clash with crowders, or
infinite, when a clash occurs. Correspondingly, exp [−U(X,
R, Ω)/kBT] is either 1 or 0, and the average on the right-hand
side of Eq. (1) is the clash-free or allowed fraction (f) of
attempts to insert the test protein into the crowded solution.

The allowed fraction of insertion can be simply calculat-
ed by repeatedly inserting the test protein into the crowded
solution and testing for clash, but we have designed an
algorithm to speed up the calculation for spherical crowders
(Qin and Zhou 2009). Briefly, we take one crowder particle
and identify all of the grid points at which the placement of
the test protein (in a given conformation and orientation)
results in clash. We then copy all the “clashing” grid points
to each crowder particle in the crowded solution (in a given
crowder configuration). The allowed fraction of insertion is
finally given by the fraction of grid points that are not part of
the clashing grid points of any crowder particle. The calcu-
lation needs to be repeated for other test protein conforma-
tions and orientations and other crowder configurations to
obtain the appropriate average.

Because the calculation needs to be repeated many times,
we further developed an alternative, faster way of calculat-
ing the transfer free energy (Qin and Zhou 2010). We were
guided by the observation that the transfer free energies
calculated by our insertion algorithm can be fitted to the
scaled particle theory with the radius, surface area, volume
of the test protein as free parameters; the fitted values of
these parameters are more or less those expected from
the structure of the protein (Batra et al. 2009a; Qin and
Zhou 2009). Mittal and Best (2010) confirmed this ob-
servation in their subsequent study. Essentially, our cal-
culation for the transfer free energy can be viewed as a
generalization of the fundamental measure theory
(Rosenfeld 1989; Oversteegen and Roth 2005), which
itself is a generalization of the scaled particle theory.
Our generalized fundamental measure theory (GFMT)
predicts the transfer free energy as

Δμ ¼
Y
c

vp þ gcsp þ kclp � kBT 1n 1� fð Þ ð2Þ

where vp, sp, and lp are the volume, surface area, and
linear size, respectively, of the test protein, and Пc, γc,
and κc are the osmotic pressure, surface tension, and
bending rigidity, respectively, of the crowded solution.
The latter crowder-only quantities are determined by the
volume, surface area, and radius of the crowders. The
geometric quantities vp, sp, and lp of the test protein are
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essentially defined by its crowder-excluded surface (rep-
resented at the all-atom level). Note that the crowder-
excluded surface depends on the crowder radius and is
not convex. Figure 2 illustrates the good agreement be-
tween the GFMT transfer free energies and those calcu-
lated by the insertion algorithm.

Validation against direct simulations

In essence the postprocessing approach yields the transfer
free energy by using the protein conformations sampled in
the absence of crowders and reweighting them according to
the would-be protein-crowder interaction energy. Of course,
the important conformational region will necessarily shift
due to the presence of crowders. The postprocessing calcu-
lation is exact if the conformational space of the protein is
exhaustively sampled so as to cover the important confor-
mational region in the presence of crowders. In practice,
however, can conformations be adequately sampled to en-
sure accurate calculation by the postprocessing approach?
An important test case is whether the conformations sam-
pled in the absence of crowders through the direct simula-
tion approach can be used to predict crowding effects.

We recently addressed such a test case (Qin et al. 2010).
Using the simulation code of Minh et al. (2006) we extend-
ed their study of the effect of crowding on the flap opening
equilibrium of the HIV-1 protease dimer. The values of the
flap-open probability (po) calculated using the direct simu-
lation approach at 8 volume fractions of 30-Å crowders are
shown in Fig. 3 as circles. po shows a small but distinct
decrease with increasing ϕ. Using only the conformations
sampled in the absence of crowders and applying postpro-
cessing, we reproduced the direct simulation results very

well (curve in Fig. 3). While the direct simulation results
have significant statistical errors (as estimated by the varia-
tion among 6 repeat simulations), the statistical errors of the
postprocessing approach on the crowding effect are negligi-
ble. The significant reduction in statistical errors comes
about because averaging over protein position and orienta-
tion and over crowder configuration is effectively exhaus-
tive in the postprocessing approach (Qin and Zhou 2009).

In the postprocessing approach, the same conformations,
sampled in the absence of crowders, are used for different
crowding conditions, such as the different volume fractions
of the 30-Å crowders (Fig. 3) or for crowders with other
sizes. For 100-Å crowders, the decrease in po with increas-
ing ϕ becomes negligible. The latter prediction explains the
experimental observation that 6 % Ficoll400 (with a Stokes

Fig. 2 Comparison of the generalized fundamental measure theory
(GFMT) results and those calculated by the insertion algorithm (Qin
and Zhou 2009) for the transfer free energies of cytochrome b562 in the
folded state (a) and unfolded state (b). The results by the insertion
algorithm are shown as circles, squares, diamonds, and triangles for
crowders with radii of 15, 20, 30, and 50 Å, respectively; the
corresponding GFMT results are shown as curves. These results were
calculated in Qin and Zhou (2010), but there only the difference

between ΔμF and ΔμU was shown. The GFMT calculations yielded
values of 21.1, 21.4, and 21.8 Å for the linear size (lp) of cytochrome
b562 in the folded state when the crowder radii were 15, 30, and 50 Å,
respectively; the corresponding values of lp were 24.5, 25.4, and
25.9 Å in the unfolded state. Note that these values corresponding to
different crowder radii were obtained from the same set of protein
conformations (either in the folded or unfolded state) generated with-
out crowders

Fig. 3 Postprocessing predictions (curve) and direct simulation results
(circles) for the HIV-1 protease dimer flap-open probability under
crowding, taken from Qin et al. (2010). Error bars in the direct
simulation results represent variations among 6 repeat simulations.
The postprocessing results are predicted according to po pc= ¼ exp
� Δμo �Δμcð Þ kBT=½ �po0 pc0= , where po and pc are the flap-open and
flap-close probabilities under crowding, po0 and pc0 are the counter-
parts in the absence of crowding, and Δμo and Δμc are the transfer free
energies of the open and closed conformational ensembles
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radius of approx. 100 Å) did not result in a discernible
change in the distribution of the inter-flap distance
(Galiano et al. 2009). Using the postprocessing approach,
we have also been able to reproduce Mittal and Best’s
(2010) direct simulation results for the folding free energy
surfaces of three small proteins under crowding (Qin et al.
2013).

From theymodynamics to kinetics

In addition to equilibrium properties, the postprocessing
approach can be applied to model crowding effects on
kinetic properties. In general, the rate constant of a biochem-
ical reaction is determined by the energetics and dynamics
of the biomolecule(s) involved (Zhou 2010). The rate con-
stant under crowding can be modeled by accounting for the
effects of crowding on these energetic and dynamic proper-
ties (Zhou 2004; Qin et al. 2012).

The rate constant for a unimolecular reaction, such as a
folding or unfolding process or a conformational transition,
can generally be expressed as (Zhou 2010)

k ¼ A exp �ΔGz kBT=
� �

ð3Þ

where ΔG‡ is the activation energy (i.e., difference in free
energy between the transition state and the reactant state),
and A is a prefactor dictated by the dynamics, which can be
described as diffusive for most biochemical reactions, along
the reaction coordinate. Both internal dynamics and the
solvent microviscosity can contribute to the effective diffu-
sion constant along the reaction coordinate (Ansari et al.
1992). In principle, crowding can affect both ΔG‡ and the
prefactor A. The effect of crowding on ΔG‡ can be calculat-
ed by the postprocessing approach, just as described above
for the free energy difference between two stable states,
provided that we can sample the transition state (in the
absence of crowders) in addition to the reactant state.

The effect of crowding on A depends on the extent to
which the reaction coordinate is exposed to crowders. In one
extreme, the motion leading to the transition state involves
only residues that are shielded from crowders, then A should
be relatively independent of crowding (Yuan et al. 2008). As
another example, the folding rate constant of a small protein
calculated by Mittal and Best (2010) through simulations
was consistent with that predicted when only the effect of
crowding on the free energy surface was taken into consid-
eration. In the other extreme, the rate-limiting step involves
large-scale relative motion between domains or large frag-
ments of the protein; in this case, crowders will affect A by
changing the microviscosity. (Note that, for macromolecular
crowders, the microviscosity is usually much less than the
bulk viscosity.) If the relative translational diffusion

constant of the domains changes from D0 to D under crowd-
ing, then we expect the prefactor to change in proportion:

A

A0
¼ D

D0
ð4Þ

In general, we expect the effect of crowding on A to fall
between the above two extremes.

Protein–protein binding can be reaction-limited, diffusion-
limited, or between these two regimes. In the reaction-limited
regime, the rate-limiting step is the crossing of an energy
barrier, much like in a unimolecular reaction. This may involve
conformational rearrangement of one of both proteins during
the binding process. The effect of crowding on the binding rate
constant in the reaction-limited regime can be modeled very
similarly to what is described above for unimolecular reactions.

For binding in the diffusion-controlled regime, we have
developed a computational method known as the transient-
complex theory for predicting the rate constant (Alsallaq
and Zhou 2008; Qin et al. 2011). The transient complex
refers to an intermediate in which the two proteins have
near-native separation and relative orientation but have yet
to form most of the short-range native interactions. The
association rate constant is predicted as

ka0 ¼ k0a0 exp �ΔG?
el kBT=

� � ð5Þ
where k0a0 is the basal rate constant, i.e., the rate constant for
reaching the transient complex by unbiased diffusion, and
the Boltzmann factor (with ΔG?

el denoting the electrostatic
interaction energy in the transient complex) accounts for the
biasing contribution of long-range electrostatic interactions
in the diffusional approach to the transient complex. We
have now extended the transient-complex theory to account
for the effects of crowding (Qin et al. 2012). Crowding
modifies the basal rate constant (from k0a0 to k

0
a ) by changing

the microviscosity and induces an effective interaction en-
ergy (ΔΔGc) between the proteins. Therefore

ka ¼ k0a exp �ΔG?
el kBT=

� �
exp �ΔΔG?

c kBT=
� � ð6Þ

k0a can be estimated in analogy to Eq. (4):

k0a
k0a0

¼ D

D0
ð7Þ

where D0 and D now represent the relative translational dif-
fusion constants of the two proteins without and with crowd-
ing. ΔΔG?

c can be calculated by our postprocessing method.

Applications: interrogation by experiments

The all-atom representation of test proteins, afforded by the
postprocessing approach, makes the modeling of crowding
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more realistic and reduces the number of adjustable param-
eters in comparison with experiments. In particular, one no
longer has the freedom of adjusting the size of a test protein.
Therefore, the interrogation by experiments becomes more
quantitative. Below we summarize several applications of
the postprocessing approach in modeling the effects of
crowding on the thermodynamics and kinetics of protein
folding, conformational transition, and binding.

Ai et al. (2006) used the 15N relaxation dispersion tech-
nique to determine the folding and unfolding rate constants
(kf and ku) of cytochrome b562 in the absence and presence
of 85 g/l PEG 20 K. At 25 °C they observed that crowding
caused a 45 % increase in kf and a very small 6 % decrease
in ku. To quantitatively rationalize these results, we carried
out simulations to unfold cytochrome b562, a four-helix

bundle protein, by high temperature (Tjong and Zhou
2010). The order of melting of the helices in the simulations
was consistent with previous experimental observations
(Zhou et al. 2005), leading us to identify the transition-
state ensemble as comprising conformations in which heli-
ces II, III, and IV-N are partially folded and helices I and IV-
C are unfolded (Fig. 4a). The probabilities of individual
residues in the helical state (Fig. 4b), calculated on the
putative transition-state ensemble, correlated well with ex-
perimental Φ-values (Zhou et al. 2005), which measure the
extent to which native interactions are formed in the transi-
tion state. Applying the postprocessing approach to these
conformational ensembles of the folded state, transition
state, and unfolded state generated in simulations without
crowders, we calculated the effects of crowding on the

Fig. 4 The folding transition
state of cytochrome b562 and
effects of crowding on its
folding and unfolding
activation energies, taken from
Tjong and Zhou (2010). a Top
The folded state, with helical
segments color coded and
labeled; bottom a representative
conformation of the transition-
state ensemble. b Comparison
of the residue helical
probabilities calculated on the
transition-state ensemble with
experimental Φ-values (Zhou et
al. 2005). c Postprocessing
results for the effects of
crowding on the folding
activation energy (curves
labeled TS – U) and the
unfolding activation energy
(curves labeled TS – F). Results
for three crowder radii are
shown by the curves in different
colors

Fig. 5 Effects of crowding on
the conformational transition of
seven proteins, taken from
Dong et al. (2010). a
Conformational difference
between the open (blue) and
closed (red) forms of adenylate
kinase (Adk), one of the seven
proteins studied. b Decreases in
the open-to-closed probability
ratios of the seven proteins by
crowding. The crowder radius
was 15 Å
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activation energies for folding and unfolding (Fig. 4c). With
a crowder size (20 Å) and volume fraction (15 %) approx-
imating the experimental condition (PEG 20 K at 85 g/l), we
found a decrease of 0.28kBT in the folding activation energy
and an increase of 0.08kBT in the unfolding activation
energy. Assuming that the prefactor A is unaffected by
crowding, as can be justified according to the preceding
section, we would predict a 32 % increase in kf and a 8 %
decrease in ku, which is in good agreement with the exper-
imental values.

Expanding on our study of crowding effects on the HIV-1
protease dimer flap open equilibrium (Qin et al. 2010), we
used the postprocessing approach to study how crowding
affects the equilibria and transition rates between open and
closed conformations of seven proteins, including adenylate
kinase (Fig. 5a) (Dong et al. 2010). For each protein,
explicit-solvent molecular dynamics simulations of the open
and closed states were separately run, and snapshots were
taken to calculate the transfer free energies (Δμo and Δμc).
In the presence of 15-Å crowders with a 35 % volume
fraction, the open-to-closed probability ratio (po/pc) de-
creased by 78 % for adenylate kinase. This prediction is
consistent with a subsequent experimental study using
TMAO as the crowding agent (Nagarajan et al. 2011).

Among the seven proteins that we studied, the effects of
crowding were reduced when the conformational difference
between the open and closed state was less (Fig. 5b). We
also calculated the effects of crowding on the potentials of
mean force along the open-close reaction coordinate, which
suggested that crowding could affect the conformational
transition rates.

We carried out experiments to measure the effects of
crowding on the binding affinity of the ε and θ subunits of
Escherichia coli DNA polymerase III (Fig. 6a) (Batra et al.
2009a). Dextran of various molecular weights and Ficoll70
were used as crowding agents, and both were found to
increase the binding affinity (Fig. 6b). At the same crowder
concentration (100 g/l), the effect of dextran apparently
tapered as the molecular weight increased. The experimental
results were quantitatively rationalized when 100 g/l dextran
with molecular weight W (in kDa) was modeled as crowder
with a fixed 15 % volume fraction and radius given by
8.26W1/3 Å (Fig. 6b).

In a joint experimental-computational study with the
Schreiber group, we recently determined the effects of
PEG 20 K and dextran 40 K on the association rate constant
of two proteins, TEM-1 and BLIP (Fig. 7a) (Phillip et al.
2012a). The association rate constant was essentially

Fig. 6 Effects of crowding on
the binding affinity of the DNA
polymerase III ε and θ subunits.
a Structure of the ε-θ complex. ε
and θ are given in red and green,
respectively. A tryptophan
introduced in the interface as a
fluorescence probe is shown. b
Experimental (symbols) and
theoretical (curve) results for the
effects of crowding on the
binding free energy

Fig. 7 Effects of crowding on the association rate constant of TEM1
and BLIP, adapted from Phillip et al. (2012a). a Structure of the TEM1-
BLIP complex. TEM1 and BLIP are given in red and green, respec-
tively. b ϕ dependences of the relative translational diffusion constant
(D), the effective interaction energy (ΔΔG?

c ), and the association rate
constant (ka), calculated for PEG 20 K. PEG 20 K was modeled as a

polymer for D and as a 20-Å crowder for ΔΔG?
c ; the correspondence

between three PEG weight fractions and volume fractions is indicated
by vertical lines. Dextran 40 K at 15 % results in a fourfold slowing
down in relative diffusion and, when modeled as a 30-Å crowder, leads
to a ΔΔG?

c that translates into a 2.3-fold rate enhancement
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unaffected by 4, 8, and 12 % PEG 20 K or 15 % dextran
40 K. We rationalized this observation by our transient-
complex theory extended for crowding (Fig. 7b). PEG
20 K at 4–12 % was estimated to slow down the relative
diffusion of the two proteins by two- to fivefold. Modeling
PEG 20 K as a 20-Å crowder with a volume fraction
proportional to the weight fraction, we calculated the
crowder-induced interaction energy, ΔΔG?

c , to be −0.3kBT
to −0.9kBT, corresponding to a 1.3- to 2.4-fold rate enhance-
ment. These two opposing factors together lead to the ob-
served null effect of crowding (Fig. 7b). Similar results were
obtained for 15 % dextran 40 K (Fig. 7b).

Conclusion

With the ability to represent proteins with atomistic details,
we are now much closer in making quantitative predictions
on the effects of crowding on the thermodynamics and
kinetics of protein folding, conformational transition, and
binding. To date, the crowders have only been modeled
crudely, mostly as spherical particles with purely repulsive
interactions. More sophisticated crowders, with residue-
level details and compositions approaching those of bacte-
rial cells, have become computationally feasible (Ando and
Skolnick 2010; McGuffee and Elcock 2010; Mereghetti et
al. 2010). Combined with the power of the postprocessing
approach, we can start to predict, with some confidence,
thermodynamic and kinetic properties under in vivo
crowding conditions. Integrated with experimental studies
(Ghaemmaghami and Oas 2001; Ignatova and Gierasch
2004; Ebbinghaus et al. 2010; Phillip et al. 2012b), we will
soon be able to gain new insight into biochemical processes in
cellular environments. It will be of particular interest to ad-
dress questions such as whether protein sequences are tuned
for folding or binding in particular cellular compartments.
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