
KATP channels and cardiovascular disease: Suddenly a syndrome

Colin G. Nichols1, Gautam K. Singh2, and Dorothy K. Grange2

1Center for the Investigation of Membrane Excitability Diseases and Department of Cell Biology
and Physiology
2Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue,
St. Louis, MO 63110

Abstract
ATP-sensitive potassium (KATP ) channels were first discovered in the heart 30 years ago1.
Reconstitution of KATP channel activity by coexpression of members of the pore-forming inward
rectifier gene family (Kir6.1, KCNJ8, and Kir6.2 KCNJ11) with sulfonylurea receptors (SUR1,
ABCC8, and SUR2, ABCC9) of the ABCC protein sub-family, has led to the elucidation of many
details of channel gating and pore properties. In addition, the essential roles of Kir6.x and SURx
subunits in generating cardiac and vascular KATP

2 and the detrimental consequences of genetic
deletions or mutations in mice have been recognised3. However, despite this extensive body of
knowledge, there has been a paucity of defined roles of KATP subunits in human cardiovascular
diseases, although there are reports of association of a single Kir6.1 variant with the J-wave
syndrome in the electrocardiogram, and two isolated studies have reported association of loss of
function mutations in SUR2 with atrial fibrillation and heart failure. Two new studies
convincingly demonstrate that mutations in the SUR2 gene are associated with Cantu syndrome, a
complex multi-organ disorder characterized by hypertrichosis, craniofacial dysmorphology,
osteochondrodysplasia, patent ductus arteriosus, cardiomegaly, pericardial effusion, and
lymphoedema. As we discuss, this realization of previously unconsidered consequences provides
significant insight into the roles of the KATP channel in the cardiovascular system and suggests
novel therapeutic possibilities.
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KATP channel structure and molecular regulation
Canonical KATP channels are heterooctameric complexes of pore-forming Kir6 channel-
forming subunits associated with regulatory SUR subunits, members of the ATP binding
cassette (ABC) family of membrane proteins (Fig. 1). Two Kir6-encoding genes, KCNJ8
(Kir6.1) and KCNJ11 (Kir6.2)4,5, and two SUR genes, ABCC8 (SUR1) and ABCC9
(SUR2)5-7 encode mammalian KATP subunits, but alternative RNA splicing can give rise to
multiple SUR protein variants (e.g. SUR2A and SUR2B) that confer distinct physiological
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and pharmacological properties on the channel complex8,9. Interestingly (Fig. 1C), the genes
for Kir6.2 and SUR1 are located next to each other on human chromosome 11p15.15

suggesting an as yet unconsidered co-regulation at the gene level. In addition, the genes for
Kir6.1 and SUR2 are also adjacent to one another on chromosome 12p12.17,10, implicating
an evolutionary duplication. In heterologous expression systems, both Kir6.2 and SUR1
subunits co-assemble in a 4:4 stoichiometry5 (Fig. 1A,B) to generate the functional KATP
channel11-13. Similarly, biochemical studies demonstrate that the SUR2 protein variants,
SUR2A and SUR2B, can also coassemble with Kir6 subunits4,14-16, presumably in a similar
octameric arrangement.

Crystallographic studies of bacterial and eukaryotic Kir channels17,18] demonstrate a
conserved architecture of Kir channels with two transmembrane helices (M1, M2) bridged
by an extracellular loop that generates the narrow portion of the pore and controls ion
selectivity (Fig. 1A). As with other ABCC family members, SURs contain two six-helix
transmembrane domains, TMD1 and TMD2, but SURs also have an additional N-terminal
TMD0 domain consisting of 5 transmembrane helices (Fig. 1A), critical for Kir6.x
trafficking and gating19. SURs also contain one nucleotide binding fold (NBF1) between
TMD1 and TMD2, and a second (NBF2) after TMD2 in the cytoplasmic loops (Fig. 1A).
NBFs from bacterial ABC proteins crystallize as ‘head-to-tail’ dimers, and this is likely the
functional arrangement between NBF1 and NBF2 in SUR (Fig. 1B)20. How the Kir6 and
SUR subunits are physically connected remains unknown, but electron micrography and
intersubunit FRET studies of complete KATP complexes suggest an intimate packing of 4
SUR and 4 Kir6.x subunits21,22 (Fig. 1A).

The key regulatory features of KATP channels are rapid and reversible closure by
cytoplasmic ATP, and activation by nucleotide tri- and diphosphates20 (Fig. 1B). In the
absence of other nucleotides, the free ATP concentration that causes half-maximal channel
inhibition is in the micromolar range. Since cellular levels of cytosolic ATP concentration
are in the millimolar range (1-5 mM) and change little with metabolism, [ATP] is probably
always sufficient to almost fully inhibit channel activity. Channel activation then arises from
the activating effects of Mg-nucleotides, particularly MgADP, on the SUR subunit23.
Nucleotide regulation is probably the key molecular regulator of KATP channel activities,
although other second messenger systems and regulators24 may be involved in control of
channel activity and in causing channel-dependent pathologies.

Cardiovascular tissue distribution of KATP channel subunits
Cardiac myocytes

Kir6.1 and Kir6.2, as well as SUR2A, SUR2B and SUR1, and additional potential splice
variants of SUR1 and SUR2, are all expressed in the heart4,25,26. Given that any pair of
SURx:Kir6.x tetramers can co-assemble when heterologously expressed4,5, and that even
within a single channel more than one SUR isoform or Kir6 isoform can coexist27-32,
determining the molecular makeup of the channel in specific cell types is a challenge. There
is now good evidence that in mouse hearts, SUR1 and Kir6.2 are major constituents of the
atrial myocyte sarcolemmal KATP, whereas SUR2A and Kir6.2 generate ventricular
KATP

33,34. However, in hearts of larger animals, including humans, both SUR1 and SUR2A
subunits probably contribute to sarcolemmal channels in both atrial and ventricular
myocytes35 (Fig. 1D). The situation may be more complex in critical sub-regions of the
heart, including nodal and conduction cells. KATP channel currents have been detected
throughout the pacemaking and conduction systems36-38, but KATP single channel
conductances in rabbit SA node cells and mouse conduction cells may be smaller than in
ventricular myocytes36. This suggests a possible role for Kir6.1 in generating the channel
pore, yet sarcolemmal KATP is abolished in Kir6.2−/− SA node cells39 indicating a necessary
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requirement for Kir6.2. The identity of the SUR component of KATP in these tissues is
unknown, although KATP channels in these cell types do respond to the relatively SUR2-
specific openers cromakalim and pinacidil, suggesting a major role for SUR2 in nodal KATP
channels36-38.

Smooth muscle myocytes
KATP channel density is relatively low in vascular smooth muscle (VSM) compared to
cardiac myocytes40,41 and the biophysical and the pharmacological properties are quite
variable, reflecting variable expression of KATP subtypes in vascular beds42-49. There is
considerable variation in reported single channel conductances45,46,50-54, although low-
conductance channels (unitary conductances from 20-50 pS) may represent the predominant
KATP channel subtype, with a more limited distribution of medium- and high conductance
KATP channels (50-70 pS and >200 pS, respectively)55. Importantly, and unlike classic
KATP channels of the heart4,56 or pancreas5,57, the predominant VSM KATP conductances
are inactive in isolated membrane patches, and require nucleotide diphosphates (ADP, UDP,
GDP) in the presence of Mg 2+ to open, leading to their functional designation as
‘nucleotide-dependent’ K+-channels, or KNDP channels47,48,53. Heterologously expressed
Kir6.1/SUR2B channels recapitulate many of these biophysical properties of native VSM
KATP/KNDP

14,58-62. A subpopulation of VSM KATP in portal vein exhibits spontaneous
activity in excised membrane patches, and displays high sensitivity to inhibitory ATP
(K1/2 ATP = ~20 μM), and higher unitary conductance, reminiscent of Kir6.2/SUR2A-
dependent KATP channels1,53,54,63. Thus the Kir6.1/SUR2B channel may represent the
predominant VSM KATP, but other subtypes are also likely to be expressed in specific
vascular beds, separately or in combination with Kir6.1/SUR2B subunits53 (Fig. 1D).

Vascular endothelium
KATP channels are also present in vascular endothelium64 and, by regulating endothelial
electrical activity, they may affect release of vasoactive agents that in turn modulate smooth
muscle function. Activation by KCOs and inhibition by glibenclamide has been
demonstrated in coronary endothelium65 and in aortic endothelial cells66,67. The molecular
composition of endothelial KATP channels remains largely unknown, but the presence of
Kir6.1, Kir6.2, and SUR2B mRNA in guinea pig68 and in human coronary artery endothelial
cells65 suggests that all three subunits may be involved in channel generation in these cells.

Mitochondrial KATP

A K+-selective, small conductance channel was first identified in rat liver mitochondria69,
and reported to be reversibly inhibited by application of ATP, glibenclamide, and 4-
aminopyridine (4-AP). These ‘mitoKATP’ channels were inhibited by acyl-coA and activated
by GTP, GDP and diazoxide70,71. The pharmacology of heterologously expressed SUR1/
Kir6.1 complexes appears to most closely resemble such properties72,73, yet ‘mitoKATP’
function is apparently unaffected in both Kir6.1−/− and Kir6.2−/− animals26,74 and efforts to
determine whether specific SUR or Kir6 subunits are normally present in mitochondria have
yielded inconsistent results73,75-79.

Chutkow et al. generated a SUR2 ‘knockout’ mouse in which the first nucleotide binding
fold of SUR2 was disrupted by deletion of exons 12-1680. Experiments on these SUR2−/−

mice revealed novel glibenclamide-insensitive channels in isolated sarcolemmal membrane
patches, and antibodies raised against specific regions of the SUR2 protein suggested that
the novel channels are formed of short SUR2 constructs that lack the first nucleotide binding
fold (NBF1)81,82. Subsequent studies from the same group indicate that these proteins may
be expressed in mitochondria83, and that SUR2−/− mice are protected against myocardial
infarction resulting from global ischemia (as we also reported for SUR1−/− mice84),
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inconsistent with the generally accepted notion that opening of (SUR-dependent)
sarcolemmal KATP channels is a protective mechanism in ischemia. A later study from the
group indicated that re-expression of full-length SUR2A improved recovery from
ischemia85, leading to the slightly convoluted argument that the improvement in the
SUR2−/− animals over wild type is somehow the result of the short form SUR2 constructs.
The possibility that these are increased in mitochondria might then explain improved
mitochondrial energetics in these animals86.

Lack of confirmed presence of canonical SUR or Kir6 subunits in mitochondria has led to
alternative hypotheses regarding ‘mitoKATP’ structure. In addition to opening KATP
channels, diazoxide may inhibit succinate dehydrogenase87 and consistent with the idea that
this key enzyme of both the Krebs cycle and electron transport chain might be a component
of the ‘mitoKATP’ channel, Ardehali and colleagues identified a macromolecular complex
that recapitulated ‘mitoKATP’ activity including diazoxide activation and 5-
hydroxydecanoate inhibition88,89. The complex included succinate dehydrogenase,
mitochondrial ATP-binding cassette protein-1 (mABC-1), ATP synthase, adenine nucleotide
translocase, and phosphate carrier proteins, and it is not clear which component should be
forming the channel pore, the reported records show only single channel activity over brief
periods, and follow-up studies have not yet emerged.

Most recently, proteomic analysis of purified bovine mitochondrial inner membranes
identified a short form (ROMK2) product of the KCNJ1 gene as containing an N-terminal
mitochondrial targeting signal, and colocalization of a full-length epitope-tagged ROMK2
with mitochondrial ATP synthase β90. Additional experiments showed that tertiapin Q, a
relatively specific ROMK blocker, inhibited functional assays of mitoK(ATP) activity in
isolated mitochondria and inhibited the diazoxide-activated component of mitochondrial
thallium uptake. While these studies await independent confirmation, they imply a role for
ROMK2 (Kir1) subunits in generating the mitoKATP channel (Fig. 1D).

KATP and cardiovascular disease: The potential versus the genetic evidence
It has long been recognized that KATP channels provide a very large potential ionic
conductance in the surface membranes of cardiac myocytes, as well as vascular smooth
muscle and endothelium, and perhaps in the mitochondrial inner membrane of many cells.
Under normal metabolic conditions, cardiac sarcolemmal KATP channels are predominantly
closed, and they do not significantly contribute to cell excitability. However, these channels
can open when exposed to a severe metabolic stress such as anoxia, metabolic inhibition or
ischemia. In muscle cells, shortening the action potential reduces calcium entry and inhibits
contractility91, thereby reducing energy consumption, potentially protecting the cell. Such a
preservation ‘strategy’ is of course self-limiting, since if too many myocytes stop
contracting, the heart will stop pumping and the animal will die, but it has always been a
reasonable, if unproven, notion that temporary protection of a small number of cells, or
region of the heart, against the damage of Caoverload during ischemia, is likely to be
operable.

In the vasculature, inhibition of K+-channel activity will tend to cause depolarization of the
membrane potential, activation of L-type voltage-sensitive Ca2+-channels, Ca2+-entry and
vasoconstriction92. Conversely, activation of K+-channels will lead to membrane
hyperpolarization, decrease in voltage-dependent Ca2+-entry and vasodilation92. The
relationship between membrane potential and Ca2+-influx is especially steep in smooth
muscle, with membrane depolarization or hyperpolarization of only a few millivolts causing
several fold increases or decreases in [Ca2+]i respectively93,94. Endothelial cells lack
voltage-dependent Ca channels and Ca entry through non-selective channels is enhanced at
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hyperpolarized voltages, in contrast to ‘excitable’ cells95,96. Activation of KATP channels
will tend to hyperpolarize cells, leading to elevated [Ca2+]i, and elevated release of
vasoactive agents, including EDHF and endothelin. Thus, gain- or loss-of K+-channel
activity in either smooth muscle or endothelium could have profound pro-relaxant or pro-
constrictive effects respectively on smooth muscle tone, a point we return to below.

Kir6 genes and disease
As discussed in detail below, genetic manipulation of KATP genes in mice can result in
dramatic cardiovascular pathologies, yet until recently there has been little evidence for
human cardiovascular disease resulting from KATP gene mutations (Table 1). KCNJ11
encodes the predominant KATP channel pore-forming subunit (Kir6.2) in both the pancreatic
β-cell and in cardiac myocytes97. Gain- and loss-of function mutations in this gene are now
very well understood to underlie neonatal diabetes and congenital hyperinsulinism,
respectively98, but there is no published evidence for any cardiac problems in these patients.

KCNJ8 encodes Kir6.1, which is the main channel forming subunit expressed in smooth
muscle and may also be expressed in some cardiac myocytes97,99 (Fig. 1D). Several recent
studies have reported a single mutation, S422L, in the Kir6.1 protein to be associated with
the ‘J-wave’ phenomenon, characterized by abnormalities in the J-point of the ECG, and
including Brugada syndrome (BrS) and early repolarization syndrome (ERS). First reported
by Haissaguerre et al100, J-point elevation in one patient with the S422L variant showed
multiple (>100) recurrences of unresponsive ventricular fibrillation (VF), associated with
accentuated early repolarization. Additional studies include that of Delaney et al101 who
reported two (out of 325) atrial fibrillation (AF) probands with early repolarization, that of
Medeiros-Domingo et al102, who reported one Brugada syndrome patient and one early
repolarization syndrome patient carrying the same S422L variant out of 101 analyzed
patients, and that of Barajas-Martinez et al., who reported 3 additional BrS and 1 ERS
probands carrying the same variant103. The variant has not been identified in any control
alleles. The latter two studies both reported enhanced channel activity for the S422L variant,
arguing that gain-of-function in Kir6.1 channel activity is underlying the ERS and hence AF.
Conversely, sequence analysis of DNA from necropsy tissue on 292 unrelated sudden infant
death syndrome (SIDS) cases identified novel KCNJ8 variants in two individuals, an in-
frame deletion (E332del) and a missense mutation (V346I), both in the distal C-terminus of
Kir6.1. In this case, reduced channel activity was reported from recombinantly expressed
mutant channels, leading the authors to conclude that loss-of-function mutations in
Kir6.1may be one cause of SIDS104, through as yet unexplained mechanisms.

SUR genes and disease
ABCC8 encodes SUR1, which is the predominant regulatory sulfonylurea receptor (SUR1)
in the pancreatic β-cell and is also present in the heart, predominantly in atria in rodents34,
but potentially more widespread in humans35. Because of its involvement in the pancreatic
KATP channel, gain- and loss-of function mutations in this gene also underlie neonatal
diabetes and congenital hyperinsulinism respectively, but again there is no report of cardiac
problems in these patients105-107. ABCC9 encodes the second SUR2 subunit, and this is
likely to be the major SUR isoform in both cardiac and vascular muscle. There have been
two reports of SUR2 loss of function mutations leading to cardiac disease, both from the
group of Andre Terzic and colleagues108,109 (Table 1). In each case, the mutations are
present in the C-terminal exons and will lead to a disruption of the second nucleotide
binding fold of SUR2A, and hence reduce nucleotide stimulation of channel activity,
without affecting SUR2B. In the first report, the single patient with the mutation presented
with long-standing atrial fibrillation originating in the vein of Marshall, with normal cardiac
morphology and contractile features109. The patient was successfully treated by
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radiofrequency ablation. In the second report, two individuals with two distinct mutations
presented with heart failure due to idiopathic dilated cardiomyopathy108. There have been
no subsequent reports of similar genetic defects in the intervening five years, and further
evidence for causality of association of similar gene variants with disease in additional cases
is lacking.

Two new papers reporting multiple different ABCC9 mutations, all associated with Cantu
syndrome, a distinctive multi-organ disease (Table 2), now provide a clear picture of
associated outcomes, and open up multiple new avenues of investigation. The first study110

involved genetic analysis of 14 individuals diagnosed with Cantu syndrome111, and ABCC9
coding mutations were identified in 11 of them. In six cases with no affected relatives, the
mutations were de novo. Two families were also reported, one with an affected mother and
two affected daughters, and one with an affected father and daughter, confirming that
inheritance in this case is autosomal dominant. No analysis of recombinant channel function
was made in this first study, but the conclusion that these mutations all lead to a gain-of
channel function112 is cemented by the second study113, which identified ABCC9 coding
mutations in an additional 14 of 16 identified patients. In that study, recombinant expression
of mutant channel proteins clearly demonstrated a reduced sensitivity to ATP inhibition in 3
example mutants which, as discussed below, will lead to enhanced KATP channel activity
wherever the channels are located.

Cantu Syndrome: Multiple tissue symptoms
Cantu syndrome (MIM 239850), or hypertrichosis-osteochondrodysplasia-cardiomegaly
syndrome, was first described in 1982111. Subsequent reports112,114-121 have confirmed a
constellation of features in ~30 patients (see Table 2). Congenital hypertrichosis is a
constant feature, with thick scalp hair and excessive hair growth on the forehead, face, back
and extremities. Generalized macrosomia is present in most cases, with large birth weights
and lengths, although ultimate adult height is usually within the normal range.
Macrocephaly is typically present at birth and usually persists. Multiple dysmorphic features
(Table 2), including coarse facial appearance, skeletal abnormalities, and generalized
osteopenia, as well as multiple additional clinical features have also been described. The
cardiac features include cardiac enlargement, concentric hypertrophy of the ventricles,
pulmonary hypertension and pericardial effusion. Yet, despite the enlargement of the heart
with increased muscle mass, cardiac function is typically normal, with normal ventricular
contractility on imaging studies112. Cardiac muscle biopsy in one patient showed mild
myofibrillar disorganization but normal myofibers and mitochondria on electron
microscopy, and in 2 other patients cardiac biopsy was reported as normal112,122. Pulmonary
hypertension secondary to partial pulmonary venous obstruction has been reported in one
case, and was associated with severe mitral valve regurgitation that spontaneously
resolved116. Some patients have required pericardiocentesis and ultimately needed
pericardial stripping to prevent reaccumulation of the pericardial effusion. A significant
number of patients have had patent ductus arteriosus (PDA) requiring surgical closure, as
well as bicuspid aortic valves with and without stenosis. Lymphedema involving the lower
extremities may develop over time, and in one patient, lymphangiogram demonstrated
dilated lymphatic vessels in the legs with delayed lymphatic drainage123.

Diazoxide, minoxidil and other related drugs have been used since the 1960s to treat severe
refractory hypertension. Multiple reports of side effects of these drugs also include
pronounced hypertrichosis, pericardial effusions, and edema in treated patients124 One
report even noted coarsening of the facial features, reminiscent of Cantu syndrome, after 8
months treament with minoxidil125. It was subsequently recognized that one major action of
minoxidil is opening of KATP channels97,126,127, and this led us to note the parallels between
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the symptoms of minoxidil exposure and the features of Cantu syndrome, and to suggest the
possibility that Cantu syndrome might be the result of K channel hyperactivity112.
Teratogenic effects of minoxidil, including marked hypertrichosis, dysmorphic facial
features and low blood pressure have been reported in the offspring of a minoxidil-treated
mother128. In additional reported cases of minoxidil teratogenicity, one infant had
transposition of the great vessels and pulmonary bicuspid valvular stenosis leading to
neonatal death, and another infant had hypertrichosis that resolved over the first 3 months of
life129.

The two recent papers that describe specific mutations in the ABCC9 gene in a total of 25 of
31 Cantu syndrome patients110,113, definitively link the gene defect to the syndrome. All
reported patients had the typical Cantu syndrome phenotype (Table 2), but 6 of 31 patients
had no identifiable ABCC9 mutation suggesting that additional gene defects may be
involved. Previous studies of Cantu syndrome patients have provided no definitive
explanation of the underlying cause of the various features, and even now the realization of
SUR2 mutations as causal does not immediately provide explanations for all features. There
is strong evidence discussed below, for a physiologically important role of SUR2 in vascular
relaxation, such that persistence of the PDA in Cantu syndrome patients may be readily
explained as a consequence of maintained vessel dilation following birth. Patency of the
ductus arteriosus is controlled by many factors, the most important of which are relatively
low fetal oxygen tension, prostaglandin [PGE2] and prostacyclin [PGI2]) in the fetus. After
birth, the abrupt increase in oxygen tension and falling PGE2 and PGI2 levels lead to
inhibition of voltage-gated K channels and contraction of the smooth muscle fibers in the
ductus, resulting in wall thickening and lumen obliteration. Mechanisms of persistent PDA
are not clear130, but the enhancement of a K current in smooth muscle presents an obvious
potential explanation in Cantu syndrome patients. Altered vascular tone may also underlie
the edema and pericardial effusion, but the reason for cardiomegaly is not obvious.
Cardiomegaly reported in most cases of Cantu Syndrome is due to increased myocardial
mass (hypertrophy) with larger cardiac chambers but with normal systolic function, and this
does not fit the diagnostic criteria of dilated or hypertrophic cardiomyopathy131. As we
reported, cardiomegaly in two related Cantu syndrome cases has been associated with high
output failure112 and may well be a secondary response to reduced vascular tone132.
Similarly, the reason for osteochondrodysplasia and facial dysmorphology is not obvious
and the mechanism by which minoxidil causes hair growth has remained controversial133. It
has been speculated that by opening vascular K channels and dilation of blood vessels, the
supply of oxygen, blood and nutrients to the hair follicle is increased, which cause follicles
in the telogen phase to shed and be replaced by new thicker hairs in a new anagen phase.
However, there is also evidence that SUR2 isoforms are present in follicular dermal
papillae134 and while the new realization definitively ties the hair growth to an action on
KATP channels, it does not immediately prove where the action is.

Cardiovascular disease and KATP mutations: Insights from genetically
modified animals
Kir6.2 and SUR1 knockout animals exhibit complex cardiac phenotypes

Murine knockout models of each of the four KATP channel genes have been generated and
extensively analyzed. Knockout of Kir6.2 results in a loss of glucose-dependent insulin
secretion, modeling features of hyperinsulinism in humans135. Knockout of SUR1 reiterates
essentially the same phenotype as Kir6.2−/−, and again the major effects are in the pancreas.
Conversely (see next section), knockout of Kir6.1 or SUR2 leads to a vascular phenotype,
presumably due to loss of KATP channel activity in either vascular smooth muscle or
endothelium136,137.
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Cardiac sarcolemmal KATP channels are predominantly closed and do not contribute
significantly to the process of excitation-contraction coupling in physiological conditions
(except perhaps under adrenergic stimulation, see below), since application of sulfonylureas
generally has little or no effect on the cardiac action potential138. Accordingly, while Kir6.2
is the major cardiac Kir6 isoform, baseline ventricular action potential duration (APD) and
contractile function are unaffected in isolated ventricular myocytes from Kir6.2−/−

animals74,139,140. When metabolism is inhibited, the action potential can shorten markedly
and contraction can be inhibited as a result of KATP activation91,141,142. KATP activation
during ischemia is likely to be cardioprotective, since reduction of APD and contraction may
preserve ATP stores that would otherwise be consumed during the contractile cycle. In
support of this idea, treatment with the KATP opener pinacidil during ischemia increases
cellular ATP and energy stored as creatine phosphate143. AP shortening is absent in
Kir6.2−/− hearts, and the time to contractile failure is prolonged but the time to onset of rigor
contracture is reduced74. Diastolic Ca2+ overload, myocardial damage, and increased
mortality are also observed in isoproterenol challenged Kir6.2−/− myocytes144. In addition to
highlighting the acute protective effect of KATP activation, Kir6.2−/− animals show
increased mortality and exaggerated hypertrophy in response to pressure overload145,146,
and to mineralocorticoid/salt challenge147. Together, these studies suggest that loss of KATP,
by stopping the protective ‘unloading’ that KATP activation leads to, should tend to cause Ca
overload and perhaps hasten the transition to heart failure under stressed conditions.
However, two further studies seem to contradict a cardioprotective role. In these studies,
from independent groups, both SUR2- (SUR2−/−) and SUR1-knockout (SUR1−/−) mice were
found to be more tolerant of global ischemia-reperfusion than control mice, with reduced
infarct sizes84,148. Since the SUR2−/− mice have a marked reduction of ventricular
sarcolemmal KATP channels, the enhanced cardioprotection is opposite the expected
phenotype (i.e. impaired protection). Cardioprotection in SUR2−/− mice might conceivably
be due to the concomitant loss of the SUR2B component of vascular KATP channels, but
similar cardioprotection in SUR1−/− mice84 could not be explained by such a mechanism.

As noted above, no cardiac problems have been reported for individuals with loss of
function (LOF) or gain of function (GOF) mutations in Kir6.2 or SUR1, who suffer from
profound pancreatic problems (hyperinsulinism or neonatal diabetes, respectively). In this
regard, the lack of dramatic effects in both Kir6.2−/− and KATP overactive hearts (see below)
is consistent and, while it still does not answer the question of why this large potential
conductance is present in the heart, it really does seem to tell us that change of sarcolemmal
KATP channels may not be so critical.

Kir6.1/SUR2 knockouts highlight vascular roles
Mouse models in which the Kir6.1 and SUR2 genes have been ‘knocked-out’ highlight the
critical role of these subunits in the cardiovascular system, particularly in the coronary
circulation26,137. The cardiovascular phenotypes of Kir6.1−/− and SUR2−/− mice are similar,
and include baseline hypertension, coronary artery vasospasm and sudden cardiac death.
Electrocardiograms from both animals show ST segment elevation and atrioventricular (AV)
block, which may account for the sudden death. Importantly, SUR2−/− mice treated with the
Ca channel blocker nifedipine exhibit a reduction in coronary artery vasospasm, implicating
abnormally elevated [Ca2+]i due to loss of hyperpolarizing KATP current as causal in the
hypercontractility137. Collectively, these KATP-null mice recapitulate clinical features of the
human disorder of Prinzmetal (or variant) angina, but several studies have failed to
demonstrate any association of human coronary vasospasm or hypertension with LOF
mutations in Kir6.1 or SUR2149,150, even though linkage analysis indicates that there are
associated genes within the same locus as Kir6.1 and SUR2151.
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Kir6.1 transcripts are detected in heart, lung, brain, pancreas, and endothelium152 and SUR2
transcripts are found in multiple tissues, including cardiac and skeletal muscle (SUR2A)4,7,
brain (SUR2A) and endothelium (SUR2B),60. Thus, the possibility exists that the
cardiovascular phenotypes of Kir6.1−/− and SUR2−/− mice (or of Cantu syndrome patients),
reflect loss (or gain) of KATP in smooth muscle or other tissues153. A role for non-smooth
muscle KATP in cardiovascular homeostasis is supported by the finding that targeted
suppression of endothelial KATP (Kir6.1/SUR2B) by transgenesis results in an increase in
coronary perfusion pressure and a decrease in coronary blood flow64,68,152, a similar
phenotype to that observed in Kir6.1−/− mice26. Interestingly, release of the vasoconstrictor
endothelin-1 is increased by transgenic suppression of endothelial KATP, potentially
implicating an elevated level of circulating endothelin-1 as causal in the vasoconstriction65.
These studies raise the possibility of KATP-dependent paracrine signaling between
endothelial cells and overlying vascular smooth myocytes, with the endothelial KATP
regulating the release of endothelin-1. Transgenic restoration of VSM KATP currents by
specific expression of the SUR2B isoform in VSM of SUR2−/− mice, does not resolve the
coronary artery vasospasm, atrioventricular (AV) heart block, or sudden cardiac death
exhibited by SUR2−/− animals154, providing further support for a potential role of non-VSM
KATP in regulation of vascular tone.

Transgenic KATP GOF models
Given that sarcolemmal KATP channels are normally predominantly closed, we have long
argued that gain-of-function mutations are as likely, if not more likely, to be key drivers of
human disease as loss of function mutations155. To that end, we have generated multiple
GOF mouse models. The first, modeling Kir6.2 GOF clearly revealed the potential for such
GOF mutations to cause neonatal diabetes156 and led to the subsequent demonstration that
such mutations are indeed causal in human neonatal diabetes157. In parallel studies, we have
explored the potential for Kir6.2 GOF action in the heart, with considerably less emergent
clarity158-160. Although we introduce channels that are very ATP-insensitive, they still
remain closed under all but extreme circumstances, and cause no overt malfunction,
mirroring the human Kir6.2 GOF condition – neonatal diabetes with no cardiac
phenotype160. Curiously, we find that in ventricular myocytes from these animals there is a
dramatically enhanced Ca current,158 which may be some compensatory response to an
initial or local action potential shortening, and conceivably might be related to ‘high output’
heart failure that is seen in Cantu syndrome. These studies also reveal that overexpressing
the SUR1 isoform the myocardium has an effect to prolong the PR interval161, and that
when Kir6.2 GOF is expressed together with SUR1, second and third degree AV block,
progressing to ventricular and supra-ventricular arrhythmias and sudden death follows161.
This is accompanied in some cases by cardiac hypertrophy and in the most extreme cases,
causes cardiac malformation at the very earliest stages of embryonic cardiac
development162. In recombinant channels, SUR1-dependent channels are more sensitive to
metabolic activation than SUR2A-dependent channels163, and we conclude that these
pathologies are reflecting channel overactivity in some critical, but as yet unidentified, time-
window or region of the heart. These results highlight that KATP overactivity in heart muscle
can certainly be structurally and functionally detrimental, and may be modeling some of the
cardiac consequences of SUR2 overactivity in Cantu syndrome, although cardiac
hypertrophy and failure in Cantu syndrome patients is not obviously accompanied by
arrhythmias or other cellular defects.

Following the same rationale of exploring GOF models, we have embarked on generation of
a series of Kir6.1 and SUR2 GOF transgenic animals. Expression of Kir6.1 gain-of-function
mutants in smooth muscle leads to a reduction of systolic and diastolic blood pressures (Li,
A., Koster, J.C., Knutsen, R. and C.G. Nichols, unpublished), paralleling the effects of
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KCOs in human hypertensive patients. Conceivably, further study of these animals, as well
as of SUR2 GOF transgenic animals will reveal additional features that model Cantu
syndrome effects and permit testing of novel therapeutic approaches.

Potential for therapeutic modulation of cardiovascular KATP activity
There is tremendous potential for modulation of KATP channel activity in general and more
importantly perhaps, in a tissue-specific manner, since there is already a rich pharmacology,
not only of channel inhibitors but also channel openers (KCOs). KCOs have been used in
two major clinical settings: (1) to block insulin secretion in conditions of hyperinsulinema,
and (2) as antihypertensives. So far, clinical use of sulfonylureas has been limited to
treatment of type 2 diabetes, and there has been debate about negative cardiovascular
effects.

Minoxidil is reportedly the most active KCO at causing human hair growth, hence its
commercial use in topical hair restoration products164,165, and as discussed above, it appears
that most, if not all, of the effects of Cantu syndrome are replicated by high dose minoxidil,
including hypertrichosis, facial dysmorphology, and pericardial effusion128. Such features
have been reported for other KCOs; there is one report of pericardial effusion as a result of
diazoxide therapy166 and although not attributed to the drug by the authors, another reported
case of a patient on diazoxide who suffered from a pericardial effusion167. Interestingly, a
clinical trial for the use of nicorandil, as a SUR2A specific activator, in the setting of acute
MI actually reported lower rates of pericardial effusion than in untreated patients168.

Although there are certain dogmas in the literature regarding specificity of KCOs or
inhibitors, careful binding analyses performed on cloned SURs have revealed complexities
of binding and dependence on nucleotides which makes it difficult to predict in vivo
efficacies at different SUR targets. In addition, it is very clear from intact cell and excised
patch-clamp recordings that the ability of KCOs to activate KATP channel currents, depends
critically on the metabolic state of the intracellular milieu, making direct comparison
between different studies difficult169. The ability of diverse KCOs to lower blood pressure is
well recognized, leading to their clinical use in acute and refractory hypertensive settings.
Sulfonylureas inhibit KATP channels and have seen very widespread use as glucose lowering
agents in the type 2 diabetes. There is a wide therapeutic range, and the main recognized
side-effect is hypoglycemia, but there is a long-standing debate as to potential
cardiovascular side-effects. KATP channel inhibitory drugs have not reached clinical
acceptance in the cardiovascular arena, the expectation being that blockade of cardiac KATP
channels may be detrimental in conditions of myocardial ischemia, during which these
channels can open and are presumed protective as discussed above. This debate is still not
resolved170,171.

Given the new realization of the SUR2-dependent basis of Cantu syndrome, the opportunity
immediately presents itself for the use of KATP channel inhibitors as a potential ‘magic-
bullet’ therapy, as they have proven in the treatment of Kir6.2- or SUR1-dependent neonatal
diabetes172. It is generally accepted that most sulfonylureas are physiologically more potent
inhibitors of SUR1-dependent KATP than SUR2A-dependent channels, although there has
been no careful comparison of effect on SUR1-versus SUR2B-dependent channels. There
has been a long-standing dogma that the drug HMR1098 is a cardiac specific KATP
blocker173-176, although several studies including our recent direct head-to-head comparison
confirm that it is also a more effective blocker of SUR1-dependent than SUR2A-dependent
KATP channels34,177,178. Relative efficacies of HMR1098 versus sulfonylureas in specific
physiological conditions may be important to understand, since it is conceivable that specific
KATP inhibitors may counteract the symptoms of Cantu syndrome, without significantly
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affecting blood glucose control, a key issue if KATP channel inhibition is to be a viable
treatment for the disease.

Further implications and future prospects
In spite of almost 30 years of research, we have remained ‘largely in the dark regarding the
true physiological determinants, and relevance of sarcolemmal KATP activity’179, until very
recently. We now realize that the subunit make-up of sarcolemmal KATP channels can be far
more complex and labile than originally thought16, and together with the existence of
mitoKATP, it may be reasonable to consider KATP channels as a family of channels180. The
details of the involvement of sarcolemmal versus mitochondrial KATP channels in
cardiovascular physiology and pathology remain unclear, but the growing association of
Kir6.1 and SUR2 variants with specific electrical and contractile derangements and the new
clear association with a complex syndrome firmly establish the importance of appropriate
activity in normal function of the heart and vasculature. In addition to consideration of
potential therapeutic implications of these new findings, we can also consider the broader
mechanistic implications. As discussed above, key features of Cantu syndrome are
consistent with activation of SUR2B-dependent KATP channels in the vasculature, leading to
vasorelaxation. In this case, the likely associated Kir channel subunit is Kir6.1 (Fig. 1D) and
we might reasonably suggest that GOF mutations in Kir6.1 should also be associated with
these, if not all, symptoms of Cantu syndrome, paralleling the similar neonatal diabetic
phenotypes of Kir6.2 and SUR1 GOF mutations. A purported GOF Kir6.1 mutation is
already associated with the J-wave syndrome100-103, and this leads to a clear inconsistency:
neither J-wave abnormalities nor other arrhythmias have been reported in Cantu syndrome
patients, and none of the Cantu syndrome features have yet been reported for ERS patients.
It remains conceivable that Cantu syndrome features are not due to enhanced cell membrane
KATP activity, but instead are the result of Kir6-independent – i.e. mitochondrial - SUR2
activity. Also unexplained thus far is how opposing effects of LOF mutations108,109 versus
GOF mutations110,113 in SUR2 could give rise to myocardial electrical derangements in the
former case, but vascular derangements in the second.

Finally, we should recognize that the monogenic disease-associated KATP mutations, which
cause relatively severe changes in channel function, are likely to represent only the ‘tip of
the iceberg’ when it come to the disease-promoting effects of change in protein activity.
Further studies of patients with some or all symptoms of Cantu syndrome will be facilitated
by efforts to bring such patients together (www.cantusyndrome.org) and will no doubt
reveal new mutations in the KATP subunits and perhaps in proteins that regulate KATP
synthesis, trafficking, or location. We do not yet know which of the Cantu syndrome
features are the most penetrant, and hence which of these features might appear in isolation,
as the severity of the effect of a specific mutation is reduced. If one or other of the affected
cardiovascular functions is the most sensitive to SUR2 GOF, then we may find far more
cases of individuals with GOF variants linked to specific features such as PDA, pericardial
effusion, and cardiomegaly with or without high output cardiac failure. It may require the
detection of these patients with newer cardiac imaging modalities such as strain imaging to
study the heterogeneity of myocardial fiber mass and orientation, or to detect abnormal
electrical activation sequences at subclinical levels that may exist with SUR2 GOF
mutations. We are only just beginning to recognize the cellular control mechanisms that
regulate KATP channel subunit synthesis, trafficking and degradation181. Any alterations in
such mechanisms, whether genetic or environmentally based, may also give rise to disease
phenotypes similar to those resulting from the mutations discussed above, and may
ultimately benefit therapeutically from the unique pharmacology of the sulfonylurea
receptors.
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Non-standard abbreviations

KATP ATP-sensitive potassium channel

ABC ATP-binding cassette family of proteins

KCNJ Inward rectifier K channel gene family

Kir1, Kir6 Pore-forming subunits of KATP channels

M1, M2 transmembrane helices of Kir6 subunits

TMD1, TMD2 Transmembrane domains of SUR subunits

NBF1, NBF2 Nucelotide binding folds of SUR subunits

FRET Fluorescence resonance energy transfer

VSM Vascular smooth muscle

mitoKATP Mitochondrial KATP channel

mABC-1 mitochondrial ATP-binding cassette protein-1

ROMK protein product of the KCNJ1 gene

BrS Brugada syndrome

ERS Early repolarization syndrome

AF Atrial fibrillation

APD Action potential duration

LOF Loss of function

GOF Gain of function

AV Atrioventricular

KCO Potassium channel opener
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Fig. 1.
Cardiovascular KATP channels (A) Kir6 subunits generate the channel pore, SUR subunits
serve the regulatory role, each channel being a functional octamer of 4 Kir6 subunits and 4
SUR subunits. (B) The metabolically controlled gate of the channel is located at the
cytoplasmic end of the inner cavity. ATP binds to Kir6 subunits and this provides the
energetic push to channel closure. MgATP binds to the ATP-binding sites (ABSs) formed at
the NBF1-NBF2 interface on SUR subunits. ATP hydrolysis results in a conformational
‘activated’ state that is transduced to ‘over-ride’ ATP inhibition. The ‘activated state’
persists through ADP dissociation, and can be maintained by ADP rebinding. In addition,
PIP2 interaction at a site near the ATP inhibitory site also provides an energetic pull to open
channels, and sulfonylureas (SU) or K channel openers (KCO), interacting with the SUR
subunit within the membrane, respectively cause channel closure or opening. (C) Human
KATP gene structure. ABCC8 (SUR1) and KCNJ11 (Kir6.2) are immediately adjacent on
chromosome 11p, whereas ABCC9 (SUR2) and KCNJ8 (Kir6.1) are immediately adjacent
on chromosome 12. (D) KATP channel subunit distribution in the cardiovascular system.
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Table 1

REPORTED ASSOCIATION OF DISEASE WITH KATP CHANNEL MUTATIONS

Gene Clinical
condition

Features # of affected
individuals

Refs

KCNJ8 (Kir6.1) J-wave
syndrome

S422L mutation. Reportedly gain-offunction
(GOF). Abnormalities in the Jpoint
of the ECG, and including
Brugada syndrome (BrS) and early
repolarization syndrome (ERS),
including VF and AF

9 100-102

SIDS In-frame deletion (E332del) and lossof-
function mutation (V346I). through
as yet unexplained mechanisms.

2 104

KCNJ11 (Kir6.2) Neonatal
diabetes

Multiple GOF mutations cause
inhibition of insulin secretion. No
cardiovascular phenotype

>100 182

Type 2 diabetes E23K variant, mild GOF, associated
with T2DM, and potentially associated
with HF

30%
Caucasians

183-188

Congenital
hyperinsulinism

LOF mutations cause hypersecretion
of insulin. No cardiovascular
phenotype

>10 98,182

ABCC8 (SUR1) Neonatal
diabetes

Multiple GOF mutations cause
inhibition of insulin secretion. No
cardiovascular phenotype

>100 182

Congenital
hyperin

Multiple LOF mutations cause
hypersecretion of insulin. No
cardiovascular phenotype

>100 98,182

ABCC9 (SUR2) AF Isolated case of LOF mutation
assicated with AF originating in the
vein of Marshal

1 109

Idiopathic dilated
cardiomyopathy

Two cases with distinct LOF mutations
associated with heart failure due to
idiopathic dilated cardiomyopathy

2 108

Cantu syndrome GOF mutations associated with
complex multi-organ disease (See
Table 2)

25 110,113
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Table 2

MAJOR CLINICAL FEATURES OF CANTU SYNDROME

Neonatal Features

 Neonatal macrosomia

 History of maternal polyhydramnios

 Macrocephaly

 Occasional slow postnatal growth and short stature later in life

Craniofacial dysmorphology

Coarse facial appearance (can be confused with a storage disoder)

 Epicanthal folds

 Broad nasal bridge

 Anteverted nostrils

 Long philtrum

 Wide mouth with full lips

 Macroglossia

 High or narrow palate

 Gingival hyperplasia

 Anterior open bite

Hair

Congenital generalized hirsutism

 Thick scalp hair

 Thick and/or curly eyelashes

 Excessive hair growth on forehead, face, back and limbs

Cardiovascular

 Cardiomegaly

 Concentric hypertrophy of the ventricles

 Normal ventricular contractility

 Pericardial effusion

 Pulmonary hypertension

 Partial pulmonary venous obstruction

 Mitral valve regurgitation

 Congenital anomalies

  Patent ductus arteriosus

  Bicuspid and/or stenotic aortic valve

Skeletal abnormalities

 Thickened calvarium

 Narrow shoulders and thorax

 Pectus carinatum

 Broad ribs

 Platyspondyly and ovoid vertebral bodies

 Hypoplastic ischium and pubic bones

 Erlenmeyer-flask-like long bones with metaphyseal flaring
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 Narrow obturator foramen

 Coxa vara

 Scoliosis

 Osteopenia

 Delayed bone age

 Hypoplastic ischium and pubic bones

 Erlenmeyer-flask-like long bones with metaphyseal flaring

 Narrow obturator foramen

 Coxa vara

 Scoliosis

 Osteopenia

 Delayed bone age

Skin and joints

 Loose and/or wrinkled skin, especially in neonates

 Deep palmar and plantar creases

 Persistent fingertip pads

 Hyperextensibility of joints

Lymphatic system

 Lymphedema, onset usually in adolescence or adulthood

Gastrointestinal

 Pyloric stenosis

 Increased risk for upper gastrointestinal bleeding

Other reported features

 Immune dysfunction or recurrent infections

 Umbilical hernia

 Renal anomalies

 Genital anomalies
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