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Abstract
Epidemiologic methods are well established for investigating the association of a predictor of
interest and disease status in the presence of covariates also associated with disease. There is less
consensus on how to handle covariates when the goal is to evaluate the increment in prediction
performance gained by a new marker when a set of predictors already exists. We distinguish
between adjusting for covariates and joint modeling of disease risk in this context. We show that
adjustment versus joint modeling are distinct concepts, and we describe the specific conditions
where they are the same. We also discuss the concept of interaction among variables and describe
a notion of interaction that is relevant to prediction performance. We conclude with a discussion
of the most appropriate methods for evaluating new biomarkers in the presence of existing
predictors.

Historically, risk prediction in medicine was limited to simple models using perhaps just a
single predictor such as age or family history. With the advent of genomics, proteomics, and
metabalomics, we are now in an age of high-throughput biology. Corresponding to the
increase in the kinds and amount of data available on patients, there is a surge of interest in
predictive models. With the large numbers of potentially predictive markers that are
available, risk modeling is inevitably multivariate. Therefore, one must consider the role of
covariates in predictive models. However, in contrast to therapeutic and etiologic studies,
concepts of covariate adjustment are not well established when the goal is evaluating
classification or prediction performance.1

This article addresses questions related to assessing the improvement in prediction
performance gained by using a new biomarker to make predictions in addition to existing
predictors. We call this the incremental value of the biomarker. We will make use of
receiver operating curves, also known as ROC curves, to assess prediction performance, and
we will use AUC to denote “area under the ROC curve.”
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As a motivating example, consider the problem of evaluating the capacity of newly
discovered genetic markers to improve prediction for breast cancer. Making accurate
predictions is clinically important because, for example, women at low risk could be spared
the expense, discomfort, stress, and risk of false positives associated with screening
mammography. On the other hand, women at high risk of breast cancer are candidates for
prophylactic tamoxifen therapy. However, taking tamoxifen increases risks of endometrial
cancer, stroke, and pulmonary embolism, and so only women who are clearly at high risk of
breast cancer should be advised to take tamoxifen for prevention.

One issue in studying any predictor of breast cancer is how to consider age. A woman’s age
is very predictive of breast cancer risk. Gail2 notes the fallacy in ignoring age when
considering new markers for breast cancer: “Some investigators compare case patients and
control subjects over large age ranges. Because age is a strong predictor of breast cancer risk
and is included in all risk models and because case patients tend to be older than control
subjects, doing so increases the AUC value.”

Gail2 investigated whether seven common, recently identified single-nucleotide
polymorphisms (SNPs) could improve breast cancer prediction over existing models. Age-
matched data allowed Gail to adjust for the predictive ability of age by examining the
predictive ability of the SNPs in cases and controls of approximately the same age. In other
words, the strategy was to evaluate the new predictors by stratifying on the existing
predictor (in this context, age). Gail’s measure of predictive ability was the area under the
age-stratified ROC curves. This amounts to adjusting the ROC curve for age.1 In contrast,
Wacholder et al3 took a fundamentally different approach; they examined the classification
performance of risk models that incorporated novel markers of ten genetic variants, as well
as traditional risk factors, including age. The researchers calculated the ROC curve for the
joint risk model and then compared it with the ROC curve for the risk model without the
addition of genetic variants.

The different analytic strategies of Gail2 and Wacholer et al3 raise many interesting
questions. How do the AUC values for the new markers evaluated in groups that are
homogeneous with respect to the existing predictors2 relate to the change in the AUC by
adding the new markers to an existing risk set of predictors?3 What do we learn about the
value of the new marker for the overall population, which includes women of different ages?
We explore these methodological questions in this paper. We then contrast traditional
concepts of covariate adjustment in predictive modeling with covariate adjustment in
assessing the predictive performance of a biomarker. The former entails joint prediction
using an existing marker X and a new marker Y , whereas the latter evaluates the
performance of Y in groups homogeneous with respect to X. We describe the very limited
conditions under which the ROC curve for the joint risk model is the same as the covariate
adjusted ROC curve. We then discuss the concept of interaction in the context of evaluating
the predictive performance of a marker. We demonstrate that examining interaction in terms
of odds ratios is not relevant to whether there is an interaction for predictive performance.
Next we discuss the implications of the ideas presented for predictive modeling. We explore
these ideas further in a dataset of predictors for prostate cancer and a dataset of predictors of
renal artery stenosis.

Covariate Adjustment versus Joint Modeling
Consider a simplified epidemiologic study. There is a binary variable D indicating disease, a
variable X known to be associated with disease, and an additional variable of interest Y . In
our example, D is occurence of breast cancer within 5 years, X is age, and Y are SNPs. We
might model the risk of disease using logistic regression:
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(1)

In traditional epidemiology there are two complementary ways in which a model such as
Equation (1) is interpreted. First, we can say β2 summarizes the association between Y and
the log odds of disease for subjects with the same value of X. We call this the covariate
adjustment interpretation. Covariate adjustment corresponds to the concept of stratifying
subjects according to a variable, in this case stratifying by X. A second interpretation is that
of joint prediction – model (1) contains both X and Y is therefore a joint model for the log
odds of disease using X and Y as predictors.

We therefore argue that in epidemiology the concepts of adjusting for covariates and of joint
modeling are at least partially conflated because the same model can be used for both.
However, for discriminating two classes of patients, cases (D = 1) and controls (D = 0), we
next show that stratification and joint modeling are distinct concepts.

ROC curves are useful and popular tools for summarizing the ability of a marker or a risk
score to discriminate cases and controls. For a single continuous predictor Y, ROCY()
describes the ability of Y to discriminate between cases and controls by plotting the true
positive rate P(Y > y|D = 1) against the false positive rate P(Y > y|D = 0). ROCX,Y() refers
to the ROC curve for a predictive model that uses both X and Y. For joint prediction, it is
known that the optimal way to combine X and Y for discrimination is to predict disease
based on risk(X,Y) ≡ P(D = 1|X,Y ).4–6 That is, the ROC curve for the combination defined
by risk(X,Y) has the best ROC curve compared with all other possible combinations of X
and Y . Therefore, we write ROCX,Y() for the ROC curve for the risk function,
ROCrisk(X,Y)(). In contrast the curve ROCY|X() is the ROC curve for Y stratified on X. It
describes the ability of Y to discriminate between cases and controls in sub-populations that
are homogeneous with respect to X. When ROCY|X() does not depend on X, it is called the
covariate-adjusted ROC curve. Gail’s analysis addresses the covariate adjusted ROC curve,
ROCY|X(), while Wacholder et al study the joint ROC curve, ROCX,Y().2–3

Another way to understand the difference between ROCX,Y() and ROCY|X() is to consider
how they might be estimated using a tool such as model (1). To estimate ROCX,Y(), one
would take a sample of patients for which X,Y, and D are known, use model (1) to estimate
risks of disease, and then estimate the ROC curve that summarizes the overlap in these
estimated risks between diseased and non-diseased persons. In contrast, to estimate
ROCY|X() one must condition on X. After fitting model (1), one would take a sample of
patients with the same value of X, use model (1) to get estimated risks based on the subjects’
Y values and their shared value of X. One could then make an empirical ROC curve based
on these estimated risks. Averaging over X gives the covariate adjusted ROC curve.

Despite the fact that the concepts of covariate adjustment and joint modeling are intertwined
when studying associations between disease and predictors, ROCX,Y = ROCY|X only in
some very specific cases. We present Example 1 to provide intuition before stating a general
result.

Example 1. We present an example where there are two predictors of disease, X and Y , and
show that ROCX,Y() ≠ ROCY|X(). In this example, X is a binary predictor. For concreteness
let X represent two categories of age, say, with X=0 for younger subjects and X=1 for older
subjects. Let the distribution of the new marker Y be as follows:
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The top two panels of Figure 1 illustrate the distribution of Y. Let p0 = P(D = 1|X = 0) and
p1 = P(D = 1|X = 1) be the prevalences of disease in the younger and older sub-populations,
and let q = P(X = 1) be the proportion of subjects in the population that are in the older age
category.

ROCY|X can be computed simply by conditioning on X. It is obvious that ROCY|X=0 =
ROCY|X=1, which we write as AROC, because in both cases the ROC curve comes from the
overlap between two unit-variance normal distributions with a difference of two in their
means.

ROCX,Y is computed from risk(X,Y) ≡ P(D = 1|X,Y). For this simple model, Bayes’
theorem gives formulas for these risks as a function of X and Y:

It can be shown algebraically that ROCX,Y() = ROCY|X() if and only if p0 = p1. This also
follows from the general result proved in the next subsection. In other words, the ROC curve
for the joint prediction is the same as the ROC curve for Y adjusted for X if and only if X is
not a risk factor. If X is a risk factor (i.e. p0 ≠ p1), ROCX,Y and ROCY|X are different curves.

Figures 2 and 3 show adjusted and unadjusted ROC curves for different values of p0, p1, and
q. Figure 2 shows an example where p0 = p1; the covariate-adjusted curves ROCY|X and
joint ROC curve ROCY,X are the same. In contrast, Figure 3 shows an example where p0 ≠
p1. In this case ROCY,X > ROCY|X. An intuitive explanation for the difference is that, in the
first example, knowing X tells us how to interpret Y, but does not provide any independent
information about disease status. This is a case where we might say “X calibrates Y”. In the
second example, X provides independent information about disease status in addition to
telling us how to interpret Y.

A General Result about ROCX,Y and ROCY|X. The next result shows that in order for the
joint and covariate adjusted ROC curves to be equal, X cannot be informative of disease
status marginally. Moreover, the role of X in the joint risk model can at most be to calibrate
Y. In particular, we let W = FD̄,X(Y), where FD̄,x is the cumulative distribution of Y in the
population of controls with X = x. Huang and Pepe7 use the term “covariate-specific
percentile value” for 100 × W, which refers to the fact that Y is transformed to a percentile
according to the distribution of Y in the reference population with D = 0 and X = x. Recall
that we use the notion of a covariate-adjusted ROC curve when the conditional (or stratified)
ROC curves, ROCY|X() are the same across X values (or strata). In this setting we have the
following result.

Result 1. Let ROCY|X be the same for all X. Then we have the following equivalences.

(2)

(3)

(4)
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Proof of Result 1. We prove the result for continuous Y with common support for Y in case
and control populations. Janes and Pepe8 showed that the covariate-adjusted ROC curve is
the same as the ROC curve for W, written ROCW(). Also, because FD̄,X() is a strictly
increasing function, P(D = 1|X,Y) = P(D = 1|X,W), and therefore the ROC curve for (X,Y)
is the same as that for (X,W). We therefore rewrite (2) as

(5)

By the lemma in the Appendix, (5) implies that

and therefore (3) holds. In the reverse direction it is obvious that (3) implies (5), which is
equivalent to (2).

Bayes’ theorem yields the identity

(6)

where f denotes the probability density of W. The distribution of W conditional on X is
uniform (0,1) in controls. So, f(W|D = 0,X) does not depend on X. Neither does f(W|D =
1,X) depend on X because, according to Janes and Pepe,8 the cumulative distribution of 1 −
W given D = 1 and X is the covariate-adjusted ROC curve, which we have assumed does not
depend on X. Therefore, neither f(W|D = 1,X) nor f(W|D = 0,X) depend on X. It follows that
if P(D = 1|X,W) does not depend on X, then neither does P(D = 1|X), and vice versa. In
other words, (3) holds if and only if (4) holds.

We emphasize that if X is not useful for prediction marginally, it may still have a role in a
joint risk model. In particular, X will be useful if X calibrates Y . Example 1 demonstrates
this phenomenon. The equivalence between (3) and (4) under the assumption that there is a
single stratified ROC curve states this formally and appears to be a new, general, and
interesting result.

Corollary 1. Let ROCY|X be the same for all X and suppose P(D = 1|X) ≠ P(D = 1) for some
X. Then ROCX,Y(·) ≥ ROCY|X(·).

Proof of Corollary 1. As mentioned in the proof of Result 1, ROCY|X(·) = ROCW(·) where
W = FD̄,X(Y).8 On the other hand, ROCX,Y(·) ≡ ROCrisk(X,Y)(·) is known to be the optimal
combination of X and Y for predicting disease: for a given false-positive rate f, ROCX,Y(f)
dominates any other combination of X and Y for predicting D.4–6 This implies ROCX,Y(·) ≥
ROCW(·), because W refers to a particular way of combining X and Y.

Concepts of Interactions among Predictors
In any context in which a statistical model is used with multiple predictors, the possibility of
interactions among predictors can arise. What precisely one means when one says that two
variables “interact” depends on the context, and the most appropriate definition of
“interaction” is always context-dependent.9 For many researchers who work in
epidemiology and often use logistic regression models, the phrase “X and Y interact” means
that the odds ratio for Y depends on X (ORY|X varies with X). However, this is not the most
appropriate definition of interaction when discriminating between cases and controls.
Rather, a more relevant notion of interaction is to say that X and Y interact if ROCY|X varies
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with X. Examples 2 and 3 in this section demonstrate that these notions of interaction are not
the same.

Example 2: ORY|X depends on X; ROCY|X does not. Consider the following variation on
the data model in Example 1. When X = 0 the distribution of Y is exactly the same as
Example 1. The bottom panel of Figure 1 shows the distribution of Y when X = 1.

ROCY|X is the same as in Example 1 and, in particular, does not depend on X: ROCY|X=0 =
ROCY|X=1. Note that for X = 1 the larger separation in the means of the distribution of Y for
cases and controls is exactly compensated for by the larger variability.10,p.82

However, the odds ratios do depend on X in this example. To see this, we use Bayes’
theorem to calculate

logitP(D = 1|Y,X = 0) = 2Y − 2 + logit(p0), so ORY|X=0 = exp(2) while

logitP(D = 1|Y,X = 1) = Y − 2 + logit(p1), so ORY|X=1 = exp(1).

Observe in this example that, according to Result 1, if X is not marginally predictive then
the role of X in the risk model is only to calibrate Y . However, if X is marginally predictive
of D then the joint model will involve additional effects of X on risk and the ROC curve for
the joint risk model will be higher than that of the common stratified ROC curve.

Example 3: ROCY|X depends on X; ORY|X does not. Let X have a Bernoulli distribution

with . Let Y ~ N(X,1). Let the risk of disease follow a logistic model:

(7)

We simulated X and Y values, used model (7) to calculate risks of disease, and simulated
disease status based on these risks. Figure 4 shows ROCX,Y and ROCY|X. Note that
ROCY|X=0 ≠ ROCY|X=1. Model (7) makes it obvious that ORY|X does not depend on X.

Implications for Predictive Models
Result 1 says that ROCX,Y() and ROCY|X() are distinct curves except under special
circumstances. Therefore, one should use the curve appropriate to the task at hand.

One type of application is when the new marker Y is envisioned to be used in conjunction
with X in the entire population for which prediction is performed. In such a setting,
ROCX,Y() is the appropriate curve to consider and should be compared with ROCX().
ROCY|X() should not be used for this purpose. A limited exception to this conclusion is that
ROCY|X() can be used to test the null hypothesis that the incremental value of Y is 0. This is
because ROCY|X() differs from the 45-degree line if and only if ROCX,Y() > ROCX().11

However, hypothesis testing is of questionable value because the real challenge is to identify
markers that improve prediction by a clinically useful amount.

In other situations, ROCY|X() may be the curve of interest. Suppose X is considered to
define clinically distinct sub-groups of the population, or X can clearly define a small
proportion of the population as very high (or low) risk. Researchers may envision that the
new marker Y will be used differently in different sub-populations, or will be used only in
certain sub-populations defined by X. Consider the breast cancer example, and suppose X
indicates whether a subject has a mutation in certain genes BRCA1 or BRCA2. In this case,
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X identifies a small proportion of women at much higher risk of breast cancer, and one may
wish to consider the predictive ability of a marker Y separately in the two groups defined by
X.

In the previous section we distinguished two notions of interaction: ORY|X depends on X vs.
ROCY|X depends on X. What are the implications of this distinction for predictive
modeling? Suppose risks are estimated with a regression model and one finds evidence to
support an interaction term in the model. Returning to Example 2, the true risk model can be
written:

(8)

In other words, on the logit scale the risks are a linear combination of X, Y , and X · Y. We
emphasize that it is appropriate (and potentially important) to include the interaction term in
modeling the risks. The point is simply that, just because there is an interaction term in the
regression model, this does not mean that Y has different predictive capacity in the sub-
populations defined by X. Furthermore, an example in the next section shows that a large
interaction in terms of odds ratios can have no impact on discriminating between cases and
controls.

Application to Prostate Cancer and Renal Artery Stenosis
In this section we examine real data to illustrate some of the ideas discussed in this paper.
The first dataset is from a prospective study of 557 men scheduled for prostate biopsy
reported by Deras and colleagues.12 Thirty-five percent of men had a positive biopsy. The
second dataset is from a study of 426 subjects, first reported by Janssens and colleagues,13

wherein 23% had the outcome, stenosis of the renal artery. Both datasets contain multiple
predictors, but to illustrate the ideas we will limit ourselves to two predictors at a time. Our
intent is to illustrate key concepts and so we will not be concerned with statistical
significance.

In the prostate cancer dataset, we consider the binary variable indicating whether a man has
a history of previous biopsy (HxBx) and the continuous variable lPCA3, which is the
expression of a particular gene, PCA3, on the log scale. HxBx is predictive on its own, with
a diagnosis of cancer in 44% of those without a history of biopsy and 27% of those with a
previous prostate biopsy. Figure 5 suggests that the predictive ability of lPCA3 is very
similar in men with and without a history of biopsy for prostate cancer; this observation is
confirmed by the ROC curves for lPCA3 stratified on HxBx (left panel of Figure 6).
Corollary 1 above says that ROCHxBx,lPCA3 should be greater than ROClPC3|HxBx because
HxBx is marginally predictive. The right panel of Figure 6 shows that this is approximately
the case, because the joint ROC curve for HxBx and lPCA3 dominates the AROC, except at
small false-positive rates, where the densities show lPCA3 is a better predictor for men
without history of biopsy. The joint risks of prostate cancer using HxBx and lPCA3 were
estimated using an additive logistic regression model. The fact that ROCHxBx,lPCA3 is not
strictly greater than ROClPC3|HxBx does not contradict the theoretical result, but rather
reflects the fact that the fitted model is an approximation of the true risk function.

In the renal artery stenosis data, suppose that sex and log serum creatinine (lSCr) are the
candidate predictors. The sex variable on its own is essentially useless as a predictor because
the prevalence of renal artery stenosis in men and women is almost identical (24% in women
and 22% in men). However, Figure 7 suggests that sex will be a useful predictor in
combination with lSCr because a subject’s sex helps one interpret the lSCr measurement.
Indeed, if we use lSCr by itself, we can discriminate cases and controls with an AUC of
0.71. We modeled risk of renal artery stenosis with logistic regression using an additive
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model and both lSCR and sex as predictors. Using the joint model, the AUC increases to
0.75. This illustrates another idea presented in the second section above – that a variable
with no predictive capacity on its own can still be useful in a joint prediction model.

Another interesting example is to consider lSCr along with the binary predictor indicating
whether a patient has vascular disease (V). If we consider lSCr as a predictor in patients with
and without vascular disease, the predictive capacity is clearly different, with an AUC of
0.73 in patients with vascular disease and an AUC of 0.61 in patients without vascular
disease (Figure 8). In this sense, there is an interaction between lSCr and V for
discriminating cases from controls. If we consider a logistic regression model, the
interaction term is substantial:

(9)

The odds ratio for lSCr in patients without vascular disease is 1.50 (ORlSCr|V=0 = 1.50); in
patients with vascular disease the odds ratio is 2.62 (ORlSCr|V=1 = 2.62). Here, there are
interactions both in the risk model and in the performance of the marker. Interestingly,
although one might suspect that including the interaction term when modeling risks will
improve prediction performance, in fact it has very little impact. Figure 8 shows that the
AUC for a joint model without interaction is 0.752 while including an interaction increases
it only to 0.755.

Discussion
We have discussed covariate adjustment, joint modelling, and interaction in the context of
evaluating biomarkers for prediction and classification. First, we clarified the difference
between incorporating a new predictor in a risk model that already includes established
predictors, and eliminating the effect of existing predictors by adjusting for them. In
particular, ROC curves for a risk model that incorporates a new predictor with existing
predictors are almost never the same as ROC curves for the new predictor adjusted for
existing predictors. These are equal only when the covariate has no marginal association
with disease. This contrasts with the notion that covariate adjustment and joint modelling
can be handled within the framework of a single risk model. Second, we contrasted notions
of interaction in a classical epidemiologic context and in the context of assessing predictive
performance. In epidemiology, Y and X are usually said to interact if there is evidence that
ORY|X varies with X. In prediction performance assessment, a more relevant notion of
interaction is whether ROCY|X varies with X. We demonstrated that these notions of
interaction are distinct.

Note that ROC regression methods can be used to assess the evidence that the predictive
capacity of a marker Y varies with a covariate X.14 These methods also provide a way to
evaluate the assumption of a single adjusted ROC curve. For example, Janes, Longton, and
Pepe15 model

(10)

where f is the false-positive rate axis and ROCY|X(f) is the corresponding true-positive rate.
They test whether α2 = 0. Software to implement ROC regression methods is readily
available15. (See the paper by Cai and Pepe16 for more general semi-parametric modeling
techniques.)

Questions of study design warrant particular attention because study design determines what
the data are useful for. An especially important issue in study design is matching. Typically,
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when cases and controls are matched on an existing predictor X, then the incremental value
of Y cannot be assessed because we cannot derive P(D = 1|X,Y) and consequently cannot
estimate ROCX,Y(·).17 Therefore, matched data present additional challenges and, as always,
investigators should give serious consideration before choosing a matched design.

While we have focused on ROC curves as a convenient framework for discussion, we do not
mean to imply that ROC curves are the only useful summary of a risk model, or even the
most important summary. Different metrics and summaries have different merits, and the
most appropriate metrics depend on the context.18–21
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Appendix: Lemma for Result 1
Lemma: ROCX,Y(·) = ROCX(·) ⇔ P(D = 1|X,Y) = P(D = 1|X) with probability 1.

Proof: We need to prove the lemma only in the forward direction as the other direction is
obvious. We first note that ROCX,Y(·) = ROCX(·) implies that the distribution of risk(X,Y)
is equal to the distribution of risk(X). This holds because the distributions of risk(X,Y) and
risk(X) are also known as the predictiveness cures for risk(X,Y) and risk(X), and it was
shown by Huang and Pepe? that a predictiveness curve can be written in terms of the
corresponding ROC curve and the prevalence. Equality of ROC curves therefore implies
equality of predictiveness curves. It follows that var(risk(X,Y)) = var(risk(X)) and
E(risk(X,Y)) = E(risk(X)). Moreover, because E[risk(X,Y)|X] = risk(X), we have
E(risk(X,Y)risk(X)) = E(risk(X))2. Now consider

which implies that

(11)

with probability 1.
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Figure 1.
The distribution of Y for Examples 1 and 2.
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Figure 2.
ROC curves for Example 1. ROCX,Y = ROCY|X whenever p0 = p1, regardless of q. In this
figure, p0 = p1 = 0.1, q = 0.2.
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Figure 3.
ROC curves for Example 1. ROCX,Y > ROCY|X whenever p0 ≠ p1. In this figure, p0 = 0.4,
p1 = 0.1, q = 0.5.
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Figure 4.
ROC curves for Example 3. ROCY|X can depend on X in some settings where ORY|X does
not depend on X.
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Figure 5.
The distribution of Log PCA3 among cases and controls for subjects with and without a
history of biopsy.
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Figure 6.
Prediction Using History of Biopsy (HxBx) and log expression of PCA3 (lPCA3).
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Figure 7.
Distribution of log serum creatinine for men and women, cases and controls.
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Figure 8.
ROC curves where V indicates vascular disease and lSCr is log serum creatinine. ROCV,lSCr
is based on estimating risks using logistic regression without an interaction term; ROCV*lSCr
is based on estimating risks using logistic regression with an interaction term as in Equation
(9)
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