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Introduction
Chronic lymphocytic leukemia (CLL) is the most common leukemia in the Western world.
An often indolent lymphoproliferative disorder, CLL is characterized by the progressive
accumulation of monoclonal, small, mature-appearing CD5+ B-cells in the peripheral blood,
bone marrow and secondary lymphoid organs.[1] With the notable exception of allogeneic
stem cell transplantation, CLL is currently an incurable disease, despite the fact that good
initial responses to chemoimmunotherapy are obtained, which prolong overall survival.[2]
Current treatment modalities appear to eradicate malignant CLL cells less efficiently in the
bone marrow and lymph nodes than in peripheral blood. Thus, patients who initially achieve
a remission will eventually develop recurrent disease. Moreover, the differential response of
the disease in different anatomic locations indicates a significant role of the tissue
microenvironment in supporting CLL cell survival and enabling them to evade the toxic
effects of chemotherapy.

Recent work has demonstrated that the trafficking, survival and proliferation of CLL cells is
tightly regulated by the surrounding tissue microenvironment (Figure 1). This conclusion is
bolstered by several lines of evidence. When cultured in vitro, CLL cells rapidly undergo
apoptosis, but they can be temporarily rescued from programmed cell death by contact with
stromal cells. Stromal cells are also known to confer a protective effect against
chemotherapy-induced apoptosis.[3, 4] Additionally, there are differences in the
characteristics of CLL cells in the various tissue compartments. CLL cells in the peripheral
blood are arrested in G0/G1 phase of the cell cycle [5] and display features that are
consistent with a defect in programmed cell death and prolonged in vivo survival [1].
Previously, this observation was thought to suggest that CLL is a malignancy of quiescent
non-proliferating cells. However, recent data on telomere length[6] and in vivo measurement
of CLL cell kinetics demonstrated that CLL cells exhibit a more prominent turnover than
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previously appreciated [7]. Patients with a higher proliferation rate are more likely to have
active disease and clinical progression [7, 8]. This apparent discrepancy is due to the fact
that proliferation of CLL cells takes place primarily in the secondary lymphoid tissues,
although it also occurs to a lesser extent in the bone marrow, in areas with a vaguely nodular
architecture termed ‘pseudofollicles’ or ‘proliferation centers’ [8, 9].

The significant differences in the properties of the cells in the peripheral blood and
lymphoid tissues are, at least in part, explained by antigenic stimulation and close interaction
with various accessory cells as well as by exposure to different cytokines, chemokines, and
extracellular matrix components (Figure 1). In the last decade there have been major
advances in the understanding of the reciprocal interactions between CLL cells and the
various microenvironmental compartments. Here, we will discuss the role of the
microenvironment in the context of efforts to develop novel therapeutics that target the
biology of CLL.

CLL cells in the context of the normal immune system
Normal B cells are programmed to rapidly respond to the environment, while causing little
damage to normal tissues. They possess the ability to recognize, process and present foreign
antigens to other components of the immune system, and to undergo maturation and
eventually secrete antibodies directed at a specific antigen. They can undergo programmed
cell death when their role is over. The reciprocal interaction of B cells with the surrounding
environment leads to recruitment of cellular elements into specific tissue compartments.
Furthermore, B cells migrate to various compartments that regulate their differentiation,
proliferation, and survival or apoptosis. This normal immune response is achieved via
multiple proteins that are produced by the B cell and the surrounding microenvironmental
cells, leading to a well-orchestrated and tightly regulated sequence of events.

It is not surprising that CLL cells, the malignant counterpart of normal B cells, retain the
ability to interact with their surrounding environment. However, the finely tuned
orchestration and normal compartmentalization of the immune response is altered. The
cause of this malignant transformation is most likely a combination of genetic predisposition
and environmental triggers, leading to genetic and epigenetic changes resulting in
exaggeration of positive signals and attenuation of inhibitory and pro-apoptotic mechanisms.

Interplay between tumor biology and the local microenvironment
Invasion of the primary and second lymphoid tissues by CLL cells disrupts the normal tissue
architecture and physiology. The spleen and lymph nodes are diffusely infiltrated by CLL
cells, while the bone marrow is involved in an interstitial, nodular and/or diffuse pattern.
CLL cells retain the capacity to react to a variety of external stimuli and the tissue
microenvironment provides supporting signals that may differ within the various anatomic
sites.

CLL cells respond to the surrounding microenvironment in vivo as demonstrated by the
activation of specific signaling pathways in the tumor cells in the tissue microenvironment
resulting in changes in gene expression, cellular activation, proliferation, and apoptotic
threshold [8, 10]. In a genome wide microarray study we found that purified CLL cells
isolated concomitantly from peripheral blood, bone marrow, and lymph nodes show
characteristic gene expression profiles that reflect differential activation of signaling
pathways in the various anatomic compartments.[8] In particular, CLL cells in the lymph
node upregulated > 100 genes responsive to BCR activation and NF-κB signaling and
involved in proliferation. Several studies reported on comparative measurements of
activation markers expressed on CLL cells and their proliferation rates in different anatomic
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compartments [8, 11–14]. The expression of activation markers such as CD38 and CD69 as
well as proliferation is increased in CLL cells in the lymph node and bone marrow compared
to circulating cells [8, 11–13]. Likewise, the antiapoptotic regulators BCL-XL, survivin and
MCL1 are expressed at higher levels in CLL cells in lymph nodes compared to their
counterparts in the peripheral blood [15]. In addition, “apoptotic priming”, which describes
the proximity of a cell to the apoptotic threshold, is reduced in bone marrow resident CLL
cells [10].

The microenvironment
Antigenic stimulation and B-cell receptor signaling

BCR signaling is a crucial component of normal B-cell development and plays an important
role in differentiation, survival, proliferation, and antibody secretion. Conclusive
experimental evidence established the importance of BCR signaling in the pathogenesis of
activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL) [16, 17]. While the
evidence is somewhat more circumstantial, BCR activation is now also emerging as a
central stimulus in the pathogenesis of CLL [18–22]. This view is based on several lines of
evidence including specific BCR structures indicating a restricted antigen specificity of CLL
cells [23, 24], immunophenotypic characteristics shared with antigen-experienced B-cells
[25–27], as well as phenotypic characteristics of anergic B-cells [28, 29], the demonstration
of ongoing BCR signaling in vivo [8], and a correlation of increased BCR activation or
reactivity with clinical outcome [30].

Based on the presence or absence of somatic mutations in the immunoglobulin heavy chain
variable (IGHV) gene expressed by the clonal cells, CLL can be divided into two main
subgroups.[31, 32] Expression of a mutated IGHV identifies a subtype that follows a stable
or slowly progressive course, while expression of an unmutated IGHV gene is associated
with progressive disease and inferior survival [31, 32]. Additionally, CLL cells use a
restricted repertoire of IGHV genes, which encode part of the antigen interacting domains of
the BCR. Thus, preferential usage of certain IGHV genes indicates a role for antigen
selection in the development of the disease [23, 24]. Furthermore, some cases express
virtually identical BCRs, so-called “stereotyped BCRs”, that recognize shared antigens [33–
35]. These antigens remain incompletely defined but in many cases may be the target
antigens of so called polyreactive or natural antibodies, including microbial antigens and
autoantigens expressed by dying cells [36–38]. In the case of unmutated CLL, it is thought
that the particular molecular motifs involved in tumor development are autoantigens; this
view is supported by the observation that the majority of CLL clones exhibiting stereotyped
BCRs also demonstrate unmutated IGHV genes, as well as several studies of soluble Igs
demonstrating polyautoreactivity in unmutated CLL [39–42]. In contrast, stimulation via
foreign antigen is likely to underlie the pathogenesis of mutated CLL, which exhibits less
structural restriction of the BCR [41]. It is important to note that at present we have an
incomplete understanding of where B-cells encounter antigen. Regardless, the secondary
lymphoid tissues are likely to be the major anatomic site for BCR-antigen interaction.
Antigens arriving through the lymph flow are sequestered and immobilized by cellular
elements in the lymph nodes [43], thus providing an optimal setting for B-cell receptor
stimulation. This is consistent with our observation of stronger BCR activation on CLL cells
on the lymph nodes as compared to blood or bone marrow [8].

BCR signaling can be broadly divided into two main types; one that is antigen independent
or “tonic” [44] and another that is antigen-mediated (Figure 2). “Tonic” signaling is
mediated via PI3Kα and PI3Kδ, whereas antigen-dependent signaling involves activation of
PI3Kδ in addition to several tyrosine kinases and adapter molecules. Antigen-dependent
signaling is initiated by the tyrosine kinases LYN and SYK. In vitro studies have shown that
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BCR engagement on CLL cells triggers an intracellular signaling cascade leading to calcium
mobilization, activation of the MEK/ERK, AKT/mTOR, and NF-κB pathways and
upregulation of the anti-apoptotic proteins MCL1, BCL-XL and XIAP (Figure 1) [45–49].

Recently a type of BCR signaling that appears to be unique to CLL cells has been described.
Specifically, Duhren-von Minden and colleagues showed that epitopes in the framework
region of surface immunglobulins (sIg) expressed on CLL cells serve as autoantigens,
raising the possibility of auto-stimulation of the leukemic cells [50]. Building upon previous
work demonstrating that the pre-BCR is able to induce ligand-independent cell-autonomous
signaling by binding to an intrinsic pre-BCR glycosylation site [51], the group found that the
BCRs of CLL cells constitutively signal even in the absence of any added antigen.
Intriguingly, this type of signaling was equally demonstrated for BCRs derived from
mutated and unmutated CLLs, and appeared to be cell-autonomous in that it was
demonstrable on isolated individual cells [50]. Notably, such autonomous activation was not
found with BCRs derived from multiple myeloma or other lymphoma cells. The heavy-chain
complementarity-determining region (HCDR3) of the BCR was identified as the crucial
interacting unit, since its insertion into a non-autonomously active BCR resulted in
autonomously driven signaling. The authors then showed that the HCDR3 interacts with an
intrinsic motif in the framework region 2 (FR2) of the sIg’s VH region [50]. Mutations in
this internal FR2 epitope abrogated any autonomous signaling demonstrating that this
epitope acts as an autoantigen binding to CLL BCRs. This finding does not in and of itself
negate the important role for the classical model of extrinsic antigen in the pathogenesis of
CLL. Further study is warranted to define the respective roles of the two modes of BCR
signaling in CLL.

The responsiveness of CLL cells to BCR activation in vitro is heterogeneous.[52] IGHV
unmutated CLL cells are typically BCR signaling competent whereas IGHV mutated CLL
cells respond weakly or not at all to BCR crosslinking induced by anti IgM antibodies [30].
The Zeta-associated protein of 70-Kd (ZAP-70), a transducing signaling kinase downstream
of the T-cell receptor, is expressed in most cases of IGHV unmutated CLL but less
frequently in IGHV mutated CLL [25, 53–55]. Expression of ZAP-70, akin to IGHV
mutation status, serves as a powerful prognostic marker and correlates with a more
aggressive disease course [54–57]. ZAP-70 expression is associated with increased BCR
signaling in vitro [46]. The non-responsiveness to BCR activation in some CLL cells is
reminiscent of anergized B-cells and suggests that these CLL cells are chronically
stimulated by antigen in vivo [29, 30]. Consistent with this view is the low expression of
surface IgM in CLL compared to normal B-cells and the recovery of BCR responsiveness
after prolonged in vitro culture [28]. Furthermore, CLL cells that do not respond to surface
IgM crosslinking respond to anti-IgD or anti-CD79a antibodies, indicating that the
intracellular signaling pathway is functional [30]. Nevertheless, it has become clear that the
presence of ZAP-70 enhances BCR responsiveness [58]. Interestingly, this effect of ZAP-70
is independent of the kinase domain, but requires recruitment of ZAP-70 to the BCR [59,
60]. The demonstration of decreased internalization of an activated BCR in a B-cell line that
was engineered to express ZAP-70 provides a link between decreased IgM expression that
correlates with absence of ZAP-70 and an anergic phenotype [60]. Thus, one effect of
ZAP-70 might be to interfere with anergy by maintaining higher IgM expression.

In vitro, BCR crosslinking protects CLL cells from apoptosis primarily through the PI3k/Akt
pathway and increased expression of MCL1 [45, 48, 61]. BCR triggering also up-regulates
adhesion and costimulatory molecules, and increases CLL cell migration in response to the
chemokines CXCL12 and CXCL13 [62]. Moreover, BCR signaling likely plays a central
role in promoting CLL cell proliferation. In vitro engagement of the BCR in CLL cells
induces expression of MYC, cyclin D2 and cyclin-dependent kinase 4 (CDK4).
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Interestingly, although BCR activation promotes G1 cell cycle progression, cell division is
not induced [49, 63]. Presumably additional co-stimulatory signals such as CD40L and IL4,
provided in the tissue microenvironment, are required.

Cell-cell interactions
Most studies exploring the cellular interactions in CLL have been performed using
peripheral blood cells. Experimental methods relying on the investigation of circulating CLL
cells in isolation lack the ability to appropriately mimic the complex cellular interactions
occurring in the lymphatic niche. In spite of this limitation, many in vitro observations have
helped to elucidate the in vivo crosstalk between CLL cells and non-malignant cells [64,
65]. In the tissue microenvironment, CLL cells reside in close contact with T-lymphocytes,
stromal cells, endothelial cells, follicular dendritic cells and macrophages. Interactions
between these components regulate CLL cell trafficking, survival and proliferation in a
manner that may be partly dependent on direct physical cell–to-cell contact or mediated
through the exchange of soluble factors (Figure 1).

T-cells
The interaction between CLL cells and T cells is an important component of the malignant
process. First, T-cells are important for CLL cell proliferation.[66, 67]. This has been
directly demonstrated in a xenograft murine model of CLL where activated CD4+ T-cells
were required for CLL cell proliferation [66]. In CLL patients, T-cells, predominantly of the
CD4+ type, often make up a substantial fraction of the lymphoid infiltrate in the bone
marrow and lymph nodes [68], where they are located both around and within proliferation
centers [11, 69]. CD40, a key regulator of B-cell-T-cell interaction, is stimulated by CD4+

T-cells expressing CD154 [70], the ligand for CD40, that are preferentially colocalized with
CLL cells in pseudofollicular proliferation centers [9]. CLL cells activated in vitro via
CD40, alone or in combination with IL-4, enter into cell cycle [71, 72] and are rescued from
both spontaneous [73] and drug-induced apoptosis [74]. CD40 signaling in CLL cells
induces anti-apoptotic molecules such as MCL1, BCL-XL, BFL1 and Survivin [9, 75, 76].
Promotion of CLL cell survival and proliferation by CD40 signaling is mediated through the
PI3K/AKT, MEK/ERK [72, 76] and NF-κB pathways [72–74]. Survivin, a member of the
family of inhibitor of apoptosis proteins (IAP's), that is preferentially expressed in the large
proliferating CLL cells interspersed with T-cells in lymph node pseudofollicles, integrates
apoptosis resistance and proliferation [9, 77].

In addition to interactions mediated through direct cell-cell contact, T-cells also secrete
soluble factors that may contribute to CLL cell growth and survival. IL-4 inhibits
spontaneous and drug induced apoptosis in CLL cells via a mechanism involving BCL-2
upregulation [78]. Interestingly, both IL-2 [79] and TNFα [80, 81] variably induce CLL cell
proliferation. Similarly, IFNγ [82], IFNα [83] and IL-13 [84] were also shown to support
CLL cell survival.

Secondly, CLL cells can modify the cellular immune system to evade immune surveillance.
Mechanisms are most likely multi-factorial including production of immune-suppressing
cytokines such as tumor growth factor-β [85], and IL-10 [86], and expression of reduced
levels of adhesion and co-stimulatory molecules [87], as well as increased numbers and
altered function of regulatory T-cells [88, 89]. Gene expression profiling of purified T-cells
from CLL patients revealed changes in genes involved mainly in cell differentiation,
cytoskeleton and vesicle formation, trafficking and cytotoxicity that contribute to decreased
immune response [90]. Accordingly, CD4+ and CD8+ T cells in CLL show impaired ability
to form immunological synapses which is induced by direct cell contact with CLL cells [91]
and is mediated through tumoral expression of CD200, CD270, CD274, and CD276 [92].
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Stromal cells
Mesenchymal stromal cells (MSC) are another important cellular component of the tissue
microenvironment. Early studies exploring CLL-stromal cell interactions relied upon bone
marrow-derived stromal cells [3, 93]. These cells consist of a heterogeneous population of
cells that provide structural and functional support for normal hematopoiesis. Later on, other
types of human and murine MSCs have been shown to exhibit similar effects on CLL cells
[94]. Stromal cells produce and secrete various cytokines, chemokines, proangiogenic
factors, and extracellular matrix components, and also express surface receptors that
predominantly regulate CLL cell migration and survival. The CLL-MSC crosstalk is
bidirectional; thus, tumor cells are not only being supported by stromal cells but also are
capable of activating and inducing stromal cell proliferation and secretion of mediators that
sustain and intensify the malignant process [95–98]. In the lymphoid tissues of CLL
patients, stromal cells are diffusely located throughout the tissue and in perivascular areas
where they admix with CLL cells [99]. The stromal cells are highly productive of SDF-1
[100] and are also markedly positive for α-smooth muscle actin (αSMA), a marker induced
in myofibroblasts that have been activated by tumor stromal specific growth factors [99].
Interestingly, CLL cells cocultured with bone marrow stromal cells are rescued from both
spontaneous [3, 93, 101] and drug-induced apoptosis [3, 101], in a mechanism dependent on
direct cell-cell contact [3, 4]. Murine fibroblast cell lines have been shown to protect CLL
cells from apoptosis by maintaining expression of the antiapoptotic proteins BCL-XL, XIAP
and FLIPL in the leukemic cells. Furthermore, cell-cell interactions activate the NF-κB
pathway in a PI3K-dependent manner [72]. CXCL12, secreted from stromal cells, guides
CLL cell migration towards the stromal layer and promotes penetration beneath it, a
phenomenon called pseudoemperipolesis [101].

Both cell surface receptors and extracellular matrix elements were reported to be responsible
for the enhanced survival of CLL cells that are in contact with the stroma layer. Adherence
of CLL cells to stromal cells is mediated simultaneously through integrins β1 and β2 [93].
MSC highly express vascular cell adhesion molecule 1 (VCAM-1) [102]. Binding of α4β1
integrin (CD49d/CD29, or VLA-4) to either VCAM-1 or to the extracellular matrix
component fibronectin rescues CLL cells from both spontaneous apoptosis and fludarabine
induced apoptosis [93, 103], through PI3K/AKT signaling and BCL-XL upregulation [104].

Another aspect of CLL cell interaction with the stroma layer involves metalloproteinase-9
(MMP9), vascular endothelial growth factor (VEGF) and endothelial cells. MMP-9 is the
major MMP produced by CLL cells that promotes their extravasation and lymphoid tissue
infiltration through proteolytic degradation of basement membranes and extracellular matrix
components [105]. Independently of its proteolytic activity, MMP-9 also partially mediates
CLL cell survival in bone marrow derived stromal cell coculture [106]. Binding of MMP9 to
α4β1 and CD44v in CLL cells results in LYN and STAT3 activation and induction of
MCL1 [104]. Expression of MMP9 in CLL cells is regulated through α4β1 integrins and
CXCL12 [105]. In this respect, CLL cells in the bone marrow and lymph nodes acquire and
express higher levels of surface MMP-9 than that which could be attributed to tumor cell
activation in tissue microenvironment or derived from their adjacent accessory cells [104].
The pro-angiogenic molecule VEGF also decreases spontaneous or drug-induced apoptosis
of CLL cells, through upregulation of MCL1, XIAP, and STAT3 signaling [107, 108]. In
coculture of CLL cell with bone marrow derived stromal cells, vast amounts of VEGF
appear to be secreted form the stromal cells and VEGF blockade results in decreased CLL
cell survival [109]. CLL cells cocultured with human vascular endothelial cells are also
protected from apoptosis in a mechanism involving NF-κB mediated upregulation of BCL2,
MCL1, and BCL-XL [110]. Endothelial cells further increase expression of CD38 and CD49
in CLL cells in a NF-κB dependent mechanism [110]. In addition, activation of CD44 on
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CLL cells by extracellular matrix components such as hyaluronic acid can promote CLL cell
survival through activation of the PI3K pathway [111].

Follicular dendritic cells
The literature exploring the role of follicular dendritic cells (FDC) in CLL is relatively
limited. FDC are accessory cells within normal germinal centers that retain intact antigen-
antibody complexes on their cell surface and present these antigens to B-cells [112]. Normal
germinal center B-cells that bind to the immune complexes survive and differentiate into
either memory B-cells or plasma cells [112]. FDC are normally detected in secondary
lymphoid tissue but not in the bone marrow [113]. In CLL, FDC are seen in the lymph
nodes, pseudofollicles [69, 114, 115], and in bone marrows of patients with nodular
involvement.[116] FDC secretes several important prosurvival factors and growth factors
(e.g. BAFF and IL-15) and express other important adhesion molecules such as VCAM-1,
ICAM-1, plexin B1 and CD44 [69, 112]. The effect of FDC on CLL cells was studied using
a FDC cell line (HK cells); the HK cells were shown to rescue CLL cells from spontaneous
and drug induced apoptosis in a manner that was dependent on direct cell- cell contact and
associated with an increase in MCL1 [117].

Tissue macrophages, monocytes, and Nurse-like cells
An intriguing example of the distinct ability of CLL cells to affect normal cellular elements,
leading to the loss of normal compartmentalization and spatial control of the immune
response, is the recently described phenomenon of the interaction between CLL cells and
“nurse like cells” (NLC). NLCs are an in vitro model thought to represent a counterpart of
tissue associated macrophages in vivo. In long term cultures of peripheral blood
mononuclear cells from CLL patients, large, round, occasionally bi-nucleated CD68
expressing cells grow out [118, 119]. Because CLL cells surround these cells and gain a
survival advantage, they were termed “nurse like cells” (NLCs). Cells with similar
phenotype are also detected in vivo in secondary lymphoid tissues of CLL patients [119],
thus strengthening their biological relevance; yet, their numbers in the tissues are probably
low [99]. NLCs actually differentiate from monocytes and their differentiation is dependent
on cell-cell contact with CLL cells [119]. Monocytes obtained from normal donors
cocultured with purified CLL cells also differentiate into NLCs [119] but normal B-cells do
not induce differentiation of monocytes into NLCs [119]. Co-culturing CLL cells with NLCs
protects CLL cells from spontaneous and drug induced apoptosis [101, 118] in a mechanism
that is partially mediated through an increase in MCL1 expression [120]. NLCs produce and
secrete chemokines and growth factors including CXCL12 and CXCL13 as well as B-cell
activating factor of tumor necrosis factor family (BAFF) and a proliferation-inducing ligand
(APRIL), which attract CLL cells into the tissue compartment and support their survival and
proliferation.

BAFF and APRIL are TNF superfamily members that are important for B cell
differentiation and survival [121–123]. CLL cells themselves also express BAFF and APRIL
and their receptors [124, 125]. However, NLCs express higher levels of BAFF and APRIL
than CLL cells [120]. BAFF binds to BAFF receptor (BAFF-R), B-cell maturation antigen
(BCMA), transmembrane activator calcium modulator and cyclophilin ligand interactor
(TACI), while APRIL binds only to the latter two receptors. BAFF and/or APRIL decrease
both spontaneous and drug-induced apoptosis of CLL cell cells [120, 124, 125]. Co-
culturing CLL cells with NLCs in the presence of a decoy receptor that binds both BAFF
and APRIL partially abolishes the protective effect of the NLCs on the viability of the CLL
cells [120]. Recently, it has been shown that BAFF in cooperation with MYC can lead to the
development of a CLL-like lymphoproliferation in mice [126]. Notably, MYC and its target
genes are up-regulated in CLL cells in the lymph node [8] and MYC is upregulated by
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BAFF [126] and by BCR engagement in vitro [127]. Interestingly, CLL cells that highly
express c-MYC are more susceptible to apoptosis and can be rescued by BAFF [126].

Additional interactions between CLL cells and accessory cells in the tissue
microenvironment involve the ligation of CD38 to CD31 and of CD100 to Plexin B1. CD38
levels on the surface of CLL cells are variable and high CD38 expression is a poor
prognostic factor in CLL [31]. In proliferation centers, CD38 is upregulated in CLL cells
exposed to activated T-cells expressing CD40L [11]. CD31, the ligand for CD38, is
expressed on endothelial cells and NLCs. CD31 induces proliferation and prolongs the
survival of CD38+ CLL cells [128]. CD100, a transmembrane protein that belongs to the
semaphorin family, is expressed on CLL cells [129]. The high affinity receptor for CD100,
Plexin B1, is expressed on bone marrow stromal cells, follicular dendritic cells, nurse like
cells and activated T-cells [129]. It has been demonstrated that engagement of CD100 by
PlexinB1 increases CLL cell proliferation and prolongs survival [128, 129].

Trafficking and homing of CLL cells into lymphoid tissues
Chemokines consist of two major subgroups; one group of homeostatic chemokines is
constitutively produced and secreted within the tissue microenvironment and serves to
maintain physiological trafficking. The second group includes inflammatory chemokines
which are primarily induced in inflamed tissues to recruit effector cells [130]. Serum levels
of some of the chemokines or their cognate receptors are highly elevated in CLL and a more
effective chemotatic response is a characteristic of more aggressive subtypes of CLL cells.
The responsiveness of circulating CLL cells to chemokine stimulation might facilitate the
trafficking, homing and invasion of the leukemic cells into the “nourishing” tissue
microenvironment.

An example of a chemokine that critically regulates CLL cell migration is CXCL12, a
homeostatic chemokine that plays a critical role in normal trafficking and homing. CXCL12
is constitutively secreted at high levels by stromal cells and in vitro by NLCs [118]. CXCR4
(CD184), the receptor for CXCL12, is highly expressed on circulating CLL cells [131–133],
which migrate more efficiently towards CXCL12 than normal B-lymphocytes. [131, 132].
CLL cells expressing CD38 and/or ZAP70 show stronger intracellular signaling and better
chemotaxis in response to CXCL12 than cells with no CD38 or ZAP70 expression [133–
135].

CXCL13 is another homeostatic chemokine which along with its cognate receptor, CXCR5,
plays a central role in the recruitment of B-cells into the B-cell zone of secondary lymphoid
organs [136]. CXCL13 is constitutively secreted by stromal cells in the B-cell areas of the
secondary lymphoid tissues [137]. CXCL13 is expressed in vitro by NLCs as well as in vivo
in the CD68+ macrophages present in CLL lymph nodes [112, 137]. Serum CXCL13 levels
are higher in CLL patients compared to healthy individuals [137] and CXCR5 is also highly
expressed in CLL cells [137, 138].

CCL19 and CCL21 are chemokines that regulate the recruitment of lymphocytes into the T-
cell zone areas of the secondary lymphoid tissues through ligation to their cognate receptor
CCR7 [139]. CCL19 and CCL21 are detected in the stroma and in the high endothelial
venules (HEV) of lymph nodes in CLL, and the latter are an important route of lymphocyte
entry into secondary lymphoid tissue [140]. Circulating CLL cells express high levels of
CCR7 [133, 141] which are higher in ZAP-70+ CLL cells and in patients with prominent
lymphadenopathy [133, 140]. CLL cells that are ZAP70+ or from patients with marked
lymphadenopathy migrate more efficiently towards these chemokines [133, 140, 142].
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CLL cells are not only capable of responding to cellular elements in the tissue
microenvironment but also actively recruit cells from the microenvironment to their
immediate vicinity. This involves CLL cell secretion of chemokines such as CCL17,
CCL22, CCL3 and CCL4. CCL22 and CCL17 are T-cell attracting chemokines induced in
CD40 activated CLL cells in the lymph nodes and bone marrow [70]. Thus, CLL cells can
attract CD4+ T cells to the bone marrow and lymph nodes that augment tumor cell
proliferation and survival and further induce release of CCL22, creating a positive feedback
loop that further promotes the malignant process [70].

CCL3 and CCL4 are pro-inflammatory chemokines crucial for the response to infection, the
mediation of inflammation and the recruitment of monocytes, T-cells from the blood into the
tissue compartments [143]. CLL cells secrete these two chemokines in response to activation
of the BCR and CD38 as well as during coculture with NLCs. Expression of CCL3 and
CCL4 in CLL cells during coculture with NLCs positively correlates with ZAP-70 positivity
[144]. CLL3 and CCL4 are also overexpressed in CD38+CD49d+ CLL cells more than those
that are CD38−/CD49d− [145]. Both CCR1 and CCR5, which are the cognate receptors for
CCL3 and CCL4, are expressed on monocytes and macrophages and induce their migration.
[145]. Consistently, higher numbers of tumor infiltrating CD68+ macrophages were detected
in the bone marrows of patients with CD38+CD49d+ CLL [145]. CCL3 may also indirectly
protect CLL cells from apoptosis via induction of VCAM-1 (CD106) in endothelial cells
[145]. Plasma levels of CCL3 and CCL4 are elevated in CLL patients compared to healthy
individuals [144] and high CCL3 levels correlate with poor prognosis in CLL [146].

Signaling pathways activated in the tissue microenvironment
Given that CLL cells respond in vitro to a wide variety of external stimuli (Figure 1), it is a
great challenge to determine which signaling pathways are the most relevant in vivo.
Clearly, engagement of the BCR, via either autonomous or extrinsic mechanisms provides a
signal. The PI3K/AKT, MAPK/ERK, NF-κB, WNT, JAK/STAT and NOTCH signaling
pathways have been reported to mediate survival and/or proliferation of CLL in vitro. In
particular the PI3K/AKT, MEK/ERK and NF-κB pathways have been shown to be activated
in the tissue microenvironment. Because the composition of the microenvironment can vary
between tissues different signaling pathways may be engaged in different locations. This
may be in particular the case for the lymph nodes and for the so-called proliferation centers.
The activity of many intracellular signals appears to be stronger and/or more sustained in
patients with more aggressive subtypes of the disease and correlates with enhanced tumor
proliferation and more rapid disease progression [8, 147]. In particular, PI3K/AKT signaling
regulates CLL cell survival and trafficking [148]. The PI3k/AKT pathway mediates the
chemotactic response of CLL cells towards CXCL12 [131, 132, 135], CXCL13 [137],
CCL19, and CCL21 [133, 140, 149] and promotes CLL cell survival in response to a variety
of external stimuli including BCR activation [45], CD40L [72], VCAM-1 [104], CCL19,
CCL21 and many others. The inhibition of apoptosis in CLL cells through PI3K/AKT
signaling is partially dependent on activation of NF-κB and upregulation of anti-apoptotic
genes (e.g. BCL-XL and BFL-1). The classical NF-κB pathway has been shown to be
activated in CLL cells in the lymph node more than in those derived from peripheral blood.
A variety of in vitro stimuli induce NFκB activity in CLL cells including engagement of the
BCR [48] or CD40 [72–74], exposure to cytokines such as BAFF or APRIL [120] and
coculture with stromal cells [72] or endothelial cells [110]. Compared with normal B cells,
CLL cells overexpress anti-apoptotic proteins such as BCL-2 and MCL1 [150, 151] and the
resistance to apoptosis is further enhanced in the lymphoid tissues via upregulation of
BCL-2 family molecules including MCL1 BCL-XL and Survivin [10, 15]. MCL1
expression in CLL cells is commonly regulated through PI3K/AKT signaling [45]. BCL-XL
can be upregulated in CLL cells through BCR [45], and CD40 signaling [75] or through
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VCAM-1 [104], stromal cells [72] and endothelial cells [110]. The MAPK/ERK pathway
also transmits pro-survival signals in CLL cells, as demonstrated in response to stimulation
with CXCL12, CXCL13, CCL19 and CCL21. In addition, the MEK/ERK pathway is an
important regulator of cell cycle progression and proliferation. MEK1/2 activity is important
for MYC expression and S-phase entry of CLL cells. MEK/ERK mediates MYC expression
in response to engagement of the BCR and Toll-like receptor 9 (induced in vitro by CpG-
ODN) and with BAFF stimulation. Accordingly, both phosphorylated ERK and MYC are
mostly expressed in large proliferating CLL cells confined to the proliferation centers within
the lymph nodes [127]. MYC can contribute to genomic instability by selecting cells with
defective DNA damage response, and its expression may be a driver of clonal evolution
[152].

Cell proliferation is regulated by D-type cyclins that bind to CDK4 and CDK6, resulting in
the phosphorylation of the retinoblastoma protein and the G1-S phase transition of the cell
cycle. Cyclin D2 is overexpressed in CLL cells[153], especially in cells residing in the LN
[8]. IgM ligation induces cyclin D2 and CDK4 in CLL cells.[63] The down-regulation of the
cell cycle inhibitor p27 and progression of CLL cells into S phase are probably dependent on
additional costimulatory signals such as CD40 ligand and IL-4 that are provided mainly by
T-helper lymphocytes in the proliferation centers of the lymph node [154]. Accordingly,
within CLL cells in the proliferation centers cyclin D2 is highly expressed and p27 is down
regulated [155]. Cyclin D2 expression is regulated either directly through NF-κB or
indirectly by c-Myc. Consistent with this finding is the observation that NF-κB activity is
increased in the LN and particularly enhanced in CLL cells within the proliferation centers
[8, 155].

Models of the CLL microenvironment
Modeling tumor-host interactions is an area of intense investigation. Such models are of
particular interest given the fact that tissue resident CLL cells are not readily available.
Currently, the most widely utilized in vivo model for CLL is the transgenic TCL1 mouse, in
which the human TCL1 gene is expressed under the control of the immunoglobulin heavy
chain variable region promoter and enhancer.[159] TCL1 is an oncogene commonly
activated in mature T-cell lymphomas that enhances AKT signaling. Onset of disease is late
in life and the tumor cells in TCL1 transgenic mice are relatively large lymphoid cells,
expressing unmutated IGHV genes [159]. There is evidence for a role of BCR signaling in
this model and a dysregulation of the T-cell compartment similar to what has been described
in human CLL [160]. The TCL1 transgenic model has also been used successfully to study
novel therapeutic approaches (discussed below). In contrast to the transgenic model, New
Zealand Black (NZB) mice early in life spontaneously develop autoimmunity and B-cell
hyperactivity, while a CLL-like disease manifests later in life. The late-onset clonal disease
is of the IGVH unmutated type that is also ZAP70 positive.[156] NZB mice were found to
harbor a point mutation in the 3'-flanking sequence of the pre–mir-16-1, which results in
decreased levels of miR-16 in lymphoid tissues [157]. This is reminiscent of the most
common chromosomal lesion in human CLL; a deletion of the 13q14 chromosomal region
containing the mir-15a/16-1 and DLEU2 genes [158]. Recently Klein and colleagues
showed that the deletion of the 13q14-minimal deleted region (MDR) harboring the DLEU2/
miR-15a/16-1 cluster in mice results in development of a condition that resembles human
CLL [161]. The leukemic cells of these mice express unmutated IGHV genes and some of
them even present with BCRs showing stereotypical antigen binding regions [161]. Other
transgenic mice models of CLL include (NZB×NZW)F1 mice programmed to express IL5
[162], mice overexpressing both BCL2 and a tumor necrosis factor receptor-associated
factor [163] and myc/Baff transgenic mice [126].
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A complementary approach has been to xenograft the Mec-1 cell line[165] or primary CLL
cells[66,164] into immune-compromised mice. Recently, Bagnara et al. reported that
peripheral blood mononuclear cells (PBMCs) from CLL patients xenografted into NOD/
scid/γc null (NSG) mice localized and proliferated primarily in the murine spleen. These
investigators found that proliferation of CLL cells in vivo was dependent on co-engrafted
human T-cells.[66] Furthermore, by comparing CLL cells isolated from spleens of
xenografted mice to CLL cells from human blood and LN, Sun et al showed that the murine
spleen microenvironment supports CLL cell proliferation and activation to a similar degree
as the human lymph node, which notably includes activation of BCR and NF-κB signaling
in the xenografted cells. The model was then used to test the in vivo effects of ibrutinib, a
Bruton’s tyrosine kinase inhibitor in clinical development. Ibrutinib inhibited BCR and NF-
κB signaling induced by the microenvironment, decreased proliferation, induced apoptosis,
and reduced the tumor burden in vivo.[167] Thus, these data indicate that the spleen of
xenografted NSG mice can sufficiently model the role of the human microenvironment on
CLL cells to make this a valid model for investigations of tumor microenvironment
interactions and the evaluation of possible novel treatment approaches.

Targeting the microenvironment in CLL
The increasing appreciation of the role of the microenvironment in supporting CLL cell
proliferation and survival as well as its contribution to chemoresistance has informed novel
therapeutic approaches. Accordingly, a major effort is underway to find efficient ways to
“chemically dissect” CLL cells from the microenvironmental signals, by either blocking
extracellular triggers or abrogating intracellular signaling (Figure 3). In recent years,
different compounds have been developed that are able to antagonize surface receptors or
cytokines including small molecules that target signaling kinases and anti-apoptotic proteins.
Clinically, impressive responses characterized by diminished lymphadenopathy and
splenomegaly have been observed with some of these novel agents.

CXCR4 receptor antagonists
CLL cells in the peripheral blood express high levels of the surface receptor CXCR4, which
signals for chemotaxis, polymerization of actin, and migration through the vascular
endothelium [131]. Blockade of the CXCR4-CXCL12 axis using CXCR4 receptor
antagonists such as plerixafor (AMD3100) or T140 can efficiently antagonize CXCL12-
mediated signaling and chemotaxis as well as stroma mediated protection from both
spontaneous and drug induced apoptosis [101, 169]. The clinical use of plerixafor in CLL is
investigated in combination with rituximab. Preliminary results showed that this agent
induces dose-dependent mobilization of CLL cells to the peripheral blood [170].

Targeting BAFF and APRIL
As previously mentioned, BAFF and APRIL signaling through their cognate receptors
BAFF-R, TACI and BCMA are important for normal B-cell survival and may play a role in
CLL. Atacicept is a recombinant soluble form of the extracellular binding domain of TACI.
By acting as a molecular decoy, it neutralizes the effects of BAFF and APRIL, blocking the
activation of TACI, BCMA, and the BAFF-receptor. A phase Ib study of Atacicept
demonstrated that intravenous doses of up to 27 mg/kg were well tolerated in 21 patients
with refractory or relapsed CLL with one PR (ORR 5%) in the highest dose cohort [171].

Targeting BCR signaling
The pivotal role of BCR signaling in CLL pathogenesis points to this pathway as an ideal
target for novel anti-CLL therapy (Figure 3). Small-molecule drugs targeting SYK, Bruton's
tyrosine kinase (BTK), or PI3K isoform p110delta (PI3Kδ) show impressive results in
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patients with relapsed/refractory as well as in treatment naïve CLL (reviewed in [20, 21]). In
the first few weeks of treatment with these agents responses typically manifest with a
substantial regression in lymphadenopathy that is frequently paralleled by a transient
lymphocytosis [172–174]. The early increase in the circulating lymphocytes is assumed to
reflect redistribution of the CLL cells from the lymphatic tissues into the circulation, as a
consequence of disruption of mechanisms involved in migration and retention of the tumor
cells in their protective tissue microenvironments [175, 176]. Continued treatment over the
course of months results in gradual decrease in the lymphocytosis and a deepening of
responses with a high rate of remission achieved with increasing duration of treatment [172].
The clinical responses seen with these kinase inhibitors are attributed to the combined
effects of direct cell cytotoxicity, inhibition of survival pathways, and impairment of CLL
cell trafficking and tissue retention.

LYN inhibitors
LYN, a SRC family non-receptor tyrosine kinase, plays an important role in initiation as
well as in the termination of BCR signaling. This dual role of LYN is due to its propagation
of the BCR signal via phosphorylation of SYK and its concurrent activation of inhibitory
phosphatases that terminate the response. Dasatinib, which was originally approved for
treatment of chronic myeloid leukemia, is an oral kinase inhibitor primarily targeting ABL
and SRC kinases but it also inhibits other kinases, including BTK [177]. In preclinical
studies dasatinib has been shown to induce apoptosis of CLL cells that was associated with
reduction in MCL1 and BCL-XL expression [178–180]. In a phase II trial in 15 patients
with relapsed or refractory CLL, treatment with dasatinib (140mg/daily) achieved an overall
response of 20% with a progression-free survival of 7.5 months. The major adverse reaction
of the treatment was myelosuppression [181].

SYK inhibitors
SYK is a key protein kinase of proximal BCR signal transduction that is also involved in B-
cell migration and adhesion independently of BCR activity [182]. Following BCR
engagement, SYK is phosphorylated by LYN and amplifies the BCR signal through
activation of downstream signaling pathways. In peripheral blood CLL cells SYK
phosphorylation on the activating Y352 residue has been demonstrated [183]. In addition,
CLL cells in the lymph node show increased phosphorylation of SYK compared to
peripheral blood CLL cells, indicating activation of the kinase in the tissue
microenvironment [8].

To date several SYK inhibitors have been studied in CLL in vitro and in vivo including
fostamatinib (R788, the oral pro-drug of R406, the active metabolite), PRT318 and P505-15.
In preclinical studies, treatment with SYK inhibitors resulted in inhibition of BCR
activation, moderate apoptosis of CLL cells, reduced basal kinase activity of SYK, AKT,
and ERK, and decreased MCL1 levels [183]. Furthermore, SYK inhibitors have been shown
to antagonize exogenous prosurvival signals provided by stromal cell or NLC coculture [62,
183, 184], secretion of BCR regulated chemokines CCL3 and CCL4 [62, 183, 184], and
migration towards CXCL12 and CXCL13 [62, 184]. In an Eμ-TCL1 transgenic mouse
model, treatment with fostamatinib inhibited BCR signaling, reduced the proliferation and
survival of the leukemic clone and extended the life of the treated mice [185].

Fostamatinib was the first SYK inhibitor introduced into clinical study [174]. In a phase 1/2
trial in patients with relapsed/refractory B-cell malignancy, fostamatinib was shown to be
well tolerated with the most common adverse reactions being myelosuppression, fatigue and
diarrhea. The highest overall response rate was achieved in patients with CLL/SLL (55%, 6
of 11, with a median progression free survival of 6.4 months), as compared to only 10–22%
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in the other NHLs [174]. The on-target effect of fostamatinib in CLL has been demonstrated
by downregulation of BCR regulated target genes in tumor cells of CLL patients on
fostamatinib [186]. Furthermore, fostamatinib inhibited CLL cell activation and
proliferation. However, there was no correlation between the degree of inhibition of BCR
signaling and clinical response suggesting that pathways bypassing BCR activation might
play a role in shaping the response to such kinase inhibitors [186]. Fostamatinib is being
tested in late stage clinical trials for rheumatoid arthritis[187] and in patients with diffuse
large B cell lymphoma. Some novel SYK inhibitors have shown promising pre-clinical
activity, and may have increased potency and specificity [184].

BTK inhibitors
BTK is a member of the TEC family of kinases that is critical for BCR signaling [188].
Mutations in BTK result in X-linked agammaglobulinemia, an inherited disorder
manifesting with profound decrease in antibody production and severe defect in B-cell
development [189]. Notably, BTK mRNA and protein expression levels are increased in
CLL cells [190]. Ibrutinib (PCI-32765) is an orally administered irreversible and specific
inhibitor of BTK that induces modest apoptosis in CLL cells irrespective of IGHV
mutational status or interphase cytogenetics and overcomes prosurvival and proliferation
signals provided by various tissue microenvironmental elements (such as CD40L, BAFF,
IL-4, IL-6 and TNFα, fibronectin and stromal cells coculture and CpG oligonucleotide)
[176, 190]. Ibrutinib abrogates CLL cell signaling, migration, and adhesion in response to
tissue homing chemokines (such as CXCL12, CXCL13 and CCL19) and abrogates integrin
α4β1-mediated adhesion to fibronectin and VCAM-1 [175, 176, 190]. Both in vitro and in
vivo ibrutinib has been reported to inhibit CLL cell secretion of CLL3 and CCL4 [176]. At
the molecular level, this agent inhibits BTK tyrosine phosphorylation following BCR or
CD40 stimulation and abrogates activation of downstream signaling pathways including
ERK, PI3K, and NF-κB in CLL cells [190]. Treatment with ibrutinib in the TCL1 mice
model of CLL resulted in inhibition of disease progression [176].

A phase I open-label dose-escalation study evaluated the efficacy and tolerability of
ibrutinib in patients with relapsed or refractory B-cell NHL and B-cell CLL [191]. Dose
escalation proceeded to 12.5 mg/kg without dose-limiting side effects and with
pharmacodynamic evidence for complete inhibition of BTK. 60% of all patients achieved an
OR, with 16% achieving a CR; 16 patients with CLL/SLL were evaluated, with an objective
response reported in 11 of these patients (69%). Notably, the observed responses were of
marked duration, as the median progression-free survival for all patients reported at the time
of data cutoff was 13.6 months. A subsequent phase 1b/2 study of ibrutinib in CLL patients
who were either i) greater than 65 years of age and previously untreated or ii) diagnosed
with relapsed or refractory disease, further demonstrated that ibrutinib was well tolerated
with the most common side effects including diarrhea, fatigue and nausea. ORR was 71%
for treatment naïve patients, 67% for relapsed or refractory patients, and 50% for high risk
patients [172]. The estimated PFS at 26 months was 75% for the relapsed/refractory cohort
and 96% for treatment naïve patients demonstrating a remarkable duration of response.

Targeting the PI3K/AKT/mTOR signaling pathway
The PI3K/AKT/mTOR signaling pathway is a critical intracellular signaling cascade
controlling cell survival and proliferation in both malignant and non-malignant cells. PI3K is
a pivotal “hub” connecting multiple extracellular signals to cellular responses. PI3K acts to
convert phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 (PIP2)) to PI(3,4,5)P3 (PIP3)
which in turn forms a functional signaling complex with BTK and AKT. Several isoforms of
PI3K have been characterized; the δ isoform of PI3K is selectively expressed in
hematopoietic cells and functions to relay BCR, BAFF, CD30, and TLR signaling. CLL
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cells express the PI3Kδ and display increased PI3K activity [192]. Given the selective
expression of PI3Kδ - in contrast to the more pervasive α and β isoforms - specific
inhibition of the δ isoform is not expected to be toxic to normal tissues. Many PI3K
inhibitors are currently being investigated in both pre-clinical and clinical settings. ON
01910.Na (Rigosertib), a multikinase phosphoinositide 3-kinase (PI3K) inhibitor in phase III
trials for myelodysplastic syndrome, has demonstrated promising pre-clinical in vitro
activity, inducing apoptosis in CLL cells that are cultured in contact with stromal cells via a
dual mechanism of action involving both PI3K/AKT inhibition and induction of oxidative
stress [193].

GS-1101 (CAL-101)
GS-1101 is an orally available highly selective PI3K-delta inhibitor that induces apoptosis in
CLL cells [194]. The cytotoxic effect of GS-1101 is maintained despite the presence of
various microenviromental components that normally support malignant CLL cells
(including stromal cells, NLC, fibronectin, CD145 or TNFα BAFF and BCR stimulation).
GS-1101 also inhibits the secretion of both anti-apoptotic and pro-inflammatory cytokines
[192, 195]. GS-1101 sensitizes CLL cells to drug-induced apoptosis in the presence of
stromal coculture [195] and inhibits CLL cell chemotaxis toward CXCL12 and CXCL13
[195]. The drug abrogates constitutive PI3K signaling in CLL cells as well as AKT and/or
ERK activation by anti-IgM, soluble CD40 ligand and chemokines [195, 196]. In CLL
patients treated with GS-1101 the serum levels of CCL3, CCL4, and CXCL13 were
markedly reduced.[195]. A phase 1 study in 54 patients with previously treated CLL
demonstrated the acceptable safety and promising clinical activity of GS-1101, with 26% of
patients achieving an OR[173]. A >50% reduction in lymphadenopathy was observed in
80% of patients. Adverse events grade 3 or higher were minimal and included pneumonia
and neutropenia, observed in less than a quarter of patients. Phase 2/3 clinical trials of
GS-1101 are currently underway.

AKT Inhibitors
The serine/threonine kinase AKT is a key nodal regulator of cellular survival known to
phosphorylate several cellular substrates including caspase 8[197], caspase 9[198], BAD
[199], mTor [200], and the Forkhead family of transcription factors.[201] Furthermore, AKT
activation is associated with resistance to chemotherapy. Early phase clinical trials are
underway investigating the use of AKT inhibitors in several malignancies including CML,
although experience with these agents in CLL is limited. MK-2206, an orally active
allosteric AKT inhibitor has been shown to enhance the antitumor efficacy of other
chemotherapeutic agents in vitro in several malignancies, although clinical use in CLL has
not been reported [202]. Perifosine, another oral inhibitor of AKT, is undergoing phase II
evaluation in patients with refractory and relapsed leukemia [203]. Pending the outcome of
these and other clinical trials, further investigation is warranted to determine the utility of
the use of AKT inhibitors is CLL.

mTOR inhibitors
Mammalian target of rapamycin (mTOR), a serine/threonine kinase of the PI3K/AKT/
mTOR signaling network, is involved in cell growth, metabolism and proliferation and is
commonly activated in B-cell neoplasms. Rapamycin (sirolimus, rapamune, Wyeth) is an
immunosuppressive drug used to prevent rejection in organ transplantation. The drug
profoundly blocks B-cell receptor mediated proliferation [204]. Preclinical studies in CLL
have shown that rapamycin or its analog RAD001 block cell cycle progression by interfering
with expression of critical cell cycle molecules [205]. Everolimus (RAD001, afinitor,
Novartis), an orally available derivative of sirolimus, was evaluated in a phase II pilot trial
in previously treated patients with CLL. The study was stopped early because of increased
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toxicity, although the drug showed modest clinical activity [206]. In another phase 2 study,
everolimus (10mg/day) administered to patients with recurrent/refractory CLL achieved
partial remissions in 18% of patients [207]. In a subset of these patients, treatment with
everolimus was accompanied by an increase in lymphocytosis in parallel to reduction in
lymphadenopathy.

Targeting the RAF/MEK/ERK signaling pathway
Sorafenib (BAY43-9006; nexavar) is an oral small molecule multi-kinase inhibitor approved
for the treatment of advanced renal cell carcinoma [208] and unresectable hepatocellular
carcinoma [209]. Sorafenib is a potent RAF serine/theronine kinase inhibitor targeting the
RAF/MEK/ERK pathway and also inhibits other receptor tyrosine kinases involved in tumor
progression and angiogenesis [210]. Sorafenib induces CLL cell death that is mediated via
caspase activation and a decrease in MCL1 [211–213]. It overcomes apoptosis protection
induced by NLC or stromal cell coculture and stromal-mediated chemoresistance [211–214].
The drug has been shown to block RAF/MEK/ERK signaling and the chemotaxis response
induced by CXCL12 in CLL cells [211, 214]. It has also been shown to inhibit RAF and
ERK activation by NLC or stromal cells [213, 214] and to interfere with VEFGR/STAT3
signaling induced by stromal cell coculture [213]. Sorafenib also abrogates BCR mediated
signaling and survival in CLL cells. Interestingly, CLL cells derived from the lymph nodes
are more sensitive to sorafenib than the cells found in the peripheral blood [214]. The
clinical efficacy and tolerability of sorafenib in relapsed CLL is currently being evaluated in
a phase II clinical trial.

Targeting anti-apoptotic proteins
The resistance of CLL cells to apoptosis is related to high expression of BCL-2 family anti-
apoptotic proteins. The overexpression of these antiapoptotic proteins in CLL is endogenous
as well as extrinsic and is in part regulated by signals derived from the tissue
microenvironment [151]. Therefore, in recent years, several therapeutic strategies have been
developed to target anti-apoptotic proteins in CLL, including antisense BCL-2
oligonucleotide, BH3 mimetics and others.

Oblimersen sodium is a synthetic BCL-2 antisense oligonucleotide that induces a decrease
in BCL-2 mRNA and protein levels and apoptosis in CLL cells [215]. Oblimersen sodium
when combined with different cytotoxic drugs increases CLL cell apoptosis. In a phase I/II
trial, oblimersen sodium as a single agent, showed minimal activity in patients with
relapsed/refractory CLL. Dosing was limited by development of a cytokine release
syndrome. At the dosage of 3 mg/kg/d, two (8%) of 26 patients achieved a partial response
[216]. A phase III study in patients with relapsed/refractory CLL showed that addition of
oblimersen to fludarabine plus cyclophosphamide (FC) increased the CR/nPR rate compared
to FC alone [217]. Accordingly, CR/nPR was achieved in 20 (17%) of 120 patients in the
oblimersen group and eight (7%) of 121 patients in the FC-only group [217]. The
combination of oblimersen-FC further resulted in increased survival in subsets of patients
who achieved a least a partial response and in those who had fludarabine sensitive disease
[217, 218].

Obatoclax mesylate (GX15-070) is a small-molecule pan-BCL-2 antagonist. This compound
belongs to a class of BH3 mimetic agents that inhibit the activity of the anti-apoptotic
BCL-2 members that antagonize the proapoptotic proteins BAX and BAK [219]. The BH3-
only proteins BAX and BAK are directly sequestered and repressed by the antiapoptotic
BCL-2 proteins. BH3 mimetic drugs BAX and BAK induce their release allowing them to
oligomerize and trigger apoptosis via the formation of pores in the outer mitochondrial
membrane. In a phase I trial, administration of obatoclax to heavily pretreated patients with
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advanced CLL resulted in a PR in one out of 26 patients. The major toxicities were
neurologic including somnolence, ataxia and euphoria [220].

BH3 mimetics
The BH3 mimetics, ABT-737 and its orally active analog navitoclax, inhibit BCL-2, BCL-
Xl and BCL-W. In pre-clinical studies ABT-737 has been shown to induce a rapid and
potent proapoptotic activity in CLL cells independently of the common clinical and
prognostic parameters in CLL [221, 222]. Addition of cytotoxic agents sensitizes CLL cells
in vitro to ABT-737 [222]. In a phase I study in 29 relapsed/refractory CLL patients,
navitoclax dosed at ≥100mg/d achieved durable partial responses in 35% of patients [223].
Navitoclax was also active in high-risk patients with fludarabine refractory disease, bulky
lymphadenopathy and deletion of 17p [223]. The major dose-limiting toxicity was
thrombocytopenia related to inhibition of BCL-XL [223].

AT-101 (gossypol isomer) is a small-molecule pan-BCL-2 antagonist. In preclinical studies,
AT101 was shown to both induce CLL cell apoptosis and to overcome resistance mediated
by stromal cell coculture, while sparing normal stromal cells [224]. A phase I trial of
AT-101 in treatment naïve CLL patients with high risk disease demonstrated that the drug
was well-tolerated [225]. Furthermore, 5 of 6 patients in this trial exhibited a decrease in
lymphocyte count, while all patients demonstrated a reduction in lymphadenopathy.

XIAP inhibitors
X-linked inhibitor of apoptosis (XIAP) inhibits the proteolytic activity of caspase-3 via
direct binding, is highly expressed in CLL cells, and plays an important role in TRAIL-
induced apoptosis [226]. Since CLL cells have previously exhibited resistance to TRAIL-
based treatments, novel inhibitors of XIAP have been developed in the hope of overcoming
TRAIL-resistance in CLL [227]. One such novel small molecule inhibitor, compound A
(CA), has been shown to render tumor cells from patients with 17p deletion, IGVH
unmutated type CLL susceptible to TRAIL in vitro.

Immunomodulatory drugs
Lenalidomide, a derivative of thalidomide, is an immunomodulatory agent that has
significant activity in 5q- myelodysplastic syndrome, multiple myeloma and other B-cell
malignancies. In relapsed or refractory CLL, intermittent lenalidomide at 25 mg/d (3 weeks
on/1 week off drug) was associated with acceptable toxicity, and achieved an overall
response rate of 47%, with 9% of patients demonstrating a complete remission [228].
Another trial of relapsed/refractory CLL patients treated with daily lenalidomide at a dose of
10mg produced an overall response rate of 32%, with 7% CRs[229]. In a treatment-naïve
setting, elderly patients with CLL treated with lenalidomide achieved an OR rate of 65%,
including 10% CRs and an additional 5% CRs with residual cytopenias [230]. The activity
of lenalidomide is irrespective of unfavorable genomic abnormalities such as unmutated
IGHV or fludarabine-refractory disease status. However, at least 6 to 9 months of treatment
may be needed to achieve the best possible response [229]. The most common toxicity of
lenalidomine is myelosuppression [228, 229]. Lenalidomide is frequently associated with a
cytokine release syndrome and tumor flare reaction (observed in 30–58% of patients) or
tumor lysis syndrome[228, 231, 232]. Tumor flare is a unique immune mediated response to
lenalidomide therapy characterized by painful lymph node enlargement that may be
accompanied by fever and/or bone pain. It is generally managed with corticosteroids, while
in more severe cases it may necessitate narcotics and hospitalization [229, 231]. Tumor flare
may be predictive of clinical response to treatment with lenalidomide [233]. The optimal
dosing schedule of lenalidomide is not well defined; and a dose of 25 mg once daily in
relapsed CLL may be associated with unacceptable toxicity in some patients [231].
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Furthermore, lenalidomide may be associated with an increased frequency of venous
thromboembolism that may be related to endothelial dysfunction in the context of
inflammatory cytokine secretion. Continuous low dose lenalidomide (10mg) is generally
well tolerated and effective [229]. Importantly, the treatment is accompanied by increased
serum immunoglobulin levels and typically reduces CCL3 and CCL4 plasma levels, which
might indicate an inhibitory effect on intracellular signaling in CLL cells [230].

The mechanism of action of lenalidomide is not completely understood. In contrast to
thalidomide, lenalidomide has weak antiangiogenic effects [229]. Lenalidomide induces
transient immune activation including expression of costimulatory molecules such as CD40,
CD80, and CD86 on CLL cells [231, 232], which may be mediated through PI3Kδ [194]. It
also increases serum levels of interleukin IL-6, IL-10, IL-2R, IFNγ, and TNFα [229, 232].
Lenalidomide in part restores T-cell function by enhancing the formation of immunological
synapses and promoting intracellular signaling [91, 160, 234]. In lymph node biopsies from
CLL patients treated with lenalidomide a shift towards a Th-1 type immune reaction with
production of IFNγ was documented, suggesting that lenalidomide might be able to restore
anti-tumor immunity and immune surveillance in vivo [235]. Furthermore, lenalidomide
enhances NK cell activity [236] and improves antibody-mediated cellular cytotoxicity
directed by rituximab [237].

Summary and Outlook
Interactions of CLL cells with the surrounding microenvironment play a central role in the
pathogenesis and the progression of the disease. The nature of these interactions is
dependent on the properties of the CLL cell itself, but also likely depends upon properties of
the specific patient's microenvironment, which may be shaped by the baseline expression
levels of cytokines, the composition of various T cell subsets, stromal cell populations, and
responses to antigenic stimulation. Major progress in the last decade has led to a much better
understanding of both direct and indirect cellular interactions involved in CLL oncogenesis,
and to the development of multiple new and promising therapies (Figure 3). Although there
is still much to learn, it seems very possible that within a few years the improved
understanding of key aspects of tumor biology and the development of novel therapeutic
approaches will combine to change the natural history of CLL.
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Key Points

• CLL is characterized by the accumulation of mature monoclonal B cells in the
peripheral blood, bone marrow, spleen and lymph nodes.

• Signals from the B cell receptor (BCR) and the tissue microenvironment
converge on several key intracellular signaling pathways including the PI3K/
AKT, MAPK/ERK, and NF-κB pathways and promote leukemic cell
proliferation, survival, and resistance to chemotherapy.

• Tissue sites provide a supportive microenvironment composed of T-cells,
stromal cells, cytokines, chemokines and extracellular matrix components.

• The lymph node is a pivotal site of CLL cell activation and proliferation through
antigenic stimulation.

• The dependence of CLL cells on signals from the BCR and tissue
microenvironment presents opportunities for targeted therapy. Inhibitors of BCR
signaling and therapeutic approaches to “chemically dissect” CLL cells from the
supportive microenvironment have shown encouraging clinical results.
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Figure 1.
The CLL microenvironmental signalosome: the convergence of microenvironmental-
induced signaling responses into biochemical pathways within CLL cells.
Microenvironmental elements ( ) including cells (e.g. T-cells, nurse-like cells), the
extracellular matrix (ECM) and enzymes (e.g. MMP9) stimulate CLL cells either directly
(arrows) or via mediators such as cytokines and chemokines (dashed arrows). These
extracellular triggers converge into an array of intracellular biochemical responses ( ),
resulting in the up-regulation of MYC and anti-apoptotic proteins ( ), as well as additional
cellular responses.
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Figure 2.
The B-cell receptor – a signaling complex that delivers microenvironmental-derived
information into the CLL cell. The sIgM serves as the backbone of the BCR, and is
associated with other transmembrane molecules (e.g. CD19, CD21). The transmembrane
components of the BCR associate with a variety of enzymes (e.g. SYK, BTK) and scaffold
proteins (e.g. BLNK) to form a signaling complex. This complex translates extracellular
cues, predominantly antigenic stimulation, into CLL cellular responses including survival,
proliferation, adhesion and migration (arrow). Tonic or cell-autonomous activation (dashed
arrow) does not require extracellular stimuli.
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Figure 3.
Therapeutic targeting of microenvironmental-induced signaling in CLL. Current and
experimental CLL therapeutics (arrows) target the various components of the
microenvironment-CLL milieu and its associated signaling network. Thus the BCR and its
associated components are targeted by antibodies (anti-CD19) or small molecules (e.g. SYK
(e.g. fostamatinib) or BTK inhibitors (e.g. ibrutinib)). Small molecules are also utilized to
inhibit mTOR, Akt, PI3K(δ) and the MAPK cascades. Extracellular inhibitors such as
plerixafor or atacicept can block the association of SDF-1 or BAFF/APRIL, respectively,
with their receptors on the CLL cell. Both the microenviroment (e.g. the immune system)
and the outcome of its signaling responses in the CLL cells (e.g. upregulation of BCL-2) are
avenues for therapeutic targeting.
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