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Aging Exacerbates Microvascular Endothelial Damage 
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The elderly patients show a significantly elevated mortality rate during sepsis than younger patients, due to their higher 
propensity to microvascular dysfunction and consequential multiorgan failure. We tested whether aging renders vascular 
endothelial cells more susceptible to damage induced by inflammatory factors present in the circulation during sepsis. 
Primary microvascular endothelial cells derived from young (3 months) and aged (24 months) Fischer 344 × Brown 
Norway rats were treated with sera obtained from sepsis patients and healthy controls. Oxidative stress (MitoSox fluores-
cence), death receptor activation (caspase 8 activity), and apoptotic cell death (caspase 3 activity) induced by treatment 
with septic sera were exacerbated in aged endothelial cells as compared with responses obtained in young cells. Induction 
of heme oxygenase-1 and thrombomodulin in response to treatment with septic sera was impaired in aged endothelial 
cells. Treatment with septic sera elicited greater increases in tumor necrosis factor-α expression in aged endothelial cells, 
as compared with young cells, whereas induction of inducible nitric oxide synthase, intercellular adhesion molecule-1, 
and vascular cell adhesion molecule did not differ between the two groups. Collectively, aging increases sensitivity 
of microvascular endothelial cells (MVECs) to oxidative stress and cellular damage induced by inflammatory factors 
present in the circulation during septicemia. We hypothesize that these responses may contribute to the increased vulner-
ability of elderly patients to multiorgan failure associated with sepsis.

Key Words:  Aging—Endothelial cells—Microcirculation—Microvascular injury—Bacteremia—Septicemia—Sepsis—
Septic shock. 

Received August 13, 2012; Accepted October 25, 2012

Decision Editor: Rafael de Cabo, PhD

Sepsis is a life-threatening systemic inflammatory 
disorder, which develops in response to an infection. 

Patients with severe sepsis exhibit refractory hypoten-
sion and disseminated intravascular coagulation that lead 
to multiorgan failure and, often, death. Epidemiological 
studies show that both the incidence and severity of sepsis 
significantly increase with age (1–4). Indeed, in developed 
Western countries, the median age of intensive care unit 
patients diagnosed with severe sepsis is close to 65 years 
of age (1,5,6). Importantly, geriatric patients also exhibit a 
significantly increased mortality of sepsis compared with 
young patients (1–4). Laboratory studies replicate these 
findings, demonstrating significant age-related increases 
in mortality to sepsis in rodents (7–10). The mechanisms 
underlying increased organismal vulnerability to sepsis in 
aging remain largely unknown (4).

Recent studies suggest that age-related increase in sepsis 
mortality, at least in part, is due to the higher propensity to 

microvascular thrombosis, inflammation, and consequen-
tial multiorgan failure in aged animals (10–14). Previous 
studies have shown that sepsis is associated with signifi-
cant oxidative–nitrosative stress in the vascular endothe-
lium (15–17). Furthermore, we have recently demonstrated 
that blood vessels of aged rodents and nonhuman primates 
exhibit impaired cellular resistance to oxidative injury (18–
20). Yet, there are no studies extant investigating age-related 
alterations in endothelial sensitivity to sepsis-induced oxi-
dative stress and cellular injury.

This study was designed to test the hypothesis that aging 
increases the vulnerability of MVECs to the deleterious 
effects of inflammatory factors present in the circulation of 
patients during sepsis. We assessed the prooxidative, proin-
flammatory, and proapoptotic effects of treatment with sera 
derived from sepsis patients and healthy control participants 
using cultured MVECs isolated from young and aged Fischer 
344 × Brown Norway (F344 × BN) rats, as a model system.
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Methods

Establishment and Characterization of Primary MVEC 
Cultures

F344 × BN rats were used as a model of aging, as this 
strain has a lower incidence of age-specific pathology than 
other rat strains. Male, 3- and 24-month-old, F344 × BN 
rats were obtained from the National Institute on Aging. 
All animals were disease free with no signs of systemic 
inflammation and/or neoplastic diseases. The rats were 
housed in an environmentally controlled vivarium under 
pathogen-free conditions with unlimited access to food 
and water and a controlled photoperiod (12 hour light; 12 
hour dark). All rats were maintained according to National 
Institutes of Health guidelines, and all animal use protocols 
were approved by the Institutional Animal Care and Use 
Committees of the participating institutions. The animals 
were euthanized with CO

2
. To establish primary MVECs, 

the brains were removed aseptically, rinsed in ice-cold phos-
phate-buffered saline (PBS) and minced into ≈1 mm squares. 
The tissue was washed twice in ice-cold 1× PBS by low-
speed centrifugation (50g, 2–3 minutes). The diced tissue 
was digested in a solution of collagenase (800 U/g tissue), 
hyaluronidase (2.5 U/g tissue), and elastase (3 U/g tissue) in 
1 mL PBS/100 mg tissue for 45 minutes at 37°C in rotating 
humid incubator. The digested tissue was passed through a 
100 µm cell strainer to remove undigested blocks. The sin-
gle cell lysate was centrifuged for 2 minutes at 70g. After 
removing the supernatant carefully, the pellet was washed 
twice in cold PBS supplemented with 2.5% fetal calf serum 
(FCS), and the suspension centrifuged at 300g, for 5 min-
utes at 4°C. To create an endothelial cell–enriched frac-
tion, the cell suspension was gradient centrifuged by using 
OptiPrep solution (Axi-Shield, PoC, Norway). Briefly, the 
cell pellet was resuspended in Hanks’ balanced salt solu-
tion and mixed with 40% iodixanol thoroughly (final con-
centration: 17% [w/v] iodixanol solution; ρ = 1.096 g/mL). 
Two millilitres of Hanks’ balanced salt solution was lay-
ered on top and centrifuged at 400g for 15 minutes at 20°C. 
Endothelial cells, which banded at the interface between 
Hanks’ balanced salt solution and the 17% iodixanol layer, 
were collected. The endothelial cell–enriched fraction was 
incubated for 30 minutes at 4°C in dark with anti-CD31/
PE (BD Biosciences, San Jose, CA), anti-MCAM/FITC 
(BD Biosciences). After washing the cells twice with 
MACS buffer (Milltenyi Biotech, Cambridge, MA), anti-
FITC magnetic bead–labeled and anti-PE magnetic bead–
labeled secondary antibodies were used for 15 minutes at 
room temperature. Endothelial cells were collected by 
magnetic separation using the MACS LD magnetic sepa-
ration columns according to the manufacturer’s guidelines 
(Milltenyi Biotech). The endothelial fraction was cultured 
on fibronectin-coated plates in endothelial growth medium 
(Cell Application, San Diego, CA) for 10 days. Endothelial 
cells were phenotypically characterized by flow cytometry 

(GUAVA 8HT, Merck Millipore, Billerica, MA). Briefly, 
antibodies against five different endothelial-specific mark-
ers were used (anti-CD31-PE, anti-erythropoietin receptor-
APC, anti-VEGF R2-PerCP, anti-ICAM-fluorescein, and 
anti-CD146-PE) and isotype-specific antibody-labeled frac-
tions served as negative controls. Flow cytometric analysis 
showed that after the third cycle of immunomagnetic selec-
tion, there were virtually no CD31-, CD146-, EpoR-, and 
VEGFR2-cells in the resultant cell populations. All antibod-
ies were purchased from R&D Systems (Minneapolis, MN).

Collection of Sera and Treatment of Endothelial Cells
This study was approved by the ethics committees of 

the participating institutions. All participants were enrolled 
after informed consent was obtained. Patients (n = 67) were 
diagnosed as having sepsis, severe sepsis, or septic shock 
according to the criteria of the American College of Chest 
Physicians/Society of Critical Care Medicine consensus 
conference, as described (21,22). After providing informed 
consent, patients older than 18 years were enrolled within 
the first 72 hours of the diagnosis of sepsis or 48 hours after 
the first organ dysfunction (severe sepsis) or refractory 
hypotension (septic shock). Patients were excluded from 
the study if they were known to be infected with human 
immunodeficiency virus, have any neoplastic disease, had 
received immunosuppressive agents, or were at risk of 
imminent death. The epidemiological data of the cohort 
studied have been previously reported (21,22). In brief, the 
mean age was 63.1 ± 17.3 years, and 62.7% were men. The 
primary sources of infection involved the lung (41.8%), 
abdomen (25.4%), and the urinary tract (13.4%). The mean 
age of healthy volunteers (n  =  32) was 59.6 ± 16.4  years 
and 62.5% were men. Serum samples obtained from septic 
patients and healthy volunteers were stored at −80°C.

Primary MVECs were initially cultured in MesoEndo 
Endothelial Cell Growth Medium (Cell Applications, Inc.) 
followed by endothelial basal medium supplemented with 
10% FCS until the time of serum treatment, as described 
(23–27). For treatment, FCS was replaced with serum (10%) 
from sepsis patients or from control participants. Cells cul-
tured in endothelial basal medium supplemented with 10% 
FCS served as an additional internal control. All reagents 
used in this study were purchased from Sigma-Aldrich (St. 
Louis, MO) unless otherwise indicated.

Measurement of MitochondrialO2
.− Production

MitochondrialO2
.− production in cultured cells from young 

and aged rats was measured by flow cytometry (Guava 8HT) 
using MitoSOX Red (Life Technologies), a mitochondrion-
specific hydroethidine-derivative fluorescent dye (28,29), as 
previously reported (23,26,30–32). After 24 hour treatment 
with human sera (control vs septic), primary endothelial 
cells were incubated with MitoSox (5 μmol/L at 37°C for 
30 minutes), then centrifuged, and washed with PBS. Cell 
debris (low forward and side scatter) and dead cells (Sytox 
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Green positive) were gated out prior to analysis. The data 
are presented as mean intensity of MitoSOX fluorescence, 
normalized to the respective mean fluorescence intensities 
obtained in FCS-treated rat endothelial cells.

Assessment of Apoptotic Cell Death
Caspase 3/7 and caspase 8 activities in young and aged 

endothelial cell lysates were measured using Caspase-Glo 
3/7 and Caspase-Glo 8 assay kits according to the manu-
facturer’s guidelines (Promega, Madison, WI) as previously 
reported (33–35).

Quantitative Real-Time RT-PCR
A quantitative real-time RT-PCR technique was used to 

analyze mRNA expression of Hmox1, Thbd, Nos2, Icam1, 
Vcam, Tnfa, and Il6 in sera-treated MVECs, as previously 
reported (34,36–39). In brief, total RNA was isolated with 
a Power SYBR Green Cells-to-Ct Kit (Invitrogen) and was 
reverse transcribed using the same Kit. mRNA expression 
was analyzed using a Strategen MX3000 platform. 
Amplification efficiencies were determined using the 
dilution series of a standard vascular sample. Quantification 
was performed using the efficiency-corrected ΔΔCq method. 
The relative quantities of the reference genes Gapdh, Hprt, 
and Actb were determined, and a normalization factor 
was calculated based on the geometric mean for internal 
normalization. Oligonucleotides used for quantitative real-
time RT-PCR are listed in Table  1. Fidelity of the PCR 
reaction was determined by melting temperature analysis 
and visualization of product on a 2% agarose gel.

Data Analysis
Statistical analyses of data were performed by one-way 

ANOVA. p < .05 was considered statistically significant. 
Data are expressed as means ± SEM.

Results

Effect of Treatment with Septic Sera on Programmed Cell 
Death in Cultured MVECs

Induction of endothelial apoptosis is an important mech-
anism that contributes to microvascular injury in sepsis. 

Our results show that MVECs derived from aged rats tend 
to exhibit higher level of caspase 3/7 and caspase 8 activ-
ity, as compared with young cells in the presence of con-
trol sera (Figure  1A and 1B). Treatment with septic sera 
induced apoptosis both in young and aged MVECs, as 
shown by the increased caspase 3/7 and caspase 8 activi-
ties (Figure 1A and 1B). The increase in caspase 3/7 and 
caspase 8 activities in aged cells upon treatment with septic 
sera was significantly greater than that in young cells, indi-
cating an age-related exacerbation of endothelial apoptosis 
under septic conditions (Figure 1A and 1B).

Effect of Treatment With Septic Sera on Oxidative Stress 
in Cultured MVECs

On the basis of recent advances in understanding of the 
apoptotic process, microvascular aging and age-related 
changes in organ function (18,40–47), we focused on 
the effects of aging on septic sera-induced mitochondrial 
oxidative stress. Increased mitochondrial oxidative stress 
has been shown to impair endothelial function, induce 
inflammatory gene expression, and promote apoptosis in 
endothelial cells. MVECs derived from aged rats exhibited 
higher level of mitochondrial reactive oxygen species (ROS) 
production as compared with young cells in the presence of 
control sera (Figure 2). Treatment of both young and aged 
MVECs with septic sera resulted in a significant increase 
in mitochondrial oxidative stress. The increase in MitoSox 
fluorescence in aged cells upon treatment with septic sera was 
significantly greater than that in young cells, indicating an 
age-related exacerbation of mitochondrial ROS production 
under septic conditions (Figure 2).

Effect of Treatment with Septic Sera on Expression of 
Cytoprotective Factors and Inflammatory Markers in 
Cultured MVECs

To assess the effect of aging and factors present in the 
circulation of septic patients on endothelial expression of 
cytoprotective factors and inflammatory markers, we ana-
lyzed mRNA expression of Hmox1, Thbd, Nos2, Icam1, 
Vcam, Tnfa, and Il6. We found that sera from septic patients 
upregulated expression of Hmox1 (Figure  3A) and Thbd 
(Figure 3B) in young endothelial cells, but not in aged cells. 

Table 1.  Oligonucleotides Used for Real-Time RT-PCR

mRNA targets Description Sense Antisense

Hmox1 Heme oxygenase 1 (HO-1) GGCTGTGAACTCTGTCTC GGCATCTCCTTCCATTCC
Thbd Thrombomodulin GGGACTTTGCTTTAATGAA CCAATTCTTGTGTATAGGC
Nos2 Inducible nitric oxide synthase (iNOS) CTCTTTCCTTTGCCTCATACTTCC GCTAAATATTAGAGCAGCGGGATG
Icam-1 Intercellular adhesion molecule-1  CACAGCCTGGAGTCTC CCCTTCTAAGTGGTTGGAA
Vcam Vascular cell adhesion molecule 1 CAGCCTAATTTTATTCCTATGC GAAACACGTCCCCGTA

Tnf-α Tumor necrosis factor-α AACCACCAAGCAGAGGAG CTTGATGGCGGAGAGGAG

IL-6 Interleukin-6 TACCCCAACTTCCAATGC GATACCCATCGACAGGAT
Hprt Hypoxanthine phosphoribosyltransferase 1 AAGACAGCGGCAAGTTGAATC AAGGGACGCAGCAACAGAC
GAPDH Glyceraldehyde-3-phosphate dehydrogenase CCAAGGAGTAAGAAACCC TTGATGGTATTCGAGAGAAGG
ACTB Beta actin GAAGTGTGACGTTGACAT ACATCTGCTGGAAGGTG
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The expression levels of Nos2, Icam1, Vcam (Figure 4A–
4C), and Il6 (Figure  5B) did not differ between septic 
sera-treated young and aged MVECs. In contrast, after 
septic sera treatment, expression of Tnfa was significantly 
increased in aged MVECs as compared with that in young 
cells (Figure 5A).

Discussion
Serious complications, including oxidative damage to 

the microvascular endothelium and increased intravascular 
coagulation, are involved in multiple organ failure, leading 
to death of septic patients (48). The recent study reported 
that age-specific incidence of severe sepsis with multiorgan 

dysfunction increases ~100-fold in older patients (1). There 
are multiple age-related risk factors that contribute to the 
increasing incidence of severe sepsis in elderly patients (49), 
including immunological impairment (e.g., abnormal B and 
T cell function), comorbidities that require instrumentation 
(e.g., indwelling urinary catheters, central venous catheters, 
tracheotomies, peripherally inserted catheters), nutritional 
problems (malnutrition is commonplace in elderly patients 
as a result of inactivity, poor mobility, poor diets, chronic 
disease, dementia, depression, poor dentition, and polyphar-
macy), oropharyngeal colonization with gram-negative bacilli 
and institutionalization (in long-term care facilities bacterial 
flora often demonstrate a level of resistance higher than that 
seen in the community). Mortality also steadily increases as 
patients age, with a peak of 38.4% in patients aged older than 
85 years (1). The mechanisms underlying age-related altera-
tions in the response of the body to systemic inflammation, 
resulting in multiple organ failure and increased mortality of 
severe sepsis in the elderly patients are less well understood.

Recent studies led to the development of the hypothesis 
that age-related alterations of the microvascular endothe-
lium contribute to increased mortality of sepsis in aged 
rodents (10–12,14). This study was designed to test a key 
prediction of this hypothesis, namely, that aging increases 
the vulnerability of MVECs to oxidative injury induced 
by inflammatory factors present in the circulation during 
sepsis. To test this hypothesis, we treated young and aged 
cultured primary MVECs with sera obtained from sepsis 
patients and healthy control participants. We focused on the 
effects of aging on septic sera–induced endothelial apopto-
sis, oxidative stress, and proinflammatory gene expression.

There is increasing evidence suggesting that endothe-
lial cell apoptosis plays a role in the pathogenesis of 

Figure 2.  Treatment with sera collected from septic patients elicits signifi-
cantly greater increases in mitochondrial oxidative stress in aged endothelial 
cells (EC) than in young cells. Mitochondrial O2

.− production was assessed 
using the MitoSox red fluorescence method. *p < .05 vs young ECs, #*< 0.05 
vs control serum treated. Data are mean ± SEM (n = 10–16).

Figure 1.  (A) Treatment with sera collected from septic patients elicits sig-
nificantly greater increases in apoptosis in aged endothelial cells (EC) than in 
young cells. Apoptotic cell death was assessed by measuring caspase 3 activity 
in cell lysates. *p < .05 vs young EC, #* < .05 vs control serum treated. Data 
are mean ± SEM (n = 10–16 for each group). (B) Treatment with sera collected 
from septic patients elicits significantly greater activation of the death recep-
tor pathway in aged ECs than in young cells. Death receptor activation was 
assessed by measuring caspase 8 activity in cell lysates. Note that aged cells 
treated with sera of healthy control paticipants also exhibited more caspase 8 
activity than the respective young controls. *p < .05 vs young EC, #*< .05 vs 
control serum treated. Data are mean ± SEM (n = 10–16).
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sepsis-induced multiorgan failure (48). Here, we demon-
strate that systemic factors present in the circulation of septic 
patients induce apoptosis in MVECs (Figure 1). Our results 
extend the findings of previous studies demonstrating that 
treatment of pulmonary MVECs with plasma collected from 
endotoxemic mice also results in significant increases in the 
rate of apoptosis (50). It is likely that multiple factors present 
in the sera of septic patients contribute to activation of pro-
grammed cell death in MVECs, including secreted cytokines 
(eg, tumor necrosis factor-α) and bacterial products (endo-
toxin, exotoxins of gram-positive bacteria, pore forming 
toxins, superantigens of gram-positive bacteria, components 
from the gram-positive bacterial cell wall, including soluble 
peptidoglycan and lipoteichoic acids) mediated by toll-like 
receptors (51). Accordingly, abundant in vitro studies sug-
gest that endothelial cell apoptosis can occur in response 
to administration of tumor necrosis factor-α (52), bacterial 
lipopolysaccharide and certain pathogenic organisms as 

well (53,54). Importantly, lipopolysaccharide was recently 
reported to disrupt ultrastructure of brain MVECs and to 
induce endothelial apoptosis (55). Interestingly, endothelial 

Figure 3.  Quantitative real-time RT-PCR data showing that treatment with 
sera collected from septic patients elicits significantly greater induction of 
mRNA expression of Hmox1 (A) and Thbd (B) in young endothelial cells (EC) 
than in aged ECs. *p < .05 vs young ECs, # *< .05 vs control serum treated. 
Data are mean ± SEM (n = 10–20).

Figure  4.  Quantitative real-time RT-PCR data showing that changes in 
mRNA expression of Nos2 (A), Icam1 (B), and Vcam (C), induced by treatment 
with sera collected from septic patients, in young and aged endothelial cells 
(EC) are not significantly different (n.s.). Data are mean ± SEM (n = 10–20).
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apoptosis in response to treatment with septic sera is associ-
ated with activation of caspase 8 (Figure 1B). The caspase 
8-dependent pathway of apoptosis is activated by ligand 
binding–induced trimerization of death receptors, which 
results in recruitment of the Fas-associated death domain 
(FADD). Activated caspase 8 is known to propagate the 
apoptotic signal either by directly cleaving and activating 
downstream caspases or by activating the mitochondrial 
pathway of apoptosis. It is significant that in vivo delivery 
of caspase 8-siRNA was reported to decrease mortality in 
septic mice (56). Yet, it remains to be determined whether 
the aforementioned protective effect was dependent upon 
the inhibition of endothelial apoptosis in the animal model 
used. Endothelial cells undergoing apoptosis express an 
increasingly procoagulant phenotype, promote leukocyte 

extravasation, and increase vascular permeability (48), all 
of which likely play a role in the development of sepsis-
induced multiorgan dysfunction. Importantly, we found 
that aged endothelial cells have an increased propensity to 
undergo apoptosis in response to treatment with septic sera, 
likely due to an increased activation of caspase 8-dependent 
pathways (Figure  1). We propose that increased endothe-
lial apoptosis contributes to the increased vulnerability and 
mortality of elderly patient with sepsis. Previous studies 
demonstrated that apoptosis is also an important mechanism 
of lymphocyte and gastrointestinal epithelial cell death in 
sepsis (57–60). Thus, further studies are warranted to test 
whether aging also increases the propensity of the aforemen-
tioned cell types to undergo apoptosis in response to factors 
present in the circulation of septic patients.

Oxidative stress plays a crucial role in endothelial injury 
during the pathogenesis of sepsis (11). Here, we demonstrate 
that systemic factors present in the circulation of sepsis 
patients induce significant oxidative stress in MVECs inde-
pendent of the effects of sepsis mediated by circulating cells 
(Figure 2), extending previous findings (61). In patients with 
sepsis, endothelial oxidative and nitrosative stress is thought 
to promote endothelial apoptosis and induce endothelial 
dysfunction impairing microvascular perfusion (16,62). 
Endothelial oxidative stress also promotes cellular ener-
getic failure and proinflammatory responses by activating 
the nuclear enzyme poly(ADP-ribose) polymerase-1 (63–
67). Here, we provide new evidence that aging exacerbates 
endothelial oxidative stress induced by inflammatory factors 
present in the circulation during sepsis (Figure  2), which 
likely plays a role in induction of apoptosis and predispose 
aged individuals to microcirculatory failure in sepsis. This 
finding accords with the results of previous studies showing 
that during endotoxemia aged mice, compared with young 
mice, exhibit significantly higher level of oxidative–nitrative 
stress in the pulmonary vascular endothelium (11).

The mechanisms underlying the increased vulnerability 
of aged endothelial cells to oxidative stress-mediated injury 
are not completely understood. Recently, we have shown 
that in aged vessels increased production of reactive oxy-
gen species fails to activate the transcription factor nuclear 
factor-erythroid 2–related factor 2 (Nrf2), which has a cen-
tral role in regulating cellular oxidative stress resistance by 
controlling the expression of numerous genes for proteins 
(eg, heme oxygenase-1) that participate in detoxification 
of ROS during stress conditions (18–20). We demonstrated 
that the lack of ROS-induced adaptive Nrf2-driven upregu-
lation of antioxidant enzymes contributes to the impaired 
oxidative stress resistance of the aged vasculature under 
conditions of metabolic stress (18–20). Nrf2 also confers 
important anti-inflammatory effects through upregulation 
of heme oxygenase-1 (68,69). Our findings that sera from 
septic patients upregulate the Nrf2 target gene heme oxy-
genase-1 in young endothelial cells, but not in aged cells 
(Figure 3A), support the idea that age-related vascular Nrf2 

Figure 5.  (A) Quantitative real-time RT-PCR data showing that treatment 
with sera collected from septic patients elicits significantly greater induction 
of mRNA expression of tumor necrosis factor-α in aged endothelial cells (EC) 
than in young ECs. *p < .05 vs young ECs. Data are mean ± SEM (n = 10–20). 
(B) Changes in mRNA expression of interleukin-6 induced by treatment with 
sera collected from septic patients are not significantly different (n.s.) between 
young and aged ECs. Data are mean ± SEM (n = 10–20).
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dysfunction may contribute to the increased vulnerability 
of aged animals to sepsis. Further support for this concept 
is provided by studies showing that genetic disruption of 
Nrf2 signaling dramatically increases mortality of mice in 
response to experimentally induced septic shock (70–74).

Thrombomodulin is a glycoprotein expressed on the 
surface of endothelial cells, which exerts significant vaso-
protective and anticoagulant effects in sepsis by serving 
as a cofactor in the thrombin-induced activation of pro-
tein C.  Increased shedding of thrombomodulin from the 
endothelial surface in sepsis associates with the develop-
ment of multiorgan failure (75,76). Interestingly, we found 
that following treatment with septic sera expression of 
thrombomodulin was decreased in aged endothelial cells as 
compared with that in young cells (Figure 3B). This find-
ing is potentially important as previous studies demonstrated 
that an age-dependent loss of thrombomodulin in pulmonary 
microvessels during endotoxemia may contribute to aug-
mented coagulation and increased mortality in aged mice 
(10). Furthermore, there is clinical evidence that adminis-
tration of recombinant human thrombomodulin may prevent 
multiorgan dysfunction in patients with sepsis-induced DIC 
(77). The factor(s) that regulate endothelial thrombomodulin 
expression and release under septic conditions may include 
heme oxygenase-1-dependent pathways (78) and inflamma-
tory cytokines (eg, tumor necrosis factor-α [75]).

Increased ROS production was shown to promote 
endothelial activation and vascular inflammation by activat-
ing redox-sensitive transcription factors including nuclear 
factor kappa-B (NF-κB [79–81]). As predicted, in septic 
sera–treated endothelial cells increased oxidative stress 
tended to be associated with an increased expression of 
inducible nitric oxide synthase, adhesion molecules, and 
inflammatory cytokines. Interestingly, contrary to our pre-
diction (82) after septic sera treatment only expression of 
tumor necrosis factor-α was significantly increased in aged 
endothelial cells as compared with that in young cells. 
Previous studies demonstrate that the pattern of endotox-
emia-induced inflammatory gene expression shows consid-
erable organ specificity in aged mice (12,13). Thus, further 
studies are warranted to characterize the expression pattern 
of a wide set of inflammatory markers in young and aged 
endothelial cells treated with septic sera.

Taken together, aging increases sensitivity of MVECs 
to oxidative stress and cellular damage induced by inflam-
matory factors present in the circulation during septicemia. 
These results can partly explain the age-associated increase 
in susceptibility to microvascular dysfunction and multior-
gan failure associated with sepsis.
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