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Abstract
High-order cubic Hermite finite elements have been valuable in modeling cardiac geometry, fiber
orientations, biomechanics, and electrophysiology, but their use in solving three-dimensional
problems has been limited to ventricular models with simple topologies. Here, we utilized a
subdivision surface scheme and derived a generalization of the “local-to-global” derivative
mapping scheme of cubic Hermite finite elements to construct bicubic and tricubic Hermite
models of the human atria with extraordinary vertices from computed tomography images of a
patient with atrial fibrillation. To an accuracy of 0.6 millimeters, we were able to capture the left
atrial geometry with only 142 bicubic Hermite finite elements, and the right atrial geometry with
only 90. The left and right atrial bicubic Hermite meshes were G1 continuous everywhere except
in the one-neighborhood of extraordinary vertices, where the mean dot products of normals at
adjacent elements were 0.928 and 0.925. We also constructed two biatrial tricubic Hermite models
and defined fiber orientation fields in agreement with diagrammatic data from the literature using
only 42 angle parameters. The meshes all have good quality metrics, uniform element sizes, and
elements with aspect ratios near unity, and are shared with the public. These new methods will
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allow for more compact and efficient patient-specific models of human atrial and whole heart
physiology.
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Cubic Hermite finite elements; patient-specific cardiac models; atrial anatomy

1. Introduction
Computational models of cardiac biomechanics and electrophysiology have been used to
study normal cardiac physiology (Kerckhoffs et al., 2007; Niederer et al., 2011) and
pathological conditions such as heart failure (Kerckhoffs et al., 2010) and atrial fibrillation
(Ashihara et al., 2012; Comtois and Nattel, 2011; Gong et al., 2007; Haissaguerre et al.,
2007; Jacquemet et al., 2003; Tobón et al., 2008). Recent advances in non-invasive imaging
technology have made it feasible to generate patient-specific computational models of the
atria and the ventricles, and these models show promise for improving the interpretation of
clinical data from patients.

High-order cubic Hermite finite element interpolation schemes have been popular in
ventricular finite element modeling: they capture smooth geometries with few finite
elements, they can be subdivided to have more degrees of freedom while preserving exact
shape, and they represent anisotropy compactly and smoothly by means of fiber angle fields
referred to local coordinate axes. Furthermore, cubic Hermite and other high-order solution
spaces have convergence advantages in finite element simulations of ventricular
biomechanics (Costa et al., 1996) and electrophysiology (Arthurs et al., 2012; Rogers et al.,
1996) compared with linear solution spaces, and give rise to continuous currents between
elements in electrophysiology problems and continuous stresses between elements in
biomechanics problems. The continuity of field solutions in these finite element problems
necessitated the use of a “local-to-global mapping” proposed by Nielsen (1987) to define a
global set of finite element basis functions and to allow for arc-length continuity between
finite elements of different sizes.

A limitation of cubic Hermite finite element problems of the ventricles is that the geometries
must be described by a single set of parametric coordinates on a regular grid to guarantee
smoothness. Each atrium has a smooth shape and thus could be described compactly by
cubic Hermite elements, but the irregular atrial shapes require that such a mesh be
discretized into a number of sub-regions, each with its own set of parametric coordinates. At
the interface between these regions, there will be vertices with an irregular number of
neighboring elements, known as extraordinary vertices. In quadrilateral meshes,
extraordinary vertices are best placed at critical points of the principal curvature field to
prevent element skew (Alliez et al., 2003) and to capture regions of high curvature. Even so,
regions of high curvature are often captured poorly by linear elements compared with high-
order finite elements. Moreover, placement of extraordinary vertices is adversely affected by
the noise in medical imaging, which worsens calculation of the principal curvature field.

Here we describe new methods for constructing high-quality bicubic and tricubic Hermite
finite element meshes of the atria with extraordinary vertices derived from segmentation of
non-invasive imaging data. In our patient, we accurately capture the endocardial surface of
the left atrium with only 142 bicubic Hermite finite elements, and the endocardial surface of
the right atrium with only 90. These meshes are then used to construct a tricubic Hermite
biatrial model. Our methods can be applied to atria with variations in pulmonary vein
anatomy, wall thicknesses, and fiber architecture, as these variations are important
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components of patient-specific atrial models (Dössel et al., 2012; Hanna et al., 2011;
Jacquemet et al., 2008). As geometric models from in vivo imaging studies are often output
as fine triangulations, our methods could be utilized to construct coarse, high-quality models
of other irregularly shaped structures as well.

The organization of this paper is as follows: First, we show that a coarse, high-quality atrial
mesh can be constructed using a minimum set of extraordinary vertices computed by the
Euler characteristic number of the atrium, and that finer geometric details can be captured if
additional extraordinary vertices are utilized. Second, we show how Hermite derivatives can
be calculated from a linear mesh using a subdivision surface scheme. Third, we show how
the local-to-global mapping customarily used in cubic Hermite interpolation can be
generalized to meshes with extraordinary vertices to preserve smoothness between elements
and to define global basis functions for finite element problems. We then use the global
basis functions to solve a penalized least-squares finite element problem and capture the
atrial geometries to the accuracy of the segmented data. Fourth, we show our models
provide a convenient way to approximate atrial fiber architecture compactly and give rise to
smooth fiber orientations between elements. Last, we show that our methods extend readily
to patients with anomalous pulmonary vein anatomies, and discuss how precise C1 and G1
continuity can be achieved near extraordinary vertices.

All of the atrial models described here are available to the public in a database as part of the
Continuity software project (http://www.continuity.ucsd.edu).

2. Methods
2.1. Definitions

Two contours (surfaces) have tangent continuity, or G1 continuity, at their joining point
(edge) if their tangent (normal) vectors point in the same direction. If their magnitudes are
also equal in their current parameterizations, they have parametric (C1) continuity. Two
contours f and g are arc-length continuous if df / ds = dg / ds for the differential of the arc-
length function ds; as defined, continuity of arc-length requires G1, but not C1 continuity.
Barsky and DeRose (1989) elaborate the differences in more detail. We sometimes call a
surface “smooth” to indicate it is nearly, but not precisely G1 continuous; we elaborate this
choice of terminology in Results, Section 3.1.

We define an ordinary vertex to be a vertex on a surface having four connected surface
edges; otherwise, it is extraordinary, unless on a boundary. The valence of a vertex is the
number of connected surface edges; an ordinary vertex not lying on a boundary has valence
four. The elements containing an extraordinary vertex constitute its one-neighborhood.
Continuity around an extraordinary vertex means continuity along the common edges in its
entire one-neighborhood, and continuity at an extraordinary vertex means continuity in the
infinitesimal neighborhood around the point.

Derivative parameters of cubic Hermite interpolation with respect to the parametric
coordinates ξ are called local derivatives, and their dual basis functions ψ are called local
basis functions. Derivative parameters transformed into the arc-length coordinatess are
called global derivatives or ensemble derivatives, and their dual basis functions ψ* called
global basis functions or ensemble basis functions.

We refer to the interpolating subdivision scheme utilized in this paper as the Li-Kobbelt
subdivision scheme (Li et al., 2005). We use Li-Kobbelt subdivision to calculate Hermite
derivatives, and also can use it to refine linear meshes. In contrast, we refine cubic Hermite
meshes by interpolating the coordinate functions of each element to interior points. We refer

Gonzales et al. Page 3

Med Image Anal. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.continuity.ucsd.edu


to this subdivision as refinement by Hermite interpolation. Both Li-Kobbelt subdivision and
refinement by Hermite interpolation add only ordinary vertices to the refined meshes—the
number of extraordinary vertices remains unchanged.

2.2. Overview
A 68 year-old male was referred to the Veterans Administration Hospital, San Diego for
surgical ablation of his persistent atrial fibrillation. He gave informed consent to participate
in an Institutional Review Board-approved study and underwent a clinically-indicated
computed tomography (CT) study (General Electric 64-slice Lightspeed CT Scanner,
0.5×0.5×0.625 mm) with retrospective electrocardiogram gating. Images were segmented
manually with the assistance of an expert cardiac radiologist (P.S.) and structures (left
atrium, right atrium, tricuspid valve, and mitral valve) were triangulated using a marching
cubes algorithm implemented in ITK-SNAP (www.itksnap.org; Yushkevich et al., 2006).
The triangular models were smoothed and coarsened with feature-preservation using
GAMer (www.fetk.org/gamer; Yu et al., 2008). The crista terminalis was identified readily
in the imaging study as a muscular protrusion in the intercaval region of the right atrium.
Owing to insufficient contrast in the imaging study, we were unable to identify Bachmann's
bundle or determine atrial wall thicknesses.

Quadrilaterals were overlaid manually onto the endocardial surface triangulations of the left
and right atria. Using visual estimation, extraordinary vertices were placed in accordance
with principal directions of curvature, and were most often placed at apparent saddle points
of the triangular surfaces. The left atrial mesh had 142 elements, and the right atrial mesh
had 90. To improve element quality, a regularization step was employed on the left and right
endocardial surface meshes using a scheme by Ohtake et al. (2000). The linear quadrilateral
meshes were used to calculate bicubic Hermite derivative parameters using the Li-Kobbelt
subdivision scheme (Section 2.3). The generalized “local-to-global map” commonly used in
cubic Hermite interpolation was used to enforce smoothness at ordinary vertices (Section
2.4) as well as extraordinary vertices (Section 2.5). A geometric optimization scheme
(Section 2.6) was used to deform the left and right atrial surface meshes to the vertices of
the smoothed triangular meshes obtained above until root-mean squared (RMS) error was
0.62 mm (the largest voxel dimension). We then tested G1 continuity near extraordinary
vertices in the geometrically optimized left and right atrial meshes and also in subdivided
versions of these meshes (Results, Section 3.1). We calculated the quality metrics of our left
atrial mesh and compared them to the quality metrics of a geometrically optimized left atrial
mesh constructed from the same patient, but using a different pattern of extraordinary
vertices and only 103 elements (Results, Section 3.2).

The left and right atrial surface meshes were refined by Hermite interpolation of coordinates
until mean edge length was approximately 2.0 mm. Left and right atrial hexahedral meshes
were constructed by extruding the endocardial surface meshes outward in the vertex normal
direction 2.0 mm in most regions (Supplemental Data, Table S1). Literature values were
used to assign thicknesses to the left atrial roof (Hall et al., 2006), the pulmonary veins (Ho
et al., 2001), and the posterior wall of the left atrium (Platonov et al., 2008). Hexahedra
representing Bachmann's bundle, the limbus of the fossa ovalis, the coronary sinus, and two
inferoposterior bridges were used to connect the two atria. A tricubic Hermite hexahedral
mesh having 9,486 elements was constructed using Li-Kobbelt subdivision generalized to
volumes, and then the local-to-global map was applied again to enforce smoothness. Using
refinement by Hermite interpolation, a second mesh having 75,888 elements was
constructed.

Atrial fiber orientations were defined as angles relative to local finite element coordinate
axes. One angle at each point defines orientation if atrial fibers are assumed not to lie
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oblique to endocardial and epicardial surfaces—otherwise, two are required. We captured
the principal directions of fiber tracts in our geometric model using consensus fiber
orientations described in multiple studies (Cabrera et al., 2008; Ho and Sanchez-Quintana,
2009; Nathan and Eliakim, 1966; Papez, 1920; Wang et al., 1995). We visually compared
our results to the description of fiber architecture of Wang and colleagues (Section 3.3).
Local angles were represented by a linearly interpolated field with Lagrange basis functions.
In most regions (35 of 42 in BiA-75888), the fiber orientation was defined to coincide with
the first coordinate axis (i.e., angle zero). In the remaining regions, angles (Supplemental
Data, Table S1) were assumed constant with respect to local coordinate axes. Loci of gross
discontinuity between fiber tracts (e.g., each lateral border of the septopulmonary bundle)
lay at the interface of adjacent mesh regions by construction. Since BiA-9486 was one layer
of hexahedra thick, it was unable to capture the abrupt differences in fiber orientation
between the subepicardium and the subendocardium known to exist in the posterior left
atrial wall and the region of the crista terminalis (Papez, 1920). These transmural differences
of fiber orientation were included in BiA-75888 (Figure S1), which has two layers of
hexahedra. Fibers in the crista terminalis were defined to course in a superior-inferior
direction.

A schematic diagram of the process is displayed in Figure 1.

2.3. Construction of bicubic and tricubic Hermite meshes using subdivision surfaces
A unitary tricubic Hermite hexahedron is constructed as a mapping from the parametric
space (ξ1, ξ2, ξ3) to the coordinate system (Y1, Y2, Y3). Each coordinate function Y is
expressed as a linear combination of geometric coefficients yi in a set of basis functions ψi
(Eq.1)

Eq.1

The geometric coefficients are coordinate values and coordinate derivatives in the
parametric space (e.g., ∂Y/∂ξ1), whereas basis functions ψ are tensor products of cubic
Hermite polynomial basis functions Φ. A bicubic Hermite hexahedron constructed similarly,
but with only two parametric coordinates (ξ1, ξ2) and only sixteen geometric coefficients
and basis functions. More complete descriptions of cubic Hermite splines are given
elsewhere (Nielsen et al., 1991; Petera and Pittman, 1991).

Bicubic and tricubic Hermite meshes were constructed from linear quadrilateral and linear
hexahedral meshes based on a subdivision surface scheme. A subdivision surface scheme
can be used recursively to subdivide a linear surface mesh into more refined instances of
itself. Customarily, a sequence of subdivision surfaces will have C1 or C2 continuity
properties in a piecewise-linear sense in the infinite limit. Here, we truncate the subdivision
surface sequence after two iterations, giving rise to cubic Hermite elements that are nearly
but not precisely C1 continuous (see Section 4.2). In contrast to most subdivision schemes,
such as that of Catmull and Clark (1978), interpolating subdivision schemes feature vertices
in the “parent” surface that remain stationary in each subdivided “daughter” surface. Owing
to this constraint, interpolating subdivision captures geometric features that otherwise would
be lost, whereas non-interpolating subdivision schemes smooth a surface after comparatively
fewer iterations of subdivision.

For an interpolating subdivision surface scheme, the natural correspondence between a
parent quadrilateral and the sixteen quadrilaterals resulting from two subdivisions provides a
means to select derivative parameters for cubic Hermite interpolation. The global and
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parametric coordinates of 16 of the 25 vertices (21 are newly-added) can be selected to
construct a linear system (Eq.2) in the 16 unknown derivative parameters of cubic Hermite
interpolation in one quadrilateral from the parent surface. Adjacent vertices lie ξ = 0.25
apart in the parametric coordinates of the parent quadrilateral (Figure 2). In the present
work, we used Li-Kobbelt subdivision to select cubic Hermite derivative parameters because
it gives rise to C1 continuity and finite Gaussian curvature at ordinary and extraordinary
vertices in the infinite limit.

Eq.2

A similar scheme was used to define cubic Hermite derivative parameters for hexahedral
meshes: a twice-subdivided hexahedron became 64 hexahedra having 125 vertices, 64 of
which were selected to calculate the 64 geometric degrees of freedom of each coordinate
function. The interpolating subdivision surface scheme used above was extended to solids
by applying the scheme separately to each surface in the model, and using linear
interpolation to place new vertices between corresponding surfaces. The use of linear
interpolation to place internal vertices (i.e., between surfaces) adversely affected element
quality and led to inverted elements in some cases; these problems could be avoided by
applying one scheme to minimize element skew (Zhang et al., 2007a) and another to
regularize hexahedral element volumes (Vartziotis and Wipper, 2011).

2.4. Interpolation near ordinary vertices: A review
A spatial domain discretized into quadrilaterals or into hexahedra constructed as tensor
products of cubic polynomials is guaranteed to be C1 continuous everywhere except at the
boundary interfacing neighbor elements. Tangent (G1), parametric (C1), or arc-length
continuity may be enforced at element interfaces. Parametric derivatives of equal magnitude
may have different arc-length derivatives (speeds), as noted by Nielsen (1987). Arc-length
continuity may be preferred to parametric continuity in finite element analysis because the
arc-length connects derivatives to physical space—∂u/∂S1 is the directional derivative for an
arbitrary scalar-valued function u in the direction tangent to the ξ1 contour—in contrast, the
derivative ∂u / ∂ξ1 has only mathematical significance. Consequently, Nielsen proposed arc-
length derivatives be used as an “ensemble” coordinate frame at each mesh vertex to define
a canonical length of tangent vectors—the collection of ensemble, or global, field
parameters and their dual basis functions would then be used as the functional space for a
finite element problem, and arc-length derivatives computed would be consistent in
neighboring elements. Fernandez et al. (2004) suggested nodal tangent vectors have unit arc-

length magnitude (i.e., ∥ df / ds ∥= 1 for ), and local parametric derivatives (i.e., df /
dξ) be calculated using non-linear iteration of the arc-length equation, with the
approximation that arc-length (speed) of each contour is constant. Using this scheme, an arc-
length parameterization of the cubic Hermite splines is unnecessary—only the integrated
arc-length function need be considered. Surface derivative terms in the two frames are
related by

Eq.3

Eq.4
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Where s is the ensemble frame, ξ is the local frame, and the terms ∂s / ∂ξ are the scalar
correctors determined by integration of the arc-length equation.

Henceforth, continuity would be imposed among neighboring cubic Hermite elements using
a matrix of these scalar correctors, or “scale factors”. The matrix of scale factors is a
derivative map (Jacobian) for a change-of-coordinates transformation between “local”
parametric coordinate systems of the element, and “global” ensemble coordinate systems of
Nielsen. In the present work, we use the scale factors described in Eq.3 and Eq.4 to enforce
arc-length continuity at ordinary vertices, and to enforce G1 continuity along the contours
joining ordinary vertices (see Discussion, Section 4.2).

2.5. Interpolation near extraordinary vertices
In a mesh with only ordinary vertices, the derivative maps between element and global
coordinate systems will only scale vector magnitudes. More generally, the derivative maps
may also transform vectors between coordinate systems whose axes are skew to one another.
In a mesh with extraordinary vertices, it is necessary to utilize derivative maps this way: if
local coordinate vectors and ensemble coordinate vectors are skew to one another, a linear
transformation maps the components of a vector in one frame to components in a new
frame.

Thence, the normed coordinate axes of one reference element at each extraordinary vertex
may be selected as the local ensemble frame (Figure 3), and a linear transformation Γ
computed for each element containing that vertex. The matrix values in the linear
transformation Γ are obtained by finding the contravariant components of local coordinate
vectors of an element in the ensemble frame. First, ensemble tangent vectors of form

 are arranged in matrix columns ∀i, and the dual basis vectors
computed by the matrix inverse (or the matrix pseudoinverse for surfaces). Second, for the

local coordinate vector expanded in the reference frame , the ith component

 of the jth local coordinate vector ∂ / ∂ξj can be computed in ensemble coordinates with
the dot product

Eq.5

Where the star indicates the dual basis vector. Thus calculated, the relationship between
vectors in local coordinates and ensemble coordinates is

Eq.6

instead of Eq.3, where the term . The indices i, j = {1, 2} for surfaces and i, j =
{1, 2,3} for volumetric solids.

The second and third-order mixed derivatives ∂2Y / ∂ξi∂ξj(i ≠ j) and ∂3Y / ∂ξ1∂ξ2∂ξ3 are
selected from the element whose basis vectors are chosen to coincide with the local
ensemble frame, and determined in other elements with the chain rule (Appendix).

Cubic splines such as Hermites have degrees of freedom sufficient to enforce C1 continuity
at regular vertices, but insufficient to enforce C1 continuity near extraordinary vertices.
Continuity for cubic splines is achieved only for special configurations of the vertex “one-
neighborhood” (Wang and Zhang, 2010). Using Eq.2 to select Hermite derivative

Gonzales et al. Page 7

Med Image Anal. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



parameters does not guarantee C1 continuity because we truncate the subdivision surface
sequence at its second member. If some deviation from C1 continuity can be tolerated,
special configurations in the one-neighborhood of the extraordinary vertex need not be
utilized, and regions of high curvature can be captured at coarser mesh resolutions
(Discussion, Section 4.2). In the present work, we tolerate this deviation from C1 and G1
continuity (Results, Section 3.1).

2.6. Global basis functions are dual to the ensemble frame
In functional analysis and differential geometry, vector coefficients and basis set are
mathematically dual to one another. The choice of an ensemble frame at each vertex defines

the dual ensemble (i.e., global) set of basis functions  required for a finite
element problem. As finite element equations are written in “local” element basis functions,
they must be transformed to the global frame—this transformation was termed the “element-
to-ensemble mapping” by Nielsen (1987). For non-derivative values (and thus for linear
finite elements), the transformation is Boolean, but in general is real-valued and linear in the
local element degrees of freedom.

Let the matrix Γ encapsulate the chain rule transformation from ensemble (global)
coefficients to element (local) coefficients in the functional space spanned by the tensor
product Hermite basis functions (Eq.1). As discussed in Section 2.4 and Section 2.5, Γ
effects the transformations given by Eq.3, Eq.4, Eq.6, and Eq.A1–Eq.A4. The column vector
of global coefficients u* are transformed to local coefficients u by

Eq.7

Where we use u for the coefficient vector to emphasize it may be for any field interpolant,
not exclusively a coordinate function, previously represented by y. Defined this way, the
matrix transpose ΓT transforms the column vector of local basis functions ψ to the column
vector of global basis functions ψ* —again an encapsulation of the chain rule, but for the
basis functions, dual to the coefficients

Eq.8

It is worthwhile to emphasize Γ, as defined, maps coefficients from global to local, whereas
ΓT maps basis functions from local to global, if both operate on column vectors. An analog
in differential geometry might be more familiar: for some change-of-coordinates

, the associated Jacobian matrix J transforms tangent vectors from ,
whereas JT transforms dual vectors from . The matrices J−1 and J−T enact the other
transformations.

The product of local basis functions often appears in finite element problems in an integral

Eq.9

Where the domain Ω is one element, and i and j are indices for element basis functions. In
matrix form, the product of local basis functions is the Cartesian product ψ ⊗ ψ, which
transforms to the global frame as would a second-order tensor

Eq.10

With these basis function transformations applied to the finite element problem, the
unknown coefficients are determined in the ensemble (global) frame.
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We tested the behavior of our methods in a finite element problem with regularized least-
squares optimization (see Results, Section 3.2). The objective function F can be written
(Fernandez et al., 2004)

Eq.

11

Where u is a vector of field variables, d is an index over data points, ud is the value of the
field for data point d, ξd are the parametric coordinates of the dth data point projected onto a
surface, u(ξd) are the interpolated field coefficients for data point d, Ω is the finite element
domain, and αk is the Sobolev smoothing weight for the kth derivative term. The choice of
smoothing weights is arbitrary, but we used αk = 1 for the smoothing weights multiplied
with the first derivative terms ∂u / ∂ξ1 and ∂u / ∂ξ2, and αk = 5 for the other three
smoothing weights multiplied with second derivative terms, whenever Eq.11 is used in this
paper. Detailed guidelines for the choice of smoothing weight values are described
elsewhere (Mazhari et al., 1998). The data points fitted were the vertices from the marching
cubes surface triangulations of segmented endocardial surfaces after geometric fairing with
feature preservation by GAMEr (Yu et al., 2008). The data point parametric coordinates ξd
were determined as follows: First, all bicubic Hermite patches were tessellated into fine
triangles. Second, the triangles to which each data point projects normally were identified.
Last, the triangle with minimum distance to each data point was identified, and its
parametric coordinates ξd with respect to its original quadrilateral recorded.

We use the scaled Jacobian and condition number to assess mesh quality at nine interpolated
Gauss-Legendre quadrature points for each surface mesh (three points along each parametric
coordinate). The scaled Jacobian and condition number are calculated as described by Zhang
et al. (2007a). The scaled Jacobian equals one for right-handed orthogonal coordinate axes,
equals zero if coordinate axes are coplanar (and thus, do not span ), is negative if
coordinate axes are left-handed, and decreases from one towards zero as coordinate axes
become skewed. The condition number equals one for orthogonal coordinate axes with equal
magnitudes, increases from one as coordinate axes become skewed, increases from one also
as tangent vectors to coordinate axes have increasingly different magnitudes, and is
unbounded if coordinate axes are coplanar. Further descriptions are given by Knupp (2000).

3. Results
3.1. Geometry is smooth and almost G1 continuous near extraordinary vertices

We constructed one coarse right atrial mesh (90 quads) and one coarse left atrial mesh (142
quads), and used Eq.2 to construct cubic Hermite derivatives (Figure 4)—henceforth, we
refer to these meshes as RA-90, and LA-142; other meshes were named by the same
scheme. Extraordinary vertices were needed to capture the morphology of the pulmonary
veins, atrial appendages, coronary sinus ostium, and venae cavae without producing severe
element distortions. The number of extraordinary vertices was consistent with the Euler
characteristic number χ of each atrial surface model: for the left atrial model, χ = −3, and
for the right atrial model, χ = −2 (see Discussion, Section 4.3). Vertices of valence 5 were
placed near orifices to capture their circumferential shape compactly (e.g., coronary sinus
ostium, Figure 4A), and at regions of high curvature (e.g., right superior and right inferior
pulmonary veins, Figure 4C) to avoid element skewing that otherwise resulted. Vertices of
valence 3 typically were placed near vertices of valence 5; this resulted in quadrilaterals
with regular angles (i.e., angles were close to 90 degrees) and aspect ratios close to unity
throughout the meshes. After geometric optimization (Section 2.6), the bicubic Hermite
surfaces LA-142 and RA-90 (Figure 4A and Figure 4C) captured pulmonary veins, venae
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cavae, and regions of high curvature more compactly than did refined bilinear surfaces
(Figure 4B and Figure 4D) with a comparable number of geometric degrees of freedom
(LA-568 and RA-360). Whereas the bicubic meshes LA-142 and RA-90 had RMS errors of
0.6 mm, the linear meshes LA-568 and RA-360 had RMS errors of 0.8 mm and 0.7 mm.

Since we truncate the subdivision surface scheme after two iterations, we tested G1
continuity in the one-neighborhood of extraordinary vertices using the dot product of normal
vectors at points where two adjacent quads coincide (asterisks in Figure 3); in other regions,
G1 or C1 continuity could be guaranteed (see Discussion, Section 4.2). For RA-90 and
LA-142, mean dot products of normal vectors rooted at coincident points were 0.931 and
0.928. The analysis was repeated on two successive Li-Kobbelt subdivisions; the twice-
subdivded meshes had mean dot products of 0.990 and 0.992, and additional data are
provided in Table 1.

3.2. Extraordinary vertices capture geometric detail while minimizing element distortion
We were able to capture the left atrial geometry accurately with 142 bicubic Hermite
elements (LA-142), but we had considered using a coarser model with 103 bicubic Hermite
elements (LA-103). The meshes LA-103 and LA-142 were identical except at the left atrial
appendage (LAA), where 10 extraordinary vertices and 29 ordinary vertices were added to
LA-103 to capture anatomic detail. The additional extraordinary vertices in LA-142 allowed
finer details of the geometry to be captured (i.e., RMS error was lower) and improved mesh
quality, at the cost of mesh simplicity (more topological regions were required), as shown in
Figure 5. The LAA of LA-103 had three topological regions, whereas the LAA of LA-142
had six, attributable to the additional extraordinary vertices in LA-142 (Figure 5C–D). The
mesh LA-103 (LA-142) was refined one iteration by Li-Kobbelt subdivision to produce
LA-412 (LA-568). These subdivisions add only ordinary vertices.

Geometric optimization using Eq.11 was completed recursively on each mesh until RMS
error was less than 0.62 mm. Regional RMS error of the LAA in LA-103 was 1.0 mm,
whereas regional RMS error of the LAA in LA-142 was 0.6 mm. The decrease in regional
RMS error of the LAA could not be attributed solely to an increase in the number of degrees
of freedom; error of the LAA for LA-412 (a refined version of LA-103) was 0.9 mm, yet it
had slightly more degrees of freedom per coordinate in the LAA (228) than did LA-142
(224).

A similar pattern was followed for two quality metrics, the scaled Jacobian and condition
number: mean and worst values for LA-142 were superior to mean and worst values of
LA-103 and LA-412, owing to its additional extraordinary vertices in the LAA. Successive
optimizations by Eq.11 could reduce the regional error of the LAA for LA-412 to be lower
than 0.9 mm at the expense of the mean and worst values of the quality metrics, which were
already worse than the mean and worst values of the quality metrics for the LAA of LA-142
for regional error of 0.6 mm. Mean quality metrics in the refined meshes LA-412 and
LA-568 were superior to the values in their non-refined counterparts LA-103 and LA-412,
whereas the worst value of quality metrics typically was inferior for the refined meshes,
owing to torsion introduced by capture of sharp curvature near the pulmonary veins.
Additional mesh statistics, including statistics for RA-90 after geometric optimization, are
provided in Table 2.

3.3. Atrial fiber architecture is described compactly in a tricubic Hermite model
Qualitative fiber patterns from explanted human atria are depicted in Figure 6A–B. Enlarged
views of the biatrial model BiA-9486 corresponding to the regions boxed in Figure 6A–B
are depicted in Figure 6C–D with the constructed fiber patterns overlaid. In Figure 6C, fiber
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tracts course from the superior border of the region of the crista terminalis (white region)
anteriorally and septally, towards Bachmann's bundle. Fiber tracts on the left atrial roof
course posterolaterally, whereas fiber tracts closer to the mitral valve course laterally,
towards the left atrial appendage. A fiber tract courses circumferentially around the tricuspid
valve. In Figure 6D, fiber tracts of the posterior left atrial wall (upper-left blue region)
course inferiorly before blending with fiber tracts of the left atrial floor, which course left-
to-right. Fiber tracts of the left atrial septum course from anterior to posterior (green), and
encircle the right inferior pulmonary vein. Fiber tracts of the intercaval band originate
between the venae cavae (lower-right white region) and course obliquely. The atria are
connected inferiorly by the coronary sinus musculature. Views of the hexahedral mesh with
prominent coordinate lines are displayed in Figure 6E–F.

The posterior left atrial wall and the crista terminalis each feature separate subepicardial and
subendocardial fiber tracts with distinct orientations (in Figure 6B, only the subepicardial
fibers superficial to the crista terminalis are visible). We captured the abrupt intramural fiber
orientation transitions in these two regions using refinement by Hermite interpolation on
BiA-9486 to give BiA-75888, which was two hexahedra thick. A visualization of the
resulting fiber pattern near the crista terminalis is displayed in Figure S1. Additional details
of the tricubic Hermite hexahedral mesh BiA-9486 and the refined model BiA-75888 are
provided in the Supplemental Data section.

4. Discussion
4.1. Related work

Computational meshes of the human atria have been constructed previously (Harrild and
Henriquez, 2000; Seemann et al., 2006; Vigmond et al., 2001; Virag et al., 2002)—to our
knowledge, ours is the first atrial mesh that is tricubic Hermite. Most previous
computational meshes of the atria have been composed of simplices or linear hexahedra.
Detailed descriptions of existing human atrial models are described in reviews by Dössel
and colleagues (2012) and Jacquemet and colleagues (2008).

Cubic Hermite meshes with some topological complexity have been constructed using
“duplicate” vertices with derivative constraints, most typically at the joining points of the
right ventricle and the ventricular septum, as in the work of Usyk and colleagues (2002). To
our knowledge, no general framework has been proposed to construct more complicated
shapes while preserving smoothness between elements. A previous work constructed a
tricubic Hermite model of porcine ventricles with topological complexity just sufficient to
capture the valve annuli (Stevens et al., 2003). Fernandez and colleagues (2004) constructed
cubic Hermite models of more complicated shapes with extraordinary vertices and
“hanging” vertices, but did not attempt to preserve smoothness near these points. We
previously demonstrated deformable registration of a cubic Hermite four-chamber heart
model (Zhang et al., 2012), but as we had not yet defined the local-to-global map in meshes
with extraordinary vertices, we could only apply the deformations to the linear hexahedral
mesh. In the future, our deformable registration scheme will be used on the higher-quality
models created by the methods here, and may also utilize the local-to-global map to deform
the cubic Hermite meshes directly.

Zhang and colleagues (2007b) constructed a hexahedral non-uniform rational B-splines
(NURBS) model with extraordinary vertices, and simulated elastic deformation of the aorta
coupled with incompressible Navier-Stokes equations (Bazilevs et al., 2006). The NURBS
meshes can be “k-refined” (Hughes et al., 2005) to increase the order of their basis functions
while preserving continuity, but enforcing continuity near extraordinary vertices is difficult,
as with cubic Hermite splines. Cubic Hermite splines (and other interpolating splines)
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connect functional space to underlying geometry directly because coefficients of the solution
space include parametric derivatives of the solution field. Approximating splines such as
NURBS have other advantages, discussed by Hughes and colleagues (2005).

We use subdivision surfaces to define parameters of spline surfaces; previously, Catmull-
Clark subdivision has been used to parameterize bicubic Beziér splines (Loop and Schaefer,
2008), biquadratic B-splines (Zheng et al., 2005), and non-uniform rational B-splines
(Peters, 2000). Our approach differs principally in that Eq.2 computes parametric derivatives
of cubic Hermite splines rather than control points of approximating splines, and we
parameterize the derivatives of tricubic hexahedra as well as bicubic quadrilaterals.
Subdivision surfaces have been useful in cardiac modeling for purposes aside from
computing cubic Hermite derivatives. Chandrashekara and colleagues (2007) use
subdivision surfaces to track cardiac deformation in tagged MRI, using the coarseness of the
subdivision surface template to decrease computational burden. Sheehan and colleagues
(2008) use subdivision surfaces to analyze right ventricular shape and volume in patients
with tetralogy of Fallot, and in so doing are able to include the two right ventricular valve
annuli in their geometric models.

4.2. Precise G1 and C1 Continuity
Bicubic splines have degrees of freedom insufficient to enforce C1 continuity near
extraordinary vertices; consequently, C1 continuity in these regions is achieved only for
special geometric configurations. Wang and Zhang (2010) demonstrated these requirements
mathematically in nonuniform rational B-splines (NURBS), but only for vertices with
valence five. We selected Hermite derivative parameters using the Li-Kobbelt scheme with
limit-surface C1 continuity rather than enforcing the requirements for splines.

In spite of Hermite derivative parameterization with the Li-Kobbelt scheme, our meshes do
not achieve precise G1 or C1 continuity in the one-neighborhood of extraordinary vertices.
The subdivision scheme utilized demonstrates continuity properties of the limit surface by
eigenanalysis, which cannot be applied directly to our meshes because we truncate the
subdivision surface sequence at its second member. In general, this will induce normals with
different directions at the boundary of adjoining elements, as tabulated in Table 1. In
principle, the truncation problem could be eliminated if the one-neighborhood vertices are
arranged symmetrically around an extraordinary vertex, and are placed in a common plane
—this was called the “natural configu ration” by Ball and Storry (1988). The natural
configuration is flat, but configurations with non-zero curvature may also give rise to C1
continuity. Ball, Storry, and Sabin noted the natural configuration could be transformed to
all C1 continuous configurations around extraordinary vertices by affine transformation, but
did not specify for which affine transformations. Ball and Storry also noted the natural
configuration eliminates the Fourier coefficients of high-frequency components in the
subdivision matrix for arbitrary valence, while Doo and Sabin (1978) earlier had noted
convergence occurs because contributions of high-frequency components diminish. We did
not place one-neighborhood vertices of extraordinary vertices symmetrically—this worsened
quality metrics of the surrounding elements severely. However, if desired, G1 continuity can
be achieved precisely at the extraordinary vertex by projection of the parametric tangent
vectors (derivatives) of different elements at the extraordinary vertex into a common plane
defined by the span of the ensemble derivatives.

As with extraordinary vertices, calculation of cubic Hermite derivatives by Li-Kobbelt
subdivision only approximates C1 continuity at ordinary vertices. Nonetheless, tangent (G1)
or parametric (C1) continuity can be enforced by the local-to-global map at ordinary vertices
(see Section 2.4). The sufficient conditions were described by Bradley et al. (1997). Bradley
and colleagues showed adjacent bicubic Hermite patches are C1 continuous when scale
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factors of adjoining splines are chosen to be the same, but with this choice, arc-length
continuity is satisfied only in special cases. Alternatively, scale factors of bicubic Hermite
patches can be constructed as described by Nielsen (1987), in which case the scale factors of
adjoining splines may have different values. With the approach of Nielsen, arc-length
continuity is enforced at the ordinary vertex, tangent (G1) continuity is satisfied along
contours joining ordinary vertices, and in general, C1 continuity is satisfied neither at
vertices nor along contours joining vertices. Ensemble derivatives may be transformed to
parametric derivatives of adjacent elements with Eq.5, Eq.6 and Eq.A1–Eq.A4 using the
scale factor definition of Bradley or of Nielsen. In the present work, we used the scale factor
convention of Nielsen: arc-length continuity was enforced at ordinary vertices, and tangent
(G1) continuity was satisfied along contours joining ordinary vertices.

4.3. Topology of a human atrial geometric model
A completely unstructured quadrilateral mesh, as may be generated by triangle pairing, has
more extraordinary vertices than is necessary for capturing the morphologic features of the
atrial geometries. Such meshes can have high-quality elements at the expense of topological
structure. As structure is simplified (by use of fewer extraordinary vertices), mesh quality is
compromised, especially for coarse meshes. Nonetheless, a topologically simple mesh may
be preferred for domain decomposition, fiber field construction, or to match the topologies
of other biatrial hexahedral models for comparative studies.

In the future, the pipeline from non-invasive imaging data to high-quality hexahedral finite
element model may be automated. Our previous study (Zhang et al., 2012) utilizes a
“sweeping” method to construct an atlas of linear hexahedral four-chamber models directly
from imaging data—subsequent geometries may be constructed de novo or by deformable
registration to atlas models. Owing to limitations of the sweeping method, we used freehand
to construct topological patterns in this study, which may be incorporated into the atlas.
Automatic triangular mesh generation, followed by conversion to quadrilaterals (Velho and
Zorin, 2001), followed by transmural extrusion to a hexahedral mesh was considered, but for
the present study, it was advantageous to define the topological patterns manually—this
approach enabled fiber fields to be defined easily. In general, a topological pattern can be
chosen objectively for a given surface by identification of its critical points of curvature
(Campen et al., 2012; Pennec et al., 2000).

Topology choice by freehand does not lead to an endless number of possible topology
patterns—extraordinary vertices are placed naturally in some locations (e.g., at saddle
points), and extraordinary vertices together must be consistent with the Euler characteristic
number χ of the surface. The Euler characteristic number of a surface must satisfy the
relation χ = V − E + F, where V is the number of mesh vertices, E is the number of mesh
edges, and F is the number of mesh faces. Furthermore, our surface meshes are orientable,
and homeomorphic to the sphere if their boundaries (holes) are filled by disks to make them
closed surfaces. For such a surface having b boundaries, χ = 2 − b (Kinsey, 1993). If
valence 3 vertices are assigned a characteristic index of +1/4, valence 5 vertices assigned an
index of −1/4, and valence 6 vertices assigned an index of −1/2, then the sum of
characteristic indices for all extraordinary vertices of the surface equals its Euler
characteristic number. For example, the left atrium has 5 boundaries (the four pulmonary
vein orifices and the mitral valve orifice), so χ = −3. The mesh LA-103 has eight valence 3
vertices, each having index +1/4, and twenty valence 5 vertices, each having index −1/4.
The sum of all extraordinary vertex indices is −3. We added extraordinary vertices to
LA-142 to capture geometric detail that LA-103 could not capture, but we were required to
add the same number of valence 3 and valence 5 vertices (in this case, five) for the left atrial
appendage to remain a blind pouch (i.e., have no holes). Further description is given by
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Koenderink (1990), who describes the Euler characteristic number and its relationship to
indices of surface umbilical points.

Our methods are readily extendable to patients with accessory pulmonary veins or
pulmonary vein bifurcations. A left atrial model with an accessory (fifth) pulmonary vein
will have χ = −4. Accordingly, four additional extraordinary vertices of valence 5 will be
placed to decrement the Euler characteristic number by one. The vertices should be placed
near the accessory pulmonary vein to minimize element distortions (Figure S2A). A left
atrial model with early bifurcation of one pulmonary vein will also have χ = −4. In this case,
mesh quality will be highest when two valence 6 vertices—which also decrement the Euler
characteristic number by one—are placed near the point of vein bifurcation (Figure S2B).

4.4. Atrial fiber architecture
Finite element simulations of cardiac mechanics and electrophysiology require material
anisotropy (defined in part by a vector field representing fiber orientation) to capture
essential features of deformation and electrical activation sequence. In this regard, fewer
data exist for fiber architecture of the atria compared to ventricles because histology and
diffusion tensor magnetic resonance imaging (DT-MRI) of atria are difficult, owing to their
thin walls. As a consequence, previous studies (Krueger et al., 2011) and the current work
use rule-based methods to define atrial fiber architecture qualitatively based on published
diagrams of atrial fiber tracts. Since no detailed human atrial fiber data are available
currently, it is unknown if qualitatively-described fiber data compromise computational
models of healthy or diseased atria.

Human atrial musculature comprises fiber tracts spanning large areas, and the fiber tract
orientations partially follow geometric features. Extraordinary vertices may be placed to
align coordinate axes of mesh regions with dominant directions of fiber tracts, and
demarcate loci of gross fiber discontinuity or abrupt directional change. Abrupt transmural
changes in fiber orientation can also be represented if a model is two or more layers of
hexahedra thick, as was demonstrated in BiA-75888 (Figure S1). Moreover, a C1 continuous
cubic Hermite mesh features local coordinate frames that vary smoothly between elements.
Interpolation of angles referred to these frames gives rise to smooth fiber orientations
between elements in each subregion. An alternative approach for fiber modeling uses
twenty-two “seed points” to drive fiber orientations throughout the biatrial model without
using element coordinate axes (Krueger et al., 2011; Krueger et al., 2013). In both
approaches, a limited number of parameters was sufficient to give qualitative agreement
with diagrams of fiber architecture.

More detailed fiber field information has been obtained in imaging studies by Zhao and
colleagues in sheep (2012) and by Aslanidi and colleagues in canine (2013) using imaging
of tissue microstructure. In humans, DT-MRI has been used to construct fiber orientations
near the sinoatrial node (Aslanidi et al., 2011), but extracting fiber direction by DT-MRI
remains difficult in the atria. As with the approach of Krueger and colleagues, our approach
for representing fiber orientations has no loss of generality, and can incorporate more
detailed human fiber data when they become available by imaging of tissue microstructure
or DT-MRI.

4.5. Potential applications
Cubic Hermite meshes (and other high-order splines) have several well-known advantages
in numerical analysis of cardiac function: One, they capture smooth geometries with few
finite elements and can be deformed easily from template meshes (Lamata et al., 2011).
Two, they have convergence advantages in biomechanics (Costa et al., 1996) and
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electrophysiology (Arthurs et al., 2012; Rogers et al., 1996). Third, they are useful for
modeling electrical mapping studies when data are missing or poor-quality (Bayly et al.,
1998). Last, a C1 continuity of geometry allows for continuous stresses across element
boundaries for biomechanics problems, continuous currents across element boundaries for
electrophysiology problems, and continuous fiber orientation fields across boundaries when
fibers are represented as angular fields referred to local coordinate axes. However, the
problem of retaining smoothness between cubic Hermite elements with extraordinary
vertices has prevented these meshes from being used for atrial modeling. In the present
work, we propose a solution to this problem so that these advantages can be utilized in
complex geometries such as that of the atria.

Even so, our work has other potential applications. Automatic meshing from in vivo imaging
typically creates fine surface triangulations with triangle sizes near the sizes of the image
voxels, yet applications such as biomechanics and deformable registration do not require
such refined meshes for accurate solutions. Here, we suggest a strategy to coarsen these fine
triangulations not only with bicubic Hermite quadrilaterals but also with linear
quadrilaterals, both of which capture the smooth shapes of the heart more compactly than do
linear simplices. As noted above, automatic methods for placement of extraordinary vertices
have been reported previously (Alliez et al., 2003; Kälberer et al., 2007). Nonetheless,
manual placement of extraordinary vertices may be preferred when in vivo imaging data
have appreciable noise, and also when it is advantageous to define coordinate lines manually
—here, for example, we place some of the extraordinary vertices to define discontinuities in
the fiber orientation field easily.

4.6. Limitations and future directions
The interpolating subdivision scheme utilized has deficiencies: First, its limit surface is not
defined in spline form, unlike Catmull-Clark subdivision. Second, as a hexahedral
subdivision, it requires topological consistency between inner and outer surfaces to define
tricubic Hermite derivative parameters. Restriction to topological correspondence between
inner and outer surfaces may be lifted by using volumetric hexahedral meshing schemes
with more general topology (Nieser et al., 2011) and interpolating subdivision schemes for
hexahedral meshes (Bajaj et al., 2002; McDonnell et al., 2004), but this approach is not
needed for the present work, and descriptions of C1 continuity requirements for hexahedral
subdivision schemes are sparse compared to surface schemes. Our models do not include
pectinate muscles, patient-specific wall thicknesses, or patient-specific interatrial
connections, owing to limitations of imaging technology in vivo. In the future, advances in
imaging technology may allow finer details to be captured.

5. Conclusions
We generalized the local-to-global mapping used in cubic Hermite modeling to construct
smooth meshes with extraordinary vertices, and solve finite element problems with smooth
solutions. We utilized a subdivision surface scheme, adapted for hexahedral meshes, to
select cubic Hermite parameters to achieve arc-length continuity at ordinary vertices and
near-G1 continuity around extraordinary vertices. Next, we used the topological structure of
the mesh to represent fiber fields compactly. Finally, we described how our methods could
be applied to patients with different pulmonary vein anatomies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix
The chain rule can be used to determine the relationship between second and third-order
mixed derivatives in the local and global frames:

Eq.A1

Eq.A2

Eq.A3

Eq.A4

We note Eq.A1 simplifies to Eq.4, the previous definition for high-order scale factors, for
singular topology (i.e., extraordinary vertices are absent) because the terms ∂Si/∂ξj are zero
for i ≠ j. Arc-length parameterization of each spline is avoided if second derivatives mapped
between the coordinates s and ξ are estimated to be zero (i.e., the speed of the contour is
constant).
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Highlights

• Cubic Hermite models of the atria are constructed from non-invasive imaging
data.

• Only about 100 cubic Hermite elements are needed to capture each atrium
accurately.

• Extraordinary vertices capture geometric details and improve mesh quality.

• Smoothness is maintained between neighboring finite elements.

• All of the models are available to the public.
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Figure 1.
A schematic diagram for construction of a biatrial tricubic Hermite hexahedral mesh and
intermediate bicubic Hermite surface meshes from a segmented computed tomography
study.
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Figure 2.
One linear quadrilateral is subdivided twice by the Li-Kobbelt scheme into 16 linear
quadrilaterals containing 25 vertices. The coordinates of 16 of the new vertices (red) are
used to solve Eq.2 and calculate the 16 Hermite parameters for the original unsubdivided
quadrilateral.
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Figure 3.
An extraordinary vertex lies at the interface of the right superior pulmonary vein (light
grey), posterior left atrial wall (darker grey), and a third region between the right pulmonary
veins (darkest grey), at a saddle point. Ensemble coordinates s1 and s2 (solid arrows)
coincide with parametric coordinates ξ1 and ξ2 (broken arrows) of one element but have
unit magnitude. A neighboring element has parametric coordinates ξ1 and ξ2 relatable to
ensemble coordinates by linear transformation. Geometric continuity of adjoining patches in
the one-neighborhood of an extraordinary vertex was evaluated along the shared contours at
three points per contour (asterisks).
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Figure 4.
Anterolateral views of bicubic Hermite mesh RA-90 (A) and bilinear mesh RA-360 (B), and
septal views of bicubic Hermite mesh LA-142 (C) and bilinear mesh LA-568 (D) after
geometric optimization with Eq.11. Valence 5 vertices (teal), valence 3 vertices (red), and
one valence 6 vertex (black) were used. The tricuspid and mitral valve rings are shaded dark
grey for visual contrast. See Results, Section 3.2 for details. SVC = Superior Vena Cava;
IVC = Inferior Vena Cava; RAA = Right atrial appendage; TVO = Tricuspid valve orifice;
CS = Coronary sinus ostium; RSPV = Right superior pulmonary vein; RIPV = Right inferior
pulmonary vein; LAA = Left atrial appendage; MVO = Mitral valve orifice.
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Figure 5.
Lateral views of bicubic Hermite meshes LA-142 (A) and LA-412 (B). Compared to
LA-142, LA-412 cannot capture the geometric detail of the left atrial appendage (LAA), in
spite of more geometric degrees of freedom. The additional extraordinary vertices in
LA-142 are needed to capture the geometric shape of the LAA and preserve element quality.
Cartographic projections of LA-142 and LA-412 are displayed in (C) and (D). The distorted
quadrilaterals in the cartographic projection (C) become regular in LA-142 (A), whereas the
regular quadrilaterals in cartographic projection (D) become distorted in LA-412 (B) as they
are deformed to capture the irregular shape of the LAA. Colors in (C) and (D) are used to
indicate distinct topology regions. Valence 5 vertices are teal in (A) and (B), and are
indicated by asterisks (*) in (C) and (D). Valence 3 vertices are red in (A) and (B), and are
indicated by the symbol ⊗ in (C) and (D). Four valence 3 vertices at the tip of the LAA are
indicated by the symbol ⊕ in (C). In (A) and (B), the mitral valve is shaded dark grey for
visual contrast. LAA = Left atrial appendage; MVO = Mitral valve orifice; LSPV = Left
superior pulmonary vein; LIPV = Left inferior pulmonary vein.
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Figure 6.
Fiber orientations in a tricubic Hermite model. Images (A) and (B) are depictions of typical
fiber orientations from explanted human atria, reprinted from Wang, Br. Heart J., 1995 with
permission. The regions indicated by boxes are enlarged in (C) and (D), in which a
qualitatively-matching fiber pattern is displayed. Each block of color indicates a region with
consistent coordinate axes (a single topological region). See Results, Section 3.3 for details.
Images (E) and (F) are equivalent views of the tricubic Hermite hexahedral model. The
epicardial surface is colored brown and the endocardial surface is colored white. Valence 3
vertices are colored red, and valence 5 vertices are colored teal. SVC = Superior Vena Cava;
BB = Bachmann's bundle; TVO = Tricuspid valve orifice; pLAw = Posterior left atrial wall;
MVO = Mitral valve orifice; RIPV = Right inferior pulmonary vein; CS = Coronary sinus;
IR = Intercaval region; PM = Pectinate muscles, IPB = Inferoposterior bridge.
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Table 1

Analysis of normal vectors in the one-neighborhood of extraordinary vertices as a measure of smoothness.
Three quadrature points on the contour bounding two quads were selected within the one-neighborhood, and
for each point, unit normals were computed in the two adjoining elements. Last, the dot product was computed
for each pair of normals.

RA-90 RA-360 RA-1440 LA-142 LA-568 LA-2272

Mean dot product 0.925 0.974 0.990 0.928 0.981 0.992

Fraction of points with dot product > 0.99 0.42 0.66 0.83 0.39 0.63 0.84

Fraction of points with dot product > 0.95 0.74 0.86 0.96 0.66 0.89 0.96

Fraction of points with dot product > 0.5 0.96 1.0 1.0 0.98 1.0 1.0
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Table 2

Statistics for bicubic Hermite left atrial (LA) and right atrial (RA) surface meshes after geometric
optimization. Mesh quality metrics were evaluated at 9 quadrature points per element.

LA-103 LA-142 LA-412 LA-568 RA-90

Vertices, total 116 155 441 597 103

Geometric d.o.f. per coordinate 464 620 1764 2388 412

Geometric d.o.f. per coordinate, LAA 68 224 228 852 -

Vertices, valence 3 8 13 8 13 4

Vertices, valence 5 20 25 20 25 10

Vertices, valence 6 0 0 0 0 1

Topology regions 17 20 17 20 11

Mean edge length, mm 12.9 10.8 6.4 5.3 14.3

RMS error, mm 0.6 0.6 0.5 0.5 0.6

RMS error, LAA, mm 1.0 0.6 0.9 0.5 -

Scaled Jacobian – mean, worst 0.96, 0.49 0.96, 0.49 0.96, 0.49 0.97, 0.48 0.96, 0.43

Condition number – mean, worst 1.10, 2.62 1.08, 2.56 1.10, 2.95 1.09, 2.79 1.11, 2.45

Scaled Jacobian, LAA - mean, worst 0.94, 0.57 0.97, 0.70 0.95, 0.61 0.97, 0.70 -

Condition number, LAA - mean, worst 1.15, 1.76 1.07, 1.48 1.13, 1.69 1.07, 1.56 -

Meshes were named in accordance with the number of elements (e.g., mesh with 103 elements is named LA-103).

d.o.f. = degrees of freedom.

Med Image Anal. Author manuscript; available in PMC 2014 July 01.


