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Abstract

Seed coat color is an important agronomic trait in sesame, as it is associated with seed biochemical properties, antioxidant
content and activity and even disease resistance of sesame. Here, using a high-density linkage map, we analyzed genetic
segregation and quantitative trait loci (QTL) for sesame seed coat color in six generations (P, P,, F;, BC;, BC; and F,). Results
showed that two major genes with additive-dominant-epistatic effects and polygenes with additive-dominant-epistatic
effects were responsible for controlling the seed coat color trait. Average heritability of the major genes in the BC;, BC, and
F, populations was 89.30%, 24.00%, and 91.11% respectively, while the heritability of polygenes was low in the BC; (5.43%),
in BC, (0.00%) and in F; (0.89%) populations. A high-density map was constructed using 724 polymorphic markers. 653 SSR,
AFLP and RSAMPL loci were anchored in 14 linkage groups (LG) spanning a total of 1,216.00 cM. The average length of each
LG was 86.86 cM and the marker density was 1.86 cM per marker interval. Four QTLs for seed coat color, QTL1-1, QTL11-1,
QTL11-2 and QTL13-1, whose heritability ranged from 59.33%-69.89%, were detected in F3; populations using CIM and
MCIM methods. Alleles at all QTLs from the black-seeded parent tended to increase the seed coat color. Results from QTLs
mapping and classical genetic analysis among the P;, P,, F;, BC;, BC; and F, populations were comparatively consistent.
This first QTL analysis and high-density genetic linkage map for sesame provided a good foundation for further research on
sesame genetics and molecular marker-assisted selection (MAS).

Citation: Zhang H, Miao H, Wei L, Li C, Zhao R, et al. (2013) Genetic Analysis and QTL Mapping of Seed Coat Color in Sesame (Sesamum indicum L.). PLoS ONE 8(5):
€63898. doi:10.1371/journal.pone.0063898

Editor: Rongling Wu, Pennsylvania State University, United States of America
Received November 25, 2012; Accepted April 9, 2013; Published May 21, 2013

Copyright: © 2013 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by China National “973" Project (2011CB109304) and the earmarked fund for the China Agriculture Research System (CARS-
15). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: zhy@hnagri.org.cn

Introduction generation, and an Iy segregation ratio of 9 black: 3 grey: 4 dirty
o white was obtained. Results also suggested that seed coat color is

Ses.ame (Se.s'an.zum .ma’zwm L, 2n=26), a membe.r of the regulated by two genes [9]. Gutierrez et al. (1994) found that black
P.edahaceae family, is one of the. olc_lest a.md most 1mporta.nt is the dominant testa color and light brown was observed to be
oilseed crops knowlvn to man fiue to1ts hlg}.l 01l.conte:nt .and ‘}uahﬁ/ partially dominant over white. They concluded that coat color is
[1]- S.esame seed 15 also rich in proteins, vitamins, macin, minerals controlled by two independent genes with complementary effects
and lignans and s popularly used as a fogd an(.i r.nCdlcmc (2-3]. and complete dominance at each locus [10]. However, examina-
Seed coat color is an important agronomic trait in sesame. The tion of the Fy generation in black X light brown and black x white

flatural Folor of mature sesame seeds varies from bl?Ck’ crosses revealed that one gene had complete dominance and
intermediate colors (e.g., gray, brown, golden, yellow and light

white) to white. Compared with white seeds, black sesame seeds
usually have higher ash and carbohydrate content, but lower
protein, oil, and moisture ratios [4]. In East Asia, the products of
black sesame seeds attract greater acceptance. Seed coat color in
sesame seems to be associated with seed biochemical properties,
antioxidant content and activity and even the level of disease
resistance among sesame accessions, in addition to being a marker
of evolution within the Sesamum genus [2-7].

Significant attention has been paid to the inheritance of sesame
seed coat color over a long period. The complex nature of the seed
coat color trait had been mentioned in many reports. Nohara
et al. (1933) performed a cross between white-seeded and black-
seeded sesame accessions, obtaining an Iy ratio of 9:3:3:1 for
black, dark brown, pale brown, and white seed coat colors,
respectively, and concluded that seed coat color trait is regulated
by two genes [8]. In another crosses between black and dirty white
sesame seed types, black was invariably dominant in the F,

supplemented the effects of other genes controlling basic testa
colors [10]. Baydar and Turgut (2000) reported that epistatic
segregation (9:4:3 and 9:3:4 ratios) determines sesame seed coat
color [11]. In addition, a recent analysis of crosses between nine
sesame accessions from Nigeria also demonstrated that seed color
has a complex genetic basis, accessions with the same seed coat
color possibly having different genotypes [12].

Genetic segregation analysis over multi-generations and map-
ping of quantitative trait loci (QTL) are the main approaches
taken to clarify the genetic basis of quantitative traits [13-16]. To
date, there are no reports on QTL mapping for sesame traits due
to the lack of a high-density linkage map. Recent progresses on
sesame genetic mapping and the development of molecular
markers has laid an important foundation for studies on the
genetics and QTL analysis of important sesame traits [17-18].

The aims of this study were to (1) comprehensively analyze
segregation over multiple generations (P, Py, Fy, Iy, BC; and
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BCy) of a cross between black and white sesame accessions, and to
explain the inheritance of sesame seed color trait, (2) construct a
high-density genetic linkage map with a mapping population of
260 Fy and Fs5 progenies, and (3) locate the first sesame QTL for
seed coat color on the linkage map.

Materials and Methods

Plant Materials

The two S. indicum germplasm samples used, COI1134 (white
seeded, P;) and RXBS (black seeded, Py) were accessions from the
sesame germplasm resources collection at Henan Sesame
Research Center, Henan Academy of Agricultural Sciences
(HAAS). To investigate segregation, three replicates of the P,
Py, Fy, BC,, BC, and Fy populations were grown at Yuanyang
experimental station, HAAS, in 2009 (Figure 1). To construct a
genetic linkage map and locate QTLs, an Fy population of 260
lines was grown at Yuanyang experimental station and the
corresponding 260 I'; families were grown at both Yuanyang and
Pingyu experimental stations in 2010. Young leaf tissues from
parents and Fy plants were harvested, immersed in liquid nitrogen
and stored at —70°C before DNA extraction.

Phenotypic Evaluation

Five plants from each I3 family were selected randomly and
their seed was used to represent the phenotype of individual Fy
plants. As seeds matured, three capsules from the middle of the
main capsule stem per plant were collected for phenotypic
evaluation of each of the six generations. Seeds from each
generation in each of the three replications were photographed
using a digital Nikon camera in a darkroom. The RGB (red, green
and blue) values of each picture were recorded for each of the
three replications using the color capture tool in Adobe Photo-
shop. The average RGB value of each sample was used for
statistical analysis.

Segregation Analysis

Genetic analysis of the six populations was performed according
to mixed major gene plus poly-gene genetic models [19-23]. The
24 genetic models could be divided into five model groups, i.e.,
inheritance controlled by one pair of major genes (A), two pairs of
major genes (B), polygenes (C), one pair of major genes plus
polygenes (D) and two pairs of major genes plus polygenes (E)

COI1134 (Py) RXBS (P,)

l 2009 l

P41, F1, P2, F2, BCy, BC,
Six generation populations

| e |

F2> mapping population

N\
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(Table S1). The distribution parameters for seed coat color in each
population were estimated using the iterated expectation and
conditional maximization (IECM) method. The best-fitting genetic
model was determined according to Akaike’s information criterion
(AIC), a likelithood-ratio test and goodness-of-fit test [19-21]. The
genetic effect of major genes and polygenes was estimated using
the least squares method [21-22] based on the distribution
parameters of each component in the optimal model.

DNA Isolation and DNA Marker Analysis

Total genomic DNA of the parents and 260 F, lines was
extracted from 300 mg the young leaf tissue using the CTAB
method [24]. 32 amplified fragment length polymorphism (AFLP)
and 298 simple-sequence repeat (SSR) primers used in previous
studies [17-18] were combined to generate thousands of AFLP
and random selective amplification of microsatellite polymorphic
loci (RSAMPL) primer pairs for screening polymorphic markers
[17] (Table S2). DNA amplification and electrophoresis were
performed according to Wet et al. [17].

Linkage Map Construction

A total of 724 polymorphic primer pairs, including 49 SSR, 52
AFLP, and 623 RSAMPL primer pairs, were used for linkage
mapping. A high-density linkage map was constructed with a total
of 653 polymorphic loci using JoinMap ver. 3.0 [25]. Chi-square
test was used to determine whether or not genotypic frequencies at
each locus deviated from the expected segregation ratios of 1:2:1
(or 3:1). All linkage groups (LG) were determined with an LOD
score cut-off of =6.0. The expected length of the genome was
estimated using the methods described by Fishman et al. [26] and
Postlethwait et al. [27].

QTL Detection

QTLs regulating seed coat color were analyzed using pheno-
typic data from the Fy and F3 generations respectively. Composite
interval mapping (CIM) [28] and mixed linear composite interval
mapping (MCIM) [29] were both used for QTL detection. In
CIM, WiQTLCart 2.5 software (http://statgen.ncsu.edu/
qtlcart/ WQTLCart.htm) was run using Model 6 with four
parameters for forward and backward stepwise regression,
10 cM window size, 5 control markers and a 1 cM step size
[30]. The threshold was determined by permutations (1000 times).

— [comren

| Genetic analysis | I F3 families

| — I QTL analysis |

Figure 1. Schematic diagram of the sesame populations used for seed coat color trait analysis. Populations derived from six generations
of Py, Fq, Py, Fy, BCy, BC,, were investigated to determine the genetic basis of the seed coat color trait. 260 lines of an F, mapping population were
screened to construct a genetic linkage map. 260 lines of an F, mapping population and their F3 families were used for QTL determination.

doi:10.1371/journal.pone.0063898.g001

PLOS ONE | www.plosone.org

May 2013 | Volume 8 | Issue 5 | 63898



In MCIM, QTLnetworks 2.0 software (http://www.webtopicture.
com/qtl/qtl-network.html) was run with genome scan parameters
of a 10 cM testing window, 1 ¢M walk speed and 10 c¢M filtration
window. Whether or not two adjacent test peaks represented
independent QTLs was determined in this process. Critical F-
values were calculated using the Permutation test. QTL effects
were estimated using Monte Carlo Markov Chain (MCMC) [31].

Results

Seed Coat Color Phenotype

Field investigation showed that the phenotype of COI1134 (P))
was white seeded, while RXBS (Py), the I} hybrid and the BC,
population were generally black. Seed color in the BC; and F,
populations varied from black, intermediate to white (Figure S1).
The RGB values of the six populations were consistent with their
phenotypes (Table 1), and those of the P, and P, populations
ranged between 120-150 and 20-50 respectively. The ranges of
RGB values for the F; and BCy populations were similar to that of
P,. The RGB values of the BC; and Fy populations varied
continuously from 20-150 and 20-140, respectively. The distri-
bution of seed color in both backcross families (BC; and BCy)
shifted towards the recurrent parents.

Genetic Model Analysis

To determine a genetic model for the seed color trait,
segregation analysis was performed in the six populations (with
three replications) using a mixed genetic model (major genes+po-
lygenes) (Table 2). The B-1, B-2, E-0, E-1 and E-2 models with
smaller AIC values were selected as candidate models for further
analysis. Fitness tests, including U,% U,?, Us% and Simirnov and
Kolmogorov tests, were carried out. Results indicated that the
number of significant parameters in the five models varied from 0
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to 13 (Table S3). The E-O model, with the least number of
significant parameters (0), was selected as the optimal genetic
model for seed color trait analysis. In this model, seed coat color is
controlled by two major genes and polygenes with additive-
dominant-epistatic effects (Table S1).

Genetic Effect Analysis

To investigate the genetic effects of two major genes, the first
order genetic parameters were estimated using the least squares
method (Table 3). Additive effects of the major genes (a, b)
controlling seed color were 20.30 (d,) and 25.09 (dy,) respectively,
while individual values of the dominant effects were —35.94 (h,)
and —9.35 (hy,), showing a downward trend. The additive effect of
gene a was lower than that of gene & (|da|<|db|), and the
dominant effect of gene a was higher than its own additive effect
(Jha/da| >1). In contrast, the dominant effect of gene b was lower
than that of ¢ (|ha|>|hb]|) and its own additive effect (|hb/db]|
<1). The additive by additive (i) and additive by dominant (j,p,)
effects were low with average values of 2.97 and 7.76 respectively.
The dominant by dominant () and dominant by additive (jp,)
effects were high with average values of 17.87 and —18.72
respectively, while the dominant by additive (j,,) effect on seed
color was decreased (—18.72).

Estimation of second order genetic parameters are shown in
Table 4. Average heritability values for the major genes in the
BC,, BCy, and Fy populations were 89.30%, 24.00%, and
91.11%, respectively. Effects of polygenes were minor in the
BC; (5.43%) and Fy (0.89%) populations, and absent in the BC,
population.

Linkage Map Construction
In order to construct a high-density linkage map, a subset of 724
polymorphic loci (49 EST-SSR, 52 AFLP, and 623 RSAMPL)
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Table 1. Distribution of RGB values for seed coat color in six genetic populations of sesame.
Plant
Test Replication  Population RGB value number Mean + SD
20~ 30~ 40~ 50~ 60~ 70~ 80~ 90~ 100~ 110~ 120~ 130~ 140~ 150~

I P, 1 14 9 1 25 138.43+6.72
P, 3 16 7 2 28 38.26+7.79
Fi 4 8 12 2 1 27 40.42+8.76
BC, 2 12 52 12 16 6 14 21 17 24 19 10 8 213 82.57+34.22
BC, 16 55 91 20 7 189 423187
F, 12 65 78 29 26 25 17 19 8 20 5 2 1 307 61.07+27.28

It P, 3 13 9 3 28 139.08+7.8
P, 3 17 8 2 30 38.25+7.26
Fi 39 13 4 1 30 42.55+8.62
BC, 2 0 36 7 14 9 0 14 21 22 22 17 7 1 192 89.05+35.17
BC, 13 57 90 18 7 1 186 42.41+8.98
F, 12 69 69 28 26 19 17 19 7 14 7 1 1 289 59.84+26.86

[T P, 3 17 8 2 30 137.64+8
P, 2 14 7 2 25 39.73+7.91
Fq 39 133 1 29 4159+88
BC, 1 1 37 7 7 6 9 18 21 20 10 5 3 155 8232+32.57
BC, 12 53 91 16 8 180 41.87+9.08
F, 14 64 9 29 14 28 22 19 13 16 8 5 1 323 6221+28.28

doi:10.1371/journal.pone.0063898.t001
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Table 2. AIC and maximum log likelihood values of 24 genetic models estimated using an iterated ECM (IECM) algorithm.
Genetic
model Replication

| ] 1]

AIC Max-likelihood AIC Max-likelihood AIC Max-likelihood
A1 7000.79 —3496.40 6697.66 —3344.83 6566.77 —3279.39
A_2 7437.55 —3715.77 7114.38 —3554.19 6971.62 —3482.81
A_3 7633.27 —3813.63 7352.97 —3673.48 7173.73 —3583.86
A_4 7006.78 —3500.39 6707.43 —3350.72 6568.99 —3281.50
B_1* 6724.46% —3352.23 6419.53* —3199.76 6263.03* —3121.51
B_2* 6716.10* —3352.05 6418.85* —3203.43 6266.58* —3127.29
B_3 7481.31 —3736.66 7154.83 —3573.41 7007.95 —3499.98
B_4 7379.80 —3686.90 7035.43 —3514.71 6902.21 —3448.10
B_5 7602.86 —3797.43 7316.38 —3654.19 7145.88 —3568.94
B_6 7600.86 —3797.43 7314.38 —3654.19 7143.88 —3568.94
Cco0 6935.07 —3457.54 6606.17 —3293.09 6507.41 —3243.71
c1 6951.20 —3468.60 6619.09 —3302.54 6513.09 —3249.55
D_0 6764.56 —3370.28 6455.84 —3215.92 6334.18 —3155.09
D_1 6775.30 —3378.65 6455.27 —3218.64 6367.82 —3174.91
D_2 6773.30 —3378.65 6453.27 —3218.64 6365.82 —3174.91
D_3 6938.31 —3461.16 6602.60 —3218.64 6510.20 —3247.10
D_4 6773.29 —3378.65 6453.27 —3218.63 6365.82 —3174.91
E_0* 6713.55* —3338.77 6404.31* —3184.16 6269.96* —3116.98
E_1* 6719.10* —3344.55 6409.30* —3189.65 6278.76* —3124.38
E_2* 6712.40% —3345.20 6413.95* —3195.97 6266.03* —3122.02
E 3 6952.98 —3467.49 6622.89 —3302.45 6513.73 —3247.86
E 4 6953.02 —3468.51 6620.88 —3302.44 6514.96 —3249.48
E5 6955.12 —3468.56 6622.99 —3302.49 6517.00 —3249.50
E 6 6953.08 —3468.54 6621.52 —3302.76 6515.05 —3249.53
*These models were selected as candidate models with smaller AIC values.
doi:10.1371/journal.pone.0063898.t002

were screened with an Fy mapping population of 260 plants at an
LOD score of 6.0. The estimated size of the sesame genome is

PLOS ONE | www.plosone.org

Table 3. Estimation of 1°* order genetic parameters for seed

color trait.

1% order

parameter  Replication Average
1 1] m

da 20.13 20.16 20.60 2030

dp 25.04 24.80 25.42 25.09

ha —34.66 —38.00 —35.17 —35.94

hp —8.62 —9.77 —9.65 —9.35

i 361 3.51 1.79 297

i 7.58 6.93 8.78 7.76

jba —1845 2098 —-16.74 —18.72

I 15.96 22.80 14.86 17.87

h./d, -1.72 -1.88 -1.70 -1.77

ho/dp 034 —039 —037 —037

doi:10.1371/journal.pone.0063898.t003

1380.938 cM. A total of 653 marker loci (30 EST-SSR loci, 50
AFLP loci, and 573 RSAMPL loci) were assigned to 14 linkage
groups. The linkage map covered 1,216.00 cM (88.06%) of the
sesame genome (Figure 2). The average marker density in this map
was approximately one marker per 1.86 cM, and the number of
markers in each linkage group ranged from 6 (LG 14) to 345 (LG
1), with a mean of 46.64 markers per group. The length of linkage
groups ranged from 47.54 cM (LG 14) to 166.57 cM (LG 1), with
an average size of 86.86 cM. The groups with the highest and
lowest average marker density were LG 1 (0.48 cM) and LG 13
(9.91 cM) respectively. In addition, segregation distortion
(P<0.05) was observed for 79 (10.91%) markers in 12 linkage
groups. LG 1 showed a high level of distortion, with 52 segregation
distortion loci and a strong clustering tendency.

QTLs for Seed Coat Color

Results for the QTLs analysis of the seed coat color trait using
the CIM and MCIM methods are shown in Tables 5 and 6. Both
methods indicated that the four QTLs, QTL 1-1, QTL 11-1, QTL
11-2 and QTL 13-1, were located in LG 1, LG11 and LG13.
Using the CIM method, these QTLs were distributed in the
regions between markers Y1991F/R  and Hsl015F/E9,
Hs1125R/E11l and Y2017F/MI11, Y2017F/MI11 and Y640/
E16, and Hs1097F/El and Y2632F/M7, respectively (Figure 2).

May 2013 | Volume 8 | Issue 5 | 63898
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Table 4. Estimation of 2"® order genetic parameters for seed color trait.
2" order
parameter BC, BC, F
Replication Average Replication Average Replication Average
| ] m | [} m 1 I m
0'2p 1170.90 1236.68 1060.72 1156.10 75.74 80.59 8249 79.61 744.35 721.61 799.51 755.16
0'2mg 1040.27 1108.23 948.62 1032.37 16.89 2297 17.48 19.11 668.52 663.99 731.47 687.99
cng 71.78 70.83 47.09 63.23 0.00 0.00 0.00 0.00 16.98 0.00 3.02 6.67
c? 58.85 57.62 65.01 60.49 58.85 57.62 65.01 60.49 58.85 57.62 65.01 60.49
h2mg (%) 88.84 89.61 89.43 89.30 2230 28.50 21.19 24.00 89.81 92.02 91.49 91.11
thg (%) 6.13 5.73 4.44 543 0.00 0.00 0.00 0.00 2.28 0.00 0.38 0.89
o2, Phenotypic variance.
szg: Major gene variance.
6% Polygene variance.
& Environmental variance.
h%ng (%): Heritability of major gene(s).
thg (%): Heritability of polygenes.
doi:10.1371/journal.pone.0063898.t004
Among the three populations of the Iy and two Fs families (at Discussion

Yuangyang and Pingyu), four QTLs explained 23.32-39.95%
(QTL 1-1), 9.72-20.61% (QTL 11-1), 9.6-31.86% (QTL 11-2),
and 12.8-30.56% (QTL 13-1) of the phenotypic variation,
respectively (Table 5). QTL 1-1 made the highest contribution,
followed by QTL 13-1.

Analysis of data from Yuanyang and Pingyu using the MCIM
method indicated that the same four QTLs were detected in the I'5
populations at both locations (Table 6). QTL 11-2 was the only
one of the four QTLs that was not found in the Iy populations. All
QTLs in the Fy and Fj3 families were distributed in the regions
between markers Y2128F/M8 and Hs1015F/E9, Hs1125R/E11
and Hsl152F/E14, Y2017F/M11 and Hsl1006F/E16, and
Hs1097F/E1 and Y2632F/M7, respectively (Figure 2). These
either overlapped or were adjacent to the corresponding regions
identified using the CIM method. The heritability for this trait
ranged from 59.33% to 69.89%. QTL 1-1, QTL 11-1, QTL 11-2
and QTL 13-1 contributed additive heritability of 19.4-30.03%,
13.9-21.22%, 5.56-19%, 9.13-21.02%, respectively. The domi-
nant heritability for all Q'TLs ranged from 1.28-7.18% (Table 6).
Positions of all QTLs in the F; populations in the two
environments were compared using the QTLnetworks 2.0
program (Figure S2).

To further confirm these findings, we performed an ANOVA
using GLM procedure with color values as the dependents and
markers of class variables (Table 7). Results indicated that the
Hs1125R/E11-300 and Y2017F/M11-400 markers were located
at 18.6 and 32.2 <M on LG11, respectively, and showed high R-
square values (from 0.126 to 0.198) in both environments; the
Hs1152F/E14-300 marker located at 23.4 ¢cM on LGI11 and
showed lower R-square values (0.077 and 0.033) in the two
environments.

In addition, we also investigated environmental effects on the
seed color genotypes using the Fs; datasets from the two
environments (i.e., Yuanyang and Pingyu) and the MCIM
method. Results indicated that the genotype Xenvironment effect
was not significant for seed coat color (data not shown). In
conclusion, we were able to assign four QTLs for seed coat color in
Linkage groups, LG1, LG11 and LG13. Alleles at all Q'I'Ls in the
black-seeded parent (RXBS, P) increased the tendency toward
darker seed coat color.

PLOS ONE | www.plosone.org

Seed coat color in sesame is an important agronomic trait as it is
associated with biochemical functions involved in protein and oil
metabolism, antioxidant activity, and disease resistance [2-6].
Recent reports suggest that the seed coat color trait is a more
suitable trait for estimating sesame evolution than geographic
origin [7], since the direction of evolution in sesame was from wild
species to black cultivars and then white cultivars [7,32]. While
exploring the genetic basis and identifying QTLs for seed coat
color, we constructed a new sesame genetic map with 653 loci
using an intraspecific cross between white and black seeded
accessions.

Genetic Analysis

In order to improve the precision of genetic analyses for
quantitative traits, the use of a segregating population with more
than 100 individuals is suggested or even required [19,22]. More
than one generation with several replications is also encouraged
[23]. We therefore performed the segregation analysis on seed coat
color using a large experimental group (more than 150 individuals
from each segregating population) with three replications. Six
populations (Py, Py, Fy, BC;, BC; and Fy) and I3 families grown in
two environments were used in this study.

The genetic effects and heritability of the gene(s) revealed that
seed color is a complex quantitative trait in sesame: it is regulated
by two major genes and polygenes with additive-dominant-
epistatic effects (E-0 model). Seed coat color in sesame is primarily
controlled by hereditary factors. More than 90.0% of the
phenotypic variation in the BC; and Fy populations is controlled
by two major genes and polygenes, with minimal influence from
environmental factors (<10.0%). Major genes in the BC,
population controlled 24.0% of the phenotypic variation. The
same phenomenon of hereditary variation in different generations
and populations has also been documented in tomato, cucumber,
maize and other crops [33-36]. Further functional genomic
studies are required to clarify the molecular mechanism control-
ling seed coat color.
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Figure 2. Distribution of QTLs for sesame seed color trait on our seame high-density genetic linkage map. 653 marker loci were
distributed across the 14 linkage groups of our high-density genetic linkage map at an LOD threshold of 6.0. The cM distance of markers is shown on
the left side of each LG. The name, amplicant length (bp) and band number of each marker are shown on the right side of each linkage group. An
LOD peak value of >2.5 was considered to indicated a significant QTL interval. The four QTLs identified using two programs are designated as
follows: winQTL-1, winQTL-2 and winQTL-3 represent the QTL loci from the F, population and F; families (Yuanyang) and s families (Pingyu),
respectively using the winQTLCart program. QTLnet-1, QTLnet-2 and QTLnet-3 represent the QTL loci from the F, and F3 family (Yuanyang) and F;
family (Pingyu), respectively, using networks program.

doi:10.1371/journal.pone.0063898.9002
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Genetic Analysis and QTL Mapping in Sesame

Genetic Linkage Map

Using the same cross as was used for the construction of the first
linkage map, we herein constructed a high-density linkage map in
sesame using 724 PCR-based DNA markers. Compared with the
first map (data shown in brackets below) [17], this new map
presents optimal features, e.g., (1) a more stringent criteria of LOD
=6.0 (LOD =4.0) was used for map construction; (2) larger Fy
segregating populations of 260 (96) individuals were used; (3) the
map is comparatively saturated with 653 (220) markers in 14 (30)
linkage groups; (4) the average marker distance is 1.86 cM
(4.93 cM); and (5) the estimated sesame genome is 1,380.94 cM
(1,232.53 cM) and genome coverage is 88.06% (76.00%). We
believe that more polymorphic genic SSR and SNP markers, and
EST-SSR, AFLP and RSAMPL markers, will be validated and
used for higher-density sesame linkage map construction within
the near future [18] (Zhang H. et al., unpublished data).

Table 5. QTL analysis of seed color trait in F, and F3 families using winQTLCart program.
Linkage Additive
Family group QTL name Position (cM)  Marker interval (cM) LOD r* (%) effect Dominant effect
F> 1 1-1 141.8 140.9-141.9 39.32 0.3995 21.3146 —20.5064
1 11-1 254 21.1-30.8 10.07 0.1020 13.2342 —10.1866
11 11-2 38.2 32.2-47.8 8.30 0.0960 12.4177 —11.4117
13 13-1 38.6 36.0-42.3 28.04 0.3056 18.6158 —18.8627
F3 1 1-1 141.2 140.5-141.8 20.36 0.2332 13.8790 —9.1352
(Yuanyang)
11 11-1 234 20.0-28.3 16.69 0.2061 11.8210 —12.5171
11 11-2 43.2 36.8-51.2 14.74 0.2402 13.4322 —12.8673
13 13-1 40.6 36.5-43.7 14.76 0.1943 10.0826 —13.0255
F3 1 1-1 140.6 139.6-140.7 26.11 0.2750 14.0623 —12.4889
(Pingyu)
1 11-1 216 18.6-27.9 8.42 0.0972 11.2305 —8.1756
11 11-2 43.2 38.2-43.4 20.50 0.3186 16.2349 —12.5716
13 13-1 39.6 34.7-43.7 11.91 0.1280 8.9181 —9.9547
doi:10.1371/journal.pone.0063898.t005

In this study, 79 loci with distorted segregation were detected in
12 out of the 14 linkage groups and the degree of clustering of
marker loci showed marked variation in the new sesame map. A
similar deviation from Mendelian segregation ratios were also
observed in our previous study [17]. Many factors, including
technical artifacts in genotyping [37—41], chromosomal rearrange-
ments [39-40] and markers from transposable elements [42], may
have contributed to this effect. Varying degrees of clustering for
AFLP markers have been reported in different crops including rice
[13], barley [43], maize [44], ryegrass [43], tomato [46], potato
[47], and Eucalyptus globulus and E. tereticornis [48]. Differences in
the level or location of DNA polymorphisms, rates of recombi-
nation, copy number variation of specific genomic sequences or
sampling errors are the main factors influencing marker distribu-

tion [47-48].
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Table 6. QTL analysis of seed color trait in F, and F3 families using QTLnetworks 2.0 program.

Linkage QTL Position  Marker interval Additive Dominant Additive Dominant
Familiy group name (cM) (cM) V(G)/V(P)  effect P-Value effect P-Value effect (h?) effect (h?)
Fy 1 1-1 141.8 141.2-142.3 0.6989 19.7911 0.000000 —18.6479 0.000000 0.3003 0.0718

11 11-2 43.2 35.2-43.8 10.4978 0.000000 —13.0854 0.000000 0.0556 0.0355

13 13-1 38.6 36.6-41.6 18.1685 0.000000 —18.5278 0.000000 0.2102 0.0451
F3 1 1-1 141.2 139.6-142.3 0.5933 13.5107 0.000000 —9.5556 0.000000 0.194 0.0475
Yuanyang

11 11-1 20.6 0.0-23.4 7.2039 0.000000 —4.2611 0.036690 0.1390 0.0426

11 11-2 43.2 35.2-43.8 4.4052 0.000607 1.8569 0.402717 0.1192 0.0264

13 13-1 41.6 38.6-47.7 10.1818 0.000000 —11.5127 0.000013 0.1279 0.0269
F3 1 1-1 141.2 139.6-141.8 0.6248 13.9201 0.000000 —12.0896 0.000000 0.2105 0.0699
Pingyu

11 11-1 19.6 8.0-23.4 7.0118 0.000000 —4.4798 0.022901 0.2122 0.0128

1 11-2 43.2 37.2-43.8 9.3244 0.000000 —4.7431 0.026869 0.1900 0.0136

13 13-1 39.6 35.6-42.6 8.6601 0.000000 —10.3753 0.000059 0.0913 0.0213
doi:10.1371/journal.pone.0063898.t006



Table 7. ANOVA of seed color trait in the F5 families.

Genetic Analysis and QTL Mapping in Sesame

Marker name Position (cM)

Pingyu environment

Yuanyang environment

P value® r P value® r
Y2632R/M14-110 0.000 0.0009 0.045 0.0360 0.018
Hs1125R/E11-300 18.637 <0.0001 0.198 <0.0001 0.177
Hs1152F/E14-300 23.410 <0.0001 0.077 0.0045 0.033
Y2017F/M11-400 32.185 <0.0001 0.147 <0.0001 0.126
Hs1006F/E16-370 43.823 <0.0001 0.100 0.0006 0.049
Y640/E16-230-2 48.793 0.0001 0.060 0.0100 0.028
R2-1R/E14-180 56.785 0.0168 0.024 0.0212 0.022

Note: a indicates the significance of the model.
doi:10.1371/journal.pone.0063898.t007

QTLs and Genes for Seed Coat Color

In this study, we identified four stable QTLs for seed coat color
in sesame and estimated their gene effects. In the Fy population,
QTL 1-1 and QTL 13-1 played major roles, explaining 39.95%
and 30.56% of the phenotypic variation (Table 5), and having
additive effects (h?) of 30.03% and 21.02% (Table 6), respectively.
QTL 11-1 and QTL 11-2 are regarded as polygenes due to their
comparatively lower contributions. This result is consistent with
the results from classical genetic analysis (Table S1). The seed
color trait is relatively stable and is not affected by environmental
factors [49-51]. In other crops, the number of genes controlling
the seed coat color trait is variable; for example, the seed color
trait is regulated by a single gene in flax [52], watermelon [53],
and lettuce [54], while two independent loci were found in lentil
[55] and biennial white sweet clover [56], and at least three genes
are involved in controlling the trait in pea [57] and capsicum [58].

Using the winQQTLCart program and F5 population data, QTL
11-1 and QTL 11-2 contributed 20.61% and 24.02%, respective-
ly, of the phenotypic variation in Yuanyang (Table 5), making a
similar contribution to that of QTL 1-1 and QTL 13-1.
Furthermore, a similar situation was also observed in Pingyu
when data was analyzed using the networks program (Table 5 and
6). We thus suggested that QTL 11-1 and QTL 11-2 may play
major roles and have comparable effects to QTL 1-1 and QTL 13-
1.

It is noteworthy that the QTL 11-1 and QTL 11-2 in LG 11 are
quite close to each other. Whether these QTLs are independent or
two parts of one larger QTL is a question worth consideration. He
et al. (2001) reported that independence between two QTLs is
based on heritability, marker density and sample size [59]. In Fy or
I3 populations, if the heritability of a QTL is 10%), the marker
density is 15 ¢cM and the sample size 1s 300, the likelihood of
detecting two adjacent Q'TLs would be 80% [59]. In our study,
results showed that the two QTLs in LLG11 had a heritability
greater than 10% (Tables 5, 6), a QTL distance of greater than
20 cM (Figure S2) and a marker density in LG11 of greater than
15 cM. We therefore concluded that there are two QTLs in the
LG11 region. To further confirm this hypothesis, we performed an
ANOVA using the GLM procedure with color values as the
dependents and markers of class variables (Table 7). Results
obtained also supported the existence of two QTLs in the LG11
region.

Several genes related with seed coat color have been cloned
from A. thaliana, Brassica and Glycine max using fine-mapping, T-
DNA insert mutation and homology-based cloning strategies [60—
62]. Due to the association between seed coat color and important

PLOS ONE | www.plosone.org

biochemical functions [2-7,63], we will continue to perform gene
cloning and functional research on seed coat color traits in our
ongoing Sesame Genome Project (www.sesamum.org) [64].

Conclusion

We have assembled a high-density linkage map of sesame with
653 marker loci in 14 LGs. We have shown that seed coat color is
controlled by two major genes with additive-dominant-epistatic
effects plus polygenes with additive-dominant-epistatic effects, and
detected four QTLs, QTLI-1, 11-1, 11-2 and 11-3 which are
distributed in three linkage groups. Our results for segregation
analyses and QTL detection for sesame seed coat color were
consistent. Location of genes controlling seed color on the linkage
map should be useful for gene isolation and functional genomics
research. This first QTL mapping study in sesame provides a
foundation for further genetics and molecular marker-assisted
selection (MAS) breeding research.

Supporting Information

Figure S1 Seed coat color variation in six populations.
In this figure, seed color images (a-n) represent the corresponding
RGB values for thel4 grades (20-150) (Table 1). A series of seed
coat colors in sesame populations are included. (a) represents the
black-seeded parent and (n) the white-seeded parent.

(TTF)

Figure S2 QTLs detected in the F; populations in two
environments using QTLnetworks program 2.0. A: QTL
estimation in F3 populations from Pingyu. B: QTL estimation in
F5 populations from Yuanyang.

(TIF)

Table S1 Genetic models for P,, P,, F;, BC;, BC; and F,
population analysis. The genetic models are cited from Gai
et al. [20] and Zhang et al. [23] and were divided into five model
groups, 1.e., inheritance controlled by one major gene, two major
genes, polygenes, one major gene plus polygenes and two major
genes plus polygenes.

DOC)

Table S2 AFLP and SSR primers used for linkage map
construction. 32 AFLP and 298 SSR primer pair combinations
were used to screen for polymorphic primer pairs in genetic
linkage map construction. The 50 AFLP primer pairs anchored
onto the map were screened from combinations of the 32 AFLP
primers, while the 30 SSR primer pairs anchored onto the map
were obtained from previous research [17-18], and the 573
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RSAMPL primer pairs anchored onto the map were screened
from combinations of the 32 AFLP and 298 SSR primers.
(DOC)

Table S3 Fitness tests of five candidate genetic models
for seed coat color analysis. The number of significant
parameters, correlated with the adaptation level of the models,
varied from 0-13. The E-0 model with the least number of
significant parameters (0) in the three replications was selected
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