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Preface
Hsp90 is an essential, abundant, and ubiquitous eukaryotic chaperone that has crucial roles in
protein folding and modulates the activities of key regulators. The fungal Hsp90 interactome,
which includes numerous client proteins such as receptors, protein kinases and transcription
factors, displays a surprisingly high degree of plasticity that depends on environmental conditions.
Furthermore, although Hsp90 levels increase following environmental challenges, Hsp90 activity
is tightly controlled via post-translational regulation and an autoregulatory loop involving the heat
shock transcription factor, Hsf1. In this review, we discuss the roles and regulation of Hsp90. We
propose that Hsp90 acts as a biological transistor that modulates the activity of fungal signalling
networks in response to environmental cues via this Hsf1-Hsp90 autoregulatory loop.

Introduction
Heat shock protein 90 (Hsp90) was first described amongst a defined set of heat shock
proteins (HSPs) that are rapidly induced in fungal, plant and animal cells in response to
acute thermal up-shifts1-5. This HSP induction, which underpins the molecular adaptation to
thermal insults, represents the heat shock response that is ubiquitous across the bacterial,
archaeal and eukaryotic kingdoms1-5. HSPs have been divided into families based on their
molecular mass. The Hsp90/htpG, Hsp70/dnaK and Hsp60/groEL families tend to display
strong evolutionary conservation from bacteria to humans6,7. Smaller HSPs, including
Hsp42 and Hsp26 in the yeast Saccharomyces cerevisiae, display greater evolutionary
divergence5,8. Most of these HSPs are protein chaperones, promoting folding and assembly
of newly synthesized proteins, and degradation or repair of damaged proteins that have
become dissociated or formed aggregates as a result of thermal or chemical stress.

The high evolutionary conservation of the heat shock response across the fungal kingdom is
intriguing. This might not seem surprising as fungi occupy highly divergent environmental
niches, where they can be exposed to dramatic thermal fluctuations. However, other
adaptive responses, to osmotic, oxidative and cell wall stresses for example, have diverged
substantially across the fungal kingdom9. Some key stress regulators have been conserved,

Address for correspondence: Alistair J.P. Brown, School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences,
Foresterhill, Aberdeen AB25 2ZD, United Kingdom, al.brown@abdn.ac.uk, T: +44-1224-437482, F: +44-1224-437465.
*Communicating author

Subject Categories
Fungi, Genomics, Cellular Microbiology, Pathogens, signal transduction, protein folding

Europe PMC Funders Group
Author Manuscript
Nat Rev Microbiol. Author manuscript; available in PMC 2013 May 22.

Published in final edited form as:
Nat Rev Microbiol. 2012 October ; 10(10): 693–704. doi:10.1038/nrmicro2875.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



but many upstream sensors and downstream transcriptional regulators have diverged
substantially9. On this basis one might have expected the heat shock response to have
diverged in fungi that inhabit thermally buffered niches, such as the clinically important
pathogen C. albicans10, which is obligately associated with warm-blooded animals11.
Nevertheless, this response is strongly conserved in C. albicans and heat shock adaptation is
essential for its virulence10,12. This reflects the fact that the “heat shock” apparatus is
essential for cellular adaptation to the subtle or gradual thermal transitions that organisms
often experience in the wild, not just to the acute temperature up-shifts that experimentalists
tend to examine in the laboratory13. In particular, the strong conservation of Hsp90 attests to
the fundamental importance of the cellular functions executed by this essential chaperone in
eukaryotic cells. Indeed, Hsp90 is essential for the growth and viability of evolutionarily
divergent yeasts such as S. cerevisiae, Schizosaccharomyces pombe and Candida albicans
even under normal growth conditions14-16.

Hsp90 is an essential component of the cytoplasmic Hsp90-Hsp70 chaperone network that
promotes protein folding and refolding in eukaryotic cells. Hsp70 promotes the initial
folding of some nascent polypeptides as they emerge from the ribosome. Some of these
proteins are then passed to the Hsp90 machine which facilitates the later stages of their
folding and, in some cases, maintains them in a near-native conformational state17. Indeed,
Hsp90 has vital roles in the folding and maintenance of a specific subset of proteins in the
fungal cell, termed “client proteins”.

As a direct consequence of its role in maintaining the structural integrity of its client
proteins, Hsp90 is thought to generate “protein-folding reservoirs” that can buffer the
phenotypic impact of mutations in client proteins, thereby facilitating evolutionary change18.
Hence Hsp90 has acted as an evolutionary capacitor during eukaryotic evolution19-21.
However, this review focuses on the impact of Hsp90 in cellular, rather than evolutionary
timescales. We focus on the impact of temperature on the interactions of fungal Hsp90 with
its client proteins. We suggest that, while acting as a capacitor in evolutionary timescales,
Hsp90 acts as a biological transistor over cellular timescales by modulating the activities of
key signalling networks in response to dynamic changes in environmental conditions.

The Hsp90 chaperone cycle
The structure of the Hsp90 chaperone and its conformational dynamics are the subject of
recent elegant reviews17,22,23. Briefly, the Hsp90 protein has three domains and operates as
a dimer24-26 (Figure 1). The ~180 residue carboxy-terminal domain mediates constitutive
dimerization, whilst the amino-terminal domain of around 215 residues contains the ATP
binding domain. These domains are separated by a ~260 residue central domain that
mediates many Hsp90-client protein interactions. The central and amino-terminal domains
are connected by a charged linker, mutations in which affect interactions with some client
proteins and co-chaperones.

The flexible Hsp90 dimer undergoes major conformational shifts during a dynamic
chaperone cycle that is driven by ATP hydrolysis17,23-26 (Figure 1). In the absence of ATP
binding the dimer takes up an open V-shaped confirmation in which the two amino-terminal
domains are separated and the two subunits are held together via their carboxy-terminal
domains. ATP binding to the amino-terminal domain stimulates the closing of a lid over the
nucleotide binding pocket, and the relatively slow subsequent formation of a closed form in
which the two amino-terminal domains in the Hsp90 dimer associate closely together.
Hsp90 has weak intrinsic ATPase activity that is modulated by interactions with client
proteins and co-chaperones. After ATP hydrolysis, substantial remodelling occurs to
regenerate open forms of the protein27. The ATPase cycle is relatively slow, yeast Hsp90

Leach et al. Page 2

Nat Rev Microbiol. Author manuscript; available in PMC 2013 May 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



hydrolysing an ATP molecule every 1-2 minutes28,29. This conformational cycle differs
between species, but remains crucial for the maturation of client proteins27,30. The classical
pharmacological inhibitors of Hsp90, geldanamycin and radicicol, dock at the ATP binding
site in the amino-terminal domain17,31, providing useful tools for the dissection of Hsp90
function.

Hsp90 is regulated at multiple levels
Transcriptional control of HSP90

Hsp90 is naturally abundant in fungal cells and is induced to even greater levels by heat
shock and other proteotoxic stresses10,15,32-35. Hsp90 protein levels are regulated at
transcriptional and post-transcriptional levels (Figure 2).

HSP90 transcription is controlled by the heat shock transcription factor HSF, a key regulator
of the heat shock response36,37 that is evolutionarily conserved from S. cerevisiae (Hsf1) to
mammals (HSF1/2). Hsf1 is essential for viability in yeasts10,38,39, and is required for the
basal expression of HSP genes10,39,40. It acts as a trimer, binding constitutively to heat
shock elements (HSEs) in the promoters of HSP genes41-44. Hsf1 is activated by
hyperphosphorylation in response to specific environmental cues, which in some fungi
include glucose starvation, superoxide, oxygen tension and changes in membrane lipid
composition as well as heat shock10,39,45,46. Hsf1 activation drives increased HSP gene
transcription10,47,48, primarily via the carboxy-terminal activation domain of Hsf112,49, and
this leads to the accumulation of HSPs37.

Notably, fungal Hsf1 is only temporarily activated on thermal upshifts10. Hsf1 is rapidly
phosphorylated and then dephosphorylated after a 30-42°C heat shock in C. albicans13,
suggesting regulation via a negative feedback loop. Almost three decades ago Lindquist2,50

and Didomenico et al.51 postulated that feedback components down-regulate the heat shock
response. Initially, Hsp70 was thought to be the key HSF repressor in mammalian
systems52-54, and Hsf1 interacts with Hsp70 family members in S. cerevisiae55. However,
yeast Sse1 (an Hsp70) is required for Hsp90-dependent functions56, suggesting that Hsp90
is the Hsf1 repressor.

Pharmacological inhibition of mammalian Hsp90 correlates with HSF1 activation57.
Furthermore, human HSF1 interacts physically with Hsp90 complexes57,58, and this is
thought to repress HSF1 transcriptional activity. No such physical interaction between Hsf1
and Hsp90 has been demonstrated in the fungal kingdom. However, mutations that interfere
with Hsp90 function derepress the expression of Hsf1-dependent reporter genes in S.
cerevisiae59, and an Hsf1-Hsp90 autoregulatory loop has now been confirmed in C. albicans
(Figure 2). Both pharmacological inhibition and genetic depletion of Hsp90 induces Hsf1
activation in C. albicans (Leach et al, unpublished). Furthermore, a physical interaction
between Hsp90 and Hsf1 has been confirmed by co-immunoprecipitation (Leach et al,
unpublished). Therefore, Hsp90-mediated repression of Hsf1 is released following heat
shock, Hsf1 becomes activated, and this leads to a transcriptionally mediated increase in
Hsp90 levels13. This response is then down-regulated when excess Hsp90 binds to Hsf1.

Post-transcriptional control of HSP90
In C. albicans, HSP90 transcript levels increase dramatically on thermal upshifts13, but
Hsp90 protein levels do not increase to the same extent. Translational regulation in heat
shocked Drosophila cells was reported by Lindquist three decades ago2. Translational
regulation is not thought to occur in yeast following heat shock, the patterns of protein
synthesis generally reflecting the dynamically changing mRNA populations during heat
shock adaptation2. However, yeast heat shock mRNAs generally carry relatively
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unstructured 5′-leader regions that are less dependent on cap-dependent mechanisms of
translation initiation60.

Hsp90 protein levels may also be regulated at the level of protein turnover. S. cerevisiae
Hsp90 can be targeted for ubiquitin-mediated degradation by the cell cycle regulated protein
kinase, Swe161. Hsp90 stability is probably regulated in C. albicans as Hsp90 levels decline
rapidly as cells become adapted to elevated temperatures (Leach et al, unpublished). Clearly,
Hsp90 protein levels are tightly regulated at multiple levels.

Post-translational modification of Hsp90
Hsp90 activity is regulated by post-translational modification. It has been known for some
time that Hsp90 is phosphorylated in mammalian cells62,63. Similarly, phosphorylation of S.
cerevisiae Hsp90 is thought to influence its activity and hence the rate of maturation of
specific client proteins64,65. Yeast Hsp90 is phosphorylated by Swe1 and casein kinase 2
(CK2), and is dephosphorylated by Ppt161,64-66. CK2 also phosphorylates Hsp90 in C.
albicans67. However, the relationship between Hsp90 phosphorylation and activity is
complex. For example, Hsp90 hyperphosphorylation, induced by inactivation of the
phosphatase Ppt1, leads to a reduction in the activity of the Hsp90 chaperone system64.
Meanwhile, blocking the Swe1-mediated phosphorylation of Hsp90 at Tyr24, which
normally occurs in a cell cycle dependent fashion, inhibits Hsp90 interactions with a specific
subset of co-chaperones (Aha1) and client proteins (Ste11 and Slt2)61. Also,
phosphorylation at Thr22 by casein kinase 2 modulates Hsp90 interactions with the co-
chaperones Cdc37 and Aha165. In addition, yeast Hsp90 is S-nitrosylated, which affects its
dimerization dynamics and activity68, and by analogy with its mammalian counterpart69,
yeast Hsp90 might also be acetylated.

Co-chaperone modulation of Hsp90 function
Hsp90 activity is further regulated by its interactions with various co-factors (or co-
chaperones), which influence the binding specificity of Hsp90 for particular client proteins.
An association with a specific co-chaperone is thought to fix Hsp90 in a specific open
conformation that helps to establish the binding specificity for that Hsp90 molecule and its
chaperone complex23,70-73.

A range of Hsp90 co-chaperones have been identified in yeast, most of which are conserved
in mammals (Table 1). Hsp70 and Hsp40, the other members of the major cytoplasmic
chaperone network, have been described as Hsp90 co-chaperones. Hsp70 associates with
Hsp90 via the adapter protein Sti1/Hop174 to form the minimal Hsp90 core complex75. Sti1/
Hop1 inhibits the ATPase activity of Hsp9075, as does the co-chaperone Cdc37/p5070. By
contrast, Aha1 enhances the ATPase activity of Hsp9072,76, and Sba1/p23 couples this
ATPase activity to polypeptide release77. The binding of Sba1/p23, Cdc37/p50 and Aha1 to
Hsp90 are thought to be mutually exclusive26. Additional yeast co-chaperones include Tah1
and Pih178, Cns179,80, Sgt181, and Cpr6 and Cpr7 which are homologues of mammalian
Cyp4082.

The interaction of Hsp90 with these various co-chaperones is thought to impose distinct
architectures on the Hsp90 complex, and this in turn drives interactions with different client
proteins23,26. For example, Cdc37/p50 mediates interactions with protein kinases in yeast
and mammalian cells83,84. By contrast, Sgt1 contributes to kinetochore assembly85 whilst
Tah1 and Pih1 are involved in chromatin remodelling and epigenetic regulation78,86. Zhao
and coworkers also demonstrated that inactivation of Tah1 and Pih1 impairs the maturation
of client proteins in S. cerevisiae78. This illustrates the breadth of cellular processes that the
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Hsp90 chaperone complex supervises87. Consequently mammalian and fungal Hsp90s have
become major foci for the development of anti-cancer and antifungal drugs88-90.

The Hsp90 interactome
The global Hsp90 interactome (the subset of cellular proteins that interacts with Hsp90) has
been defined in fungi and mammalian cells using a range of unbiased, genome-wide
approaches. The elaboration of the fungal Hsp90 interactome has combined the proteomic
identification of components of tandem affinity purified complexes with molecular two-
hybrid-based screens for Hsp90 interacting proteins, genetic screens for mutations that
confer hypersensitivity to Hsp90 inhibitors such as geldanamycin and Macbecin II, and
screens for mutations that confer synthetic genetic phenotypes in combination with a
temperature sensitive hsp90 mutation (hsp82G170D)67,78,91-93. The fungal interactome has
been experimentally defined in S. cerevisiae78,92, S. pombe94 and C. albicans67. These data
have been merged with experimental Hsp90 interaction datasets from plants, nematodes,
flies and mammals to generate a conceptual human Hsp90 chaperone machine
database(www.picard.ch/Hsp90Int)95.

The Hsp90 interactome is large, comprising about 10% of the proteome (Figure 3). This is
hardly surprising given that Hsp90 is a central component of a large molecular machine and
that the role of this machine is to promote the folding of numerous client proteins.
Nevertheless, the evidence suggests that, despite the breadth of the Hsp90 interactome, it
comprises a specific subset of cellular proteins. For example, the Hsp90 interaction network
displays distinct topological features, such as its high density and connectivity that reflect
the underlying biological connections of this biological machine95. The re-identification of
Hsp90 co-chaperones and cofactors in the various unbiased global screens, that have been
performed attests to the validity of their biological outputs67,78,91-93. Furthermore, the
validity of numerous Hsp90 client proteins identified in genome wide screens has been
confirmed experimentally67,78,92. However, important differences do exist between the
Hsp90 clientele of S. cerevisiae and C. albicans67, suggesting considerable evolutionary
plasticity in the fungal Hsp90 interactome.

Members of this Hsp90 interactome are divisible into two main classes: Hsp90 client
proteins, and the Hsp90 co-chaperones and cofactors that promote the conformational
integrity of these client proteins. There is considerable overlap between fungal and
mammalian cells with regard to the categories of Hsp90 client proteins that have been
defined to date. The two main categories, protein kinases/phosphatases and transcription
factors, are clearly ubiquitous in eukaryotic systems95 (Supplementary Figure). The third
category is less well defined, but is also conserved. This category clusters structurally
unrelated mammalian Hsp90 client proteins that include viral-replication proteins and
receptors involved in innate immunity26. In fungal systems, this category probably includes
Hsp90 clients involved in secretion, vesicular transport and mitochondrial membrane
components78,92. It is significant that fungal Hsp90 client proteins are highly enriched for
regulators that have crucial roles in the control of growth, cell division, environmental
adaptation and development (Figure 3). A more comprehensive listing of Hsp90 client
proteins is provided in the Supplementary Figure, and examples of these three categories of
Hsp90 client proteins are discussed below. Given the focus of our review on the modulation
of cell signalling by Hsp90, our emphasis here is on protein kinases and phosphatases.

Kinases/phosphatases as clients
The protein phosphatase calcineurin (Cna1) is an Hsp90 client protein in 5 yeasts96,97.
Calcineurin has a major role in calcium signalling in eukaryotic systems. In yeasts,
calcineurin signalling contributes to antifungal drug tolerance, with inhibitors such as
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cyclosporin and FK506 dramatically enhancing the sensitivity of yeasts to antifungal drugs
such as fluconazole and caspofungin98,99. More recently, genetic or pharmacological
attenuation of Hsp90 function in S. cerevisiae97,100 and C. albicans96,101 was shown to
block the activation of calcineurin. Furthermore, a physical interaction between Hsp90 and
calcineurin has been demonstrated in both yeasts96,97, thereby confirming that this important
regulatory molecule is an Hsp90 client protein. Calcineurin is stabilized by Hsp90 and
becomes activated following its dissociation from the chaperone97. This is important from a
therapeutic point of view because Hsp90 inhibitors provide a potent mechanism for
increasing the sensitivity of pathogenic fungi, including C. albicans, Aspergillus fumigatus
and Aspergillus terreus, to clinically important antifungal drugs20,102.

The S. cerevisiae mitogen activated protein (MAP) kinase Slt2, which is an essential
component of the cell integrity signalling pathway, is an Hsp90 client protein91. Hsp90
interacts with the phosphorylated, activated form of Slt2. This interaction is essential for
Slt2-mediated activation of the transcription factor Rlm191, which regulates key cell wall
biosynthetic enzymes required for the maintenance of cell wall integrity when cells are
exposed to cell wall stresses such as antifungal drugs103,104. This chaperone-client
relationship has been evolutionarily conserved in C. albicans. The C. albicans orthologue of
Slt2, Mkc1, also is regulated by Hsp90, with depletion of this chaperone leading to
destabilization of this crucial MAP kinase and inactivation of the cell integrity signalling
pathway101. Therefore, the increased sensitivity of yeasts to antifungal drugs imparted by
Hsp90 inhibitors is mediated by down-regulation of Mkc1 and cell integrity signalling, as
well as through inhibition of calcineurin signalling.

The highly conserved stress activated protein kinase, Hog1/Sty1, has crucial roles in stress
adaptation in S. cerevisiae, S. pombe and C. albicans32,105-109, and in C. albicans, this key
stress regulator contributes to virulence110. Therefore, the fact that Hog1 has been identified
as an Hsp90 client protein67,111 is important in terms of fungal stress adaptation and
pathogenicity. It infers that Hsp90 might modulate the activity of this key stress signalling
pathway. However, whilst Sty1 is activated by mild heat shocks in S. pombe112, Hog1
signalling decreases following equivalent up-shifts in C. albicans108. Therefore Hsp90 might
differentially modulate Hog1/Sty1 activity in these evolutionarily divergent yeasts.

Hsp90 also contributes to cell cycle regulation. In S. cerevisiae, the Hsp90 co-chaperone
Cdc37, as well as Hsp90 itself modulates the function of the crucial cell cycle regulator,
Cdc2861,113. Furthermore, in C. albicans, this cyclin-dependent kinase interacts physically
with, and is stabilized by Hsp90114. Importantly, cell cycle and morphogenesis are tightly
regulated, and Hsp90 has been implicated for the thermal regulation of morphogenesis115, a
key virulence factor in this pathogen.

Transcription factors as clients
The Hsp90 interactome includes numerous transcription factors and chromatin remodelling
components67,78,91-93,116 (Supplementary Figure). Tah1 and Pih1 were identified through
genome wide screens as novel Hsp90 co-chaperones in yeast, and their interactions with
Hsp90 have been confirmed experimentally78. Tah1 and Pih1 promote Hsp90-mediated
maturation of the glucocorticoid receptor in yeast (a model Hsp90 substrate), of Rvb1 and
Rvb2, which are essential components of the yeast Ino80 chromatin remodelling complex
(which modulates the expression of about 5% of yeast genes) and the folding of subunits of
the SWR-C chromatin remodelling complex (which controls gene expression close to
heterochromatic regions)78. The list of Hsp90 clients also includes numerous S. cerevisiae
and C. albicans transcription factors that are involved in transcriptional reprogramming in
response to environmental cues (Supplementary Figure)67, 78, 91-93, 116, reinforcing the view
that Hsp90 underpins fungal adaptation and pathogenicity.
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Other types of client
The genome wide screens for Hsp90 interacting proteins revealed other types of Hsp90
client protein involved in processes such as secretion and intracellular trafficking, the cell
wall and metabolism67,78,91-93,116 (Figure 3, Supplementary Figure). Indeed McClellan and
co-workers have reported that of the 25 S. cerevisiae deletion mutants that displayed the
greatest sensitivity to the Hsp90 inhibitor macbecin II at 30°C, fourteen carried mutations in
transport-related genes that included numerous vacuolar protein sorting genes and the four
lobe B components of the bilobular conserved oligomeric Golgi complex92. Consistent with
this, Hsp90 inhibition was shown to reduce secretion without affecting glycosylation,
suggesting that Hsp90 influences the functions of proteins involved in the secretory
pathway92. These findings indicate that Hsp90 also has an impact on the fungal cell surface
and thereby is likely to affect interactions between fungal pathogens and their hosts.

Plasticity of the Hsp90 interactome
Clearly, Hsp90 interacts specifically with a range of key cellular regulators and modulates
their activities under normal conditions, even in the absence of an environmental stress.
However, the various genomic characterizations of the fungal Hsp90 interactome have
highlighted a second important point – the fungal Hsp90 interactome displays input-
dependent plasticity, i.e. the Hsp90 interactome responds to environmental conditions.

The various proteomic, genetic and chemical genomic screens have provided the notion of a
robust fungal Hsp90 interactome67,78,91-93. This view is reinforced by the reproducible
identification of key co-chaperones in these screens, the common functional categories that
are substantially enriched in their outputs, and the fact that the resultant Hsp90 interaction
networks display topological features that distinguish them clearly from randomly selected
networks95. However, the overlap between these experimentally determined Hsp90
interaction networks is limited when the growth conditions are changed. For example,
substantial differences are observed between the Hsp90 interactomes of C. albicans cells
grown at 30°C or 37°C67, with more protein kinases appearing in the interactome when cells
are grown at elevated temperatures. Similarly, in S. cerevisiae more proteins involved in
signal transduction, cell cycle, cytokinesis and budding are observed in the 37°C Hsp90
interactome compared with the 30°C interactome92. Analogous differences are observed
under other stress conditions. For example, cell wall stresses strengthen the interactions
between the Slt2 MAP kinase and Hsp90 in S. cerevisiae91, and encourage many new
proteins to become Hsp90 clients in C. albicans67.

Clearly the Hsp90 interactome displays substantial environmental contingency67. Although
considerable energy has been devoted to the characterization of the Hsp90 interactome, we
suggest that much remains to be discovered about its environmental plasticity and in
particular, the temporal dynamics of this plasticity. For example, the underrepresentation of
functions associated with “stress response” and “protein folding” in the global Hsp90
interactome95 probably reflects the fact that most of the genome wide screens have been
performed essentially under steady-state conditions. The true plasticity of the Hsp90
interactome is likely to be best observed under transient conditions, when the Hsp90
chaperone machine is contributing to dynamic cellular adaptation to environmental insults.

Hsp90 circuitry – dynamic behaviours
Our understanding of the organization of cellular networks and their dynamic behaviours
can be substantially improved by quantitative analyses and mathematical modelling of these
processes and their responses to external perturbations. Systems biology models have
increased our understanding of, for example, the dynamics of the S. cerevisiae cell cycle117,
the highly complex response of osmotically stressed cells that involves cell signalling, gene
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regulation and metabolic adaptation118, as well as the impact of osmotic stress on cell cycle
progression119.

Given its essentiality and ubiquity, the heat shock response is a good candidate for
mathematical modelling. At the network level, Mihalik and Csermely analysed the effects of
heat shock on the organization of the yeast interactome revealing partial disintegration of the
interactome in response to this stress120. In the absence of global protein-protein interaction
datasets generated under heat shock conditions, these authors exploited transcriptomic
datasets to show that during heat shock there is a substantial decrease in the degree of
overlap and the frequency of connections between the modules of the yeast interactome. For
example, two central ribosomal modules, which reflect the major role of protein synthesis in
unstressed growing yeast cells, display decreased community centrality in the interaction
network after heat shock. By contrast the metabolism module retains its central position in
the network. Whilst the general connectivity of network modules decreases during heat
shock, heat shock proteins contribute to the integration of this partially decoupled interaction
network, reflecting their major influence on protein function under these conditions120.

Ebong and colleagues analysed the kinetics of Hsp90 complex formation with its
chaperones121. Mass spectrometric analyses of complexes formed in vitro by recombinant
human Hsp90, Hsp70, Hop, and FKBP52 allowed the authors to construct an interaction
network for these factors and to predict dominant complexes that are formed during the
Hsp90 cycle. The relative similarity of the binding constants for the species studied
supported the view that the Hsp90 chaperone machinery is complex and dynamic121.

Also, the role of Hsp70 and Hsp90 in protein homeostasis has been modelled
dynamically122. This study examined the relationships between Hsp90, Hsp70, JNK and p38
in the context of neurodegeneration. The simulations suggested that following the
imposition of a proteotoxic stress, protein homeostasis can be maintained for short periods,
but that in the longer term the chaperone system becomes overwhelmed leading to an
increased probability of protein aggregation and cell death122.

More recently Leach and colleagues13 used an ODE (ordinary differential equation) model
to investigate the dynamics of the Hsf1-Hsp90 autoregulatory loop (Figure 2). The model
focuses on the Hsp90-Hsf1 interaction because the available data suggest that Hsp90 is the
main chaperone that represses Hsf113,59. In this model, Hsp90 interacts with and represses
Hsf1. After heat shock, Hsp90 becomes sequestered in complexes with unfolded and
damaged proteins, and therefore is less available temporarily for complex formation with
Hsf1. As a result, the released Hsf1 becomes activated and induces HSP90 gene
transcription, thereby leading to the production of more Hsp90. Ultimately excess Hsp90
rebinds Hsf1, blocking further transcriptional activation13. Therefore, this model predicted
that alterations in ambient temperature lead to changes in the concentration of free Hsp90
and influenced the interactions of Hsp90 with one of its client proteins, Hsf1. Aspects of this
model have been confirmed in vivo12 and Hsf1 has now been shown to be an Hsp90 client
protein (Leach et al, unpublished). Given the observed environmental plasticity of the Hsp90
interactome67,92, thermal fluctuations are also likely to influence the interactions of Hsp90
with other client proteins.

In principle, how might changes in ambient temperature affect the Hsp90 interactome? As
described above, the binding specificities and affinities of the Hsp90 chaperone machine for
its client proteins are driven by its co-chaperones. However, for the purpose of this
discussion, let us simplify things by considering merely that Hsp90 displays differing
affinities for different client proteins. As described above, Hsp90 abundance increases
following heat shock (and in response to other environmental insults). However, the
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abundance of free Hsp90 that is available for interactions with client proteins declines
transiently as Hsp90 becomes sequestered in complexes with unfolded proteins. Modelling
of a simple conceptual Hsp90 interactome (Figure 4), in which two client proteins (A and B)
are present at differing levels, is sufficient to demonstrate that changes in Hsp90 availability
will substantially affect its interactions with these client proteins (Figure 4C).

Let us then, for the sake of discussion, make the likely presumptions that Hsp90 displays
differing affinities for different client proteins, and that changes in ambient temperature
affect the affinity of Hsp90 for some client proteins more than others. In this case, our model
of this simple Hsp90 interactome shows that an increase in the affinity of Hsp90 for client
protein B will result in a substantial increase in the proportion of B that complexes with
Hsp90 relative to client protein A (Figure 4D). If Hsp90 binding activates these client
proteins, this increased affinity for B will result in a dramatic shift from a situation where
pathway A is more active than pathway B, to a new situation where B is more active than A.

Therefore, modelling of this simple Hsp90 interactome indicates that the kinetics of binding
between Hsp90 and its client proteins is likely to be substantially affected by changes in
Hsp90 abundance, binding affinities, relative concentrations and on/off rates. Clearly
thermal fluctuations will exert dramatic effects on the Hsp90 interactome, having an
important role in the dynamic competition between binding partners. Three major aspects
are relevant here: the relative affinity of client and unfolded proteins for Hsp90; the relative
abundance of these different ligands; and whether specific client proteins are activated or
inhibited through their interactions with Hsp90. We suggest that Hsp90 essentially acts as a
biological transistor, tuning the activities of key signalling pathways in response to thermal
inputs and other proteotoxic environmental cues.

Cellular consequences
What are the likely cellular consequences of Hsp90 modulating the activity of global
signalling networks in response to changes in ambient temperature through differential client
interactions? Thermal modulation of Hsp90 availability promotes the activation of some
signalling pathways in fungal cells. Hsp90 regulates morphogenesis in C. albicans by
repressing Ras1-PKA signalling at relatively low temperatures115. At elevated temperatures
(circa 37°C) this Hsp90 repression is relieved, leading to filamentation. Hence, through the
Hsp90 transistor, changes in ambient temperature influence cellular morphology, a key
virulence determinant in this pathogen (Figure 5).

Hsp90 also has evolutionarily conserved roles in cell cycle progression. Several key cell
cycle regulators have been identified as Hsp90 interactors in S. cerevisiae, including Swe1,
Cdc28, Cdc50 and Cdc6061,92,123. Furthermore, Hsp90 has recently been implicated in cell
cycle progression in C. albicans. Cell cycle arrest is believed to promote filamentation in
response to compromised Hsp90 function; Cdc28 has been identified as an Hsp90 client, and
key effectors for morphogenesis induced by compromised Hsp90 or elevated temperature
include Pho85 and Pcl1 providing possible links between Hsp90, cell cycle regulation and
morphogenesis114,124.

Hsp90 also has a profound impact on responses to drug-induced cellular stress, in this case
through activation of other signalling pathways. For example, cell integrity and Ca++-
calmodulin signalling are down-regulated following Hsp90 depletion via destabilization of
Slt2/Mkc191,101 and calcineurin96, respectively. These pathways play major parts in
antifungal drug tolerance, and the impact of Hsp90 on this phenotype has been well
characterized in both C. albicans and S. cerevisiae. For example, Hsp90 depletion
phenocopies the azole sensitivity of calcineurin and protein kinase C mutants96,101.
Importantly, elevated temperatures also recapitulate the antifungal drug sensitivity caused by
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Hsp90 inhibition20. Therefore, thermal upshifts down-regulate antifungal drug resistance via
the effects of the Hsp90 transistor on cell integrity and Ca++-calmodulin signalling (Figure
5).

Given the impact of the cell integrity and Ca++-calmodulin pathways on the C. albicans cell
wall, a clear prediction is that ambient temperature will also affect the architecture of the
cell surface and hence immune recognition by the host (Figure 5). Indeed, C. albicans cells
grown at 37°C versus 25°C contain longer mannans125. Mannans from C. albicans cell wall
have the ability to stimulate cytokine production126,127, and induce dendritic cell
maturation128.

These effects of Hsp90 on cellular processes will not be restricted to acute heat shocks.
Mathematical modelling has strongly suggested that cells are constantly tuning Hsp90 levels
to subtle changes in ambient temperature. Hence it is highly likely that the Hsp90 transistor
is constantly tuning the activity of the cellular signalling network to subtle thermal
fluctuations. Furthermore, the Hsp90 transistor probably modulates fungal signalling
networks in response to other proteotoxic stresses that influence Hsp90 availability.

Conclusions
In conclusion, Hsp90 has a central role in tuning cellular outputs to thermal inputs,
discussed here primarily in the context of yeast species. However, as Hsp90 is one of the
most ancient and highly conserved regulators of cellular signalling, this is likely to have
broad relevance across the eukaryotic kingdom. There is some plasticity in the Hsp90
chaperone machine, though key co-chaperones are conserved across all eukaryotes87. Also,
many features of the Hsp90 interactome are highly conserved from yeast to humans despite
substantial network rewiring over evolutionary time. These conserved features include a
preponderance of protein kinases and transcription factors as client proteins67,78,91-93. As a
consequence of its extensive connectivity in interaction networks and its profound impact on
signal transducers, the Hsp90 transistor tunes physiological responses to environmental
conditions.

Hsp90 also modulates the phenotypic effects of genetic variation thereby influencing
evolution. By governing the activation of diverse regulators of cellular signalling, Hsp90 can
influence the phenotypic effects of genetic variation in an environmentally responsive
manner in at least two distinct ways. First, Hsp90 can buffer the effects of genetic or
epigenetic variation, keeping it silent until released when the chaperone reservoir is
compromised in response to stress. This role as a capacitor for variation has been observed
in diverse eukaryotes including flies, plants, and fungi18,19,129-134. Second, Hsp90 can
enable the phenotypic effects of new mutations either by stabilizing mutant regulators or by
stabilizing non-mutant regulators that mediate signalling required for adaptation. This role
as a potentiator for genetic variation has been observed in fungi as well as mammalian
cancer cells20,88,135,136. A recent study exploiting the genetic tractability of S. cerevisiae,
revealed that Hsp90 influences approximately 20% of natural genetic variation serving both
to maintain phenotypic robustness and promote diversification18. Furthermore, the link
between Hsp90, Hsf1 and environmental stress has been reinforced by the recent
observation that stimulation of a stress response either by heat shock or increased expression
of HSF-1 reduces the phenotypic effects of mutations in the nematode Caenorhabditis
elegans137.

Thus, Hsp90 has a multitude of impacts on cellular circuitry: as a capacitor that buffers
genetic variation until released by stress; as a potentiator that enables the phenotypic effects
of new mutations; and as a transistor that tunes cellular outputs to environmental inputs.

Leach et al. Page 10

Nat Rev Microbiol. Author manuscript; available in PMC 2013 May 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



This illustrates the stunning complexity of ways in which stress response circuitry
orchestrates adaptation on both physiological and evolutionary timescales.

An elegant combination of molecular, genetic and genomic approaches has dramatically
increased our understanding of Hsp90 as an evolutionary capacitor. However these
approaches have only provided glimpses of the role of Hsp90 as a cellular transistor.
Understanding this role represents a major challenge for the future. How does the Hsp90
chaperone machine modulate the functions of the key cellular regulators that drive
physiological adaptation during the minutes that follow an environmental challenge? To
address this question we need high throughput biochemical, biophysical and mathematical
tools to define and understand the short term dynamism of the Hsp90 interactome as well as
its long term plasticity.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Online Summary
Hsp90 is an essential, abundant, and ubiquitous eukaryotic chaperone that has crucial roles
in the folding of its client proteins. Hsp90 has been shown to stabilize client proteins,
buffering the phenotypic impact of mutations in these proteins, thereby acting as an
evolutionary capacitor during fungal evolution.

In cellular timescales, fungal Hsp90 has been shown to interact with and modulate the
activities of client proteins. These include key regulators such as protein kinases and
transcription factors which control fungal growth, environmental adaptation and
pathogenicity.

Fungal Hsp90 activity is tightly regulated and induced in response to heat shock and other
proteotoxic stresses: Hsp90 synthesis is controlled by an autoregulatory circuit involving the
heat shock transcription factor (Hsf1); and Hsp90 binding specificity is modulated by post-
transcriptional modification.

Straightforward mathematical modelling predicts that the degree to which Hsp90 binds
specific client proteins depends on Hsp90 availability and the relative affinities of the Hsp90
chaperone for these client proteins. This prediction is consistent with the experimental
observation that the fungal Hsp90 interactome displays considerable environmental
plasticity.

This plasticity infers that environmental challenges promote transient changes in the profile
of regulators bound by Hsp90, and hence modulate the activities of the corresponding
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signalling pathways. We propose that Hsp90 acts as a biological transistor that tunes the
activity of fungal signalling networks to environmental conditions.
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Glossary

Proteotoxic stress Cellular stress conditions that prompt the accumulation of
unfolded or damaged proteins, or the formation of protein
aggregates.

Heat shock elements
(HSEs)

The consensus sequence present in the promoter regions of
heat shock genes that is bound by the transcription factor
Hsf1 thereby activating their expression.

Hyperphosphorylation The phosphorylation of a target protein at multiple
residues.

S-nitrosylation Post-translational modification of a protein by covalent
attachment of a nitrosyl group on the thiol moiety of
cysteine residues, usually as a result of nitrosative stress.

Synthetic genetic
phenotypes

Phenotypes that are not apparent as a result of a single
perturbation, but that are revealed by combining two
mutations or genetic and pharmacological perturbations.

Chemical genomic screens Screens that combine small molecule inhibitors or
activators with genome-wide mutant collections to identify
mutations that confer sensitivity or resistance to these
molecules.

Filamentation A collective term for elongated cellular phenotypes such as
yeast cells that have not undergone cell separation,
pseudohyphae and hyphae.
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Text Box 1

Modelling the structure and dynamics of regulatory networks

Systems biologists use different modelling approaches, depending on the specific
scientific question they wish to address, the particular system of interest, the nature and
amount of available experimental data, and simply taste (for an introduction138). Network
oriented approaches enumerate compounds such as proteins or metabolites and analyse
the type and frequency of their interactions. This allows the identification of patterns or
statistical correlations that are not obvious from analyses of the individual components.
By contrast, dynamic models are usually based on the characterization of the network and
its interactions, describing their changes over time. These changes might arise, for
example, through inherently dynamic processes such as cell cycle or circadian rhythms,
or as a result of external perturbation of the system, such as environmental stresses or
nutrient changes. An important class of these models describes the dynamics of their
components using systems of ordinary differential equations (ODE), i.e.

where xi with i = 1,..,n are the concentrations of compounds and complexes, fi are the
(usually non-linear) functions describing their changes over time, which can be
represented as the sum over stoichiometric coefficients nij multiplied by the rates of the
individual reactions, vj, with j = 1,..,r. The rates depend on current compound
concentrations and parameter values, pl, such as kinetic constants, binding constants,
maximal rates, or Hill coefficients.

Although confidence about the wiring of networks increases through, for example, high-
throughput or dedicated protein-protein interaction studies or through metabolic
reconstructions139, the precise form of rate expressions and the values of kinetic
parameters are often elusive, and their choice depends on the available experimental data
and laborious parameter estimation exercises. Achieving the goal of models that are
firmly based on quantitative data and that have predictive value, is hindered by
limitations in the ability to describe the whole cell and all its multifarious levels of
regulation. Thus, defining the boundaries of the system being modelled, necessitates
assumptions about some processes, and simplification of the system whilst considering
the major players relevant to the scientific question. Descriptions are frequently restricted
to compounds that are amenable to experimental quantification and, hence, reactions and
regulatory steps between them are often compressed into single equations.
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Figure 1. The Hsp90 chaperone cycle
The shape of the Hsp90 monomer is adapted from Pearl et al. (2008)26, illustrating the
amino- (N), middle (M) and carboxy-terminal (C) domains. The Hsp90 chaperone cycle has
been reviewed recently17, 23. Hsp90 acts as a dimer that can take up various dynamic
conformations in its ADP bound-state in which the amino terminal domains can be apart or
closely associated (compact form). The Hsp90 dimer takes up an open state following
release of ADP. The rapid association with ATP is associated with interactions with co-
chaperones, Hsp70 and client proteins. Different co-chaperones can associate with different
domains of the Hsp90 molecule and mediate interactions with distinct client proteins17,23.
This is followed by the slow formation of a closed complex and the release of Hsp70 and co-
chaperones. Then the folded client protein is released and the ATP is hydrolysed.
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Figure 2. Hsp90 levels and activity are regulated at multiple levels
(see text). Hsp90 transcription is regulated by the heat shock transcription factor (Hsf1), the
activation of which is negatively regulated by Hsp90 via an autoregulatory loop13 that
involves a physical interaction between Hsp90 with Hsf1 (Leach et al. unpublished). During
heat shock, yeast HSP mRNAs may be preferentially translated and Hsp90 turnover might
also be modulated (see text). Hsp90 activity is controlled by posttranslational modifications
such as phosphorylation, s-nitrosylation and possibly acetylation. These changes influence
Hsp90 interactions with specific co-chaperones, and hence affect the folding of specific
subsets of client proteins. Furthermore, after proteotoxic stress changes in Hsp90
availability, mediated by altered HSP90 expression and changes in the amount of Hsp90
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associated with unfolded proteins, is predicted to affect interactions with Hsp90 client
proteins13.
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Figure 3. The fungal Hsp90 chaperone machine and exemplar client proteins
The shape of the Hsp90 machine is adapted from Pearl et al. (2008)26, illustrating the
amino- (N), middle (M) and carboxy-terminal (C) domains. The specificity of an Hsp90
complex depends on which co-chaperone it binds. Co-chaperones can bind different faces of
Hsp90. Examples of Hsp90 client proteins that are representative of the major cellular
processes that Hsp90 influences are illustrated in blue.
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Figure 4. Alterations in Hsp90 concentrations are predicted to differentially affect interactions
with specific Hsp90 client proteins
(A) A simple conceptual network illustrating the interactions between Hsp90 (black) and
two distinct client proteins, A (red) and B (blue). The solid boxes surround the free forms of
these proteins, and the dotted boxes surround the A-Hsp90 and B-Hsp90 client-chaperone
complexes. (B) Equations describing the dynamic relationships between these proteins and
complexes in this conceptual network, and their conservation in the network. In steady state,
set the two dynamic equations equal to zero. (C) Graph showing the impact of changing
total Hsp90 levels on the concentrations of the free and Hsp90-bound forms of the client
proteins A and B. In this case the affinities of Hsp90 for A and B are the same, but the total
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concentration of A is five-fold lower than B. Clearly Hsp90 availability influences the
proportions of A and B that are incorporated into Hsp90 complexes. (D) Graph depicting the
effects of altering the affinity of Hsp90 for B (from 0 to 2), whilst the affinity of Hsp90 for
A remains constant (=1) (p1 = k1/k−1 = 1; p2 = k2/k−2 = 0…2; [Atotal] = 1; [Btotal] = 1). As
the affinity of Hsp90 for B increases, the concentration of the B-Hsp90 complex increases
(dotted blue line) and the levels of free B (solid blue line) and free Hsp90 (solid black line)
decrease. By contrast, the concentration of the A-Hsp90 complex remains relatively
unaffected (dotted red line). Hence the proportions of A and B that are chaperoned by Hsp90
change as a result of this altered affinity for one of the client proteins. Solid and dotted red,
blue and black lines correspond to those in (A).
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Figure 5. Hypothesis: the Hsp90 transistor tunes multiple cellular outputs in response to thermal
input
Thermal fluctuations influence Hsp90 availability and probably the affinity of the Hsp90
chaperone machine for certain client proteins (see text). Hsp90 modulates the activity of
many client proteins, which include regulators in key signalling pathways. Hence the Hsp90
chaperone machine is proposed to act like a transistor that modulates the activity of these
signalling pathways in response to thermal (and other proteotoxic) inputs. As a result,
temperature modulates cell division, adaptation, growth and morphogenesis through the
Hsp90 transistor.
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Table 1
Hsp90 Co-chaperones

Co-chaperone
1

Essential
2 Function

Sti1 (Hop1) Non-essential Binds to the N- and C-terminal of Hsp90,
preventing the N-terminal dimerization reaction
required for ATP hydrolysis140

Aha1 (Aha1) Non-essential Enhances Hsp90 ATPase activity72,76

Cdc37 (p50) Essential Links Hsp90 to client protein kinases70

Pih1 Non-essential Interacts with Hsp90 and DNA helicases78

Cns1 (TTC4) Essential Interacts with Hsp90 C-terminus141

Tah1 Non-essential Interacts with Hsp90 C-terminus and DNA
helicases78

Sgt1 (Sgt1) Essential Binds non-ATP bound forms of Hsp90, linking
Hsp90 to client proteins81

Sba1 (p23) Non-essential Stabilises the ATP bound state of Hsp9077

Cpr6/7 (Cyp40) Non-essential Enhances Hsp90 ATPase activity82

1
(Name of mammalian orthologue)

2
Essential for viability in S. cerevisiae
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