
Immune defense mechanisms in the Caenorhabditis elegans
intestinal epithelium

Read Pukkila-Worley1 and Frederick M Ausubel2
1Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School,
Boston, MA 02114, USA
2Department of Genetics, Harvard Medical School, Department of Molecular Biology,
Massachusetts General Hospital, Boston, MA 02114, USA

Abstract
Intestinal epithelial cells provide an essential line of defense for Caenorhabditis elegans against
ingested pathogens. Because nematodes consume microorganisms as their food source, there has
presumably been selection pressure to evolve and maintain immune defense mechanisms within
the intestinal epithelium. Here we review recent advances that further define the immune signaling
network within these cells and suggest mechanisms used by the nematode to monitor for infection.
In reviewing studies of pathogenesis that use this simple model system, we hope to illustrate some
of the basic principles of epithelial immunity that may also be of relevance in higher order hosts.

Introduction
The coordinated regulation of immune defenses is of paramount importance to combat
infection and prevent the deleterious effects of unchecked immune responses on host cells.
This is of particular importance in the mammalian intestine where potential pathogens must
be differentiated from innocuous bacterial species that are part of the normal flora of
humans. One approach to understand the mechanisms of immune detection at epithelial
surfaces is to use invertebrate hosts, such as the microscopic nematode Caenorhabditis
elegans, to examine evolutionarily conserved aspects of innate immunity and pathogen
virulence [1–13]. In its natural habitats, C. elegans animals consume bacteria and fungi as
their food source and encounter numerous threats from ingested microorganisms. Thus,
there has presumably been a strong selection pressure to evolve and maintain a defense
system within the intestinal epithelium of the nematode that is able to mount targeted
defense responses toward pathogens, but not against innocuous food sources.

Because of the wealth of genetic and genomic tools available for C. elegans research, we are
beginning to understand immune mechanisms in the nematode, which has offered important
insights into the origins and fundamental principles of immunity. This topic has been
reviewed previously on a number of occasions [1–13], most recently in 2010 [7]. In this
review, we focus on studies that use C. elegans to study the immune mechanisms in
intestinal epithelial cells and highlight several exciting developments that have emerged in
the last two years.
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Key differences between the nematode and vertebrate innate immune
systems

Several key features of the mammalian innate immune response are not encoded in the C.
elegans genome, including homologs of the transcription factor NF-κB or the Toll-like
receptor (TLR) adaptor protein MYD88. In addition, the sole TLR homolog in C. elegans
does not appear to play a major role in activating the innate immune response by functioning
either directly or indirectly as a receptor for pathogen-associated molecular pattern (PAMP)
molecules. C. elegans also does not produce homologs of the known vertebrate cytokines.
Interestingly, many of these prominent features of the mammalian immune response appear
to have been lost from the nematode lineage during evolution since they are present in more
primitive metazoans such as the sea anemone Nematostella vectensis, suggesting that the
common eumetazoan ancestor of cnidarian (sea anemone and hydra) and bilaterian (worms,
arthropods, vertebrates) metazoans had these innate immune signaling components [7].
What then can we learn from the study of C. elegans innate immunity? Although the
nematode lacks NF-κB, MYD88 and other components of the TLR signaling pathway, it
mounts an immune response that utilizes several evolutionarily conserved signaling
pathways, including p38 mitogen-activated protein kinase (MAPK), β-catenin, and FOXO
transcription factors, which surprisingly appear to function in parallel to activate at least
partially non-overlapping sets of effector genes. A question of primary importance to
immunologists is whether these conserved C. elegans immune signaling pathways are also
involved in the mammalian innate immune response. From this perspective, it can be argued
that nematodes offer an excellent opportunity to identify TLR-independent and NF-κB-
independent features of the metazoan innate immune response that may be difficult to
identify and study in vertebrate models.

C. elegans anatomy facilitates study of host–pathogen interactions in the
intestine

C. elegans does not have an adaptive immune system or mobile immune cells, such as
professional phagocytes. Thus, defenses mounted by intestinal epithelial cells are critically
important to defend the nematode against ingested pathogens. Importantly, key anatomical
features of the C. elegans intestinal epithelium are conserved in mammals (Figure 1). Both
cell types have a polarized structure with apical microvilli attached to a terminal web
composed of actin and intermediate filaments. Moreover, the nematode is transparent, which
allows direct microscopic observation of invading pathogens in an intact host. Finally, the
worm intestine in its entirety consists of only 20 non-renewable cells, greatly simplifying the
analysis of an entire infectious process, which can be monitored in real time using a variety
of microscopic techniques. Two groups have recently taken advantage of these features of C.
elegans intestinal cell anatomy to study novel, naturally occurring pathogens of nematodes.

Troemel et al. identified a microsporidial pathogen in a wild-caught C. elegans strain
isolated from a compost pit near Paris, France, which they found comprised a new genus and
species [14••,15,16]. This organism, named Nematocida parisii, establishes an intracellular
infection within the intestinal epithelium of the nematode and eventually kills the animal.
Infected nematodes actively shed spores into the environment, which cause infection in
neighboring animals. By direct visualization of infected nematodes in which the actin
cytoskeleton and terminal web were engineered to express YFP or CFP, respectively, Estes
et al. show that N. parisii creates gaps in the normally contiguous terminal web by
promoting the cellular redistribution of actin toward the basolateral side of the cell away
from its normal apical location in the terminal web and microvilli [14••]. They postulate that
N. parisii spores exit through these gaps into the intestinal lumen.
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In another important study of pathogens identified in wild-caught nematodes, Félix et al.
characterized the first two viruses able to infect Caenorhabditis species [17••]. From animals
with unusual morphological features in their intestines, these researchers identified two
single-stranded RNA viruses that are distantly related to nodaviruses and capable of
infecting a variety of laboratory nematode strains. Interestingly, host RNAi machinery was
implicated in the defense against these viruses. The mechanisms used by C. elegans
epithelial cells to defend against intracellular pathogens are incompletely understood, but are
now the subject of focused investigations using these new and interesting natural C. elegans
pathogens.

The C. elegans p38 MAP kinase PMK-1: one central regulator, multiple
immune outputs

Principal among the immune regulators in C. elegans is the NSY-1/SEK-1/PMK-1 MAP
kinase pathway, which was identified in a forward genetic screen for mutants with enhanced
susceptibility to infection with the Gram-negative bacteria Pseudomonas aeruginosa [18].
This pathway is orthologous to the ASK1 (MAP kinase kinase kinase)/MKK3/6 (MAP
kinase kinase)/p38 (MAP kinase) pathway in mammals, and its identification in C. elegans
provided an important clue about the evolutionary origins of innate immunity. Activation of
this signaling cassette is complex. An ortholog of mammalian SARM called Toll-
interleukin-1 receptor (TIR-1) [19–22], and the protein kinases Cδ (PKCδ) [23] and D
(PKD) [24] act upstream of NSY-1. A recent study found that a signaling module formed by
the G protein alpha subunit (Gqα) and the signal transducer phospholipase Cβ (PLCβ)
modulate the activity of the p38 MAP kinase cassette within the intestine [25••].
Interestingly, however, stimulation of the p38 MAP kinase cassette occurs in a manner
independent of the single TLR homolog in C. elegans (tol-1). Thus, dissection of the p38
MAP kinase cassette enables analyses of immune mechanisms that are important in the
absence of TLR signaling.

The p38 MAP kinase pathway acts cell autonomously in the intestinal epithelium [26] to
coordinate defense against a wide variety of ingested pathogens. C. elegans carrying loss-of-
function mutations in pmk-1 are hypersusceptible to infection with the Gram-negative
pathogens P. aeruginosa [18,27], Salmonella enterica [28], Yersinia pestis [29•] and Serratia
marcescens [30••]; the Gram-positive pathogens Enterococcus faecalis [30••] and
Staphylococcus aureus [31]; and the fungus Candida albicans [32••]. Moreover, activity of
the p38 MAP kinase PMK-1 declines with age and was recently shown to underlie the
increased susceptibility to bacterial killing that occurs in older C. elegans [33••]. Troemel et
al. used global transcriptional profiling analyses of nematodes growing under normal
laboratory conditions to show that PMK-1 regulates the expression of putative antimicrobial
effectors, including ShK toxins, C-type lectins and genes carrying a CUB-like domain [27],
in the absence of pathogen challenge. This has been termed ‘basal regulation,’ to distinguish
it from the induction of immune effectors that occurs during challenge with a pathogen. In
addition, a variety of genes that are induced during pathogen attack by diverse pathogens
require PMK-1 [18,27,29•,32••]; however, the full spectrum of genes that are activated by
pathogens in a PMK-1-dependent manner has not been determined. Interestingly,
transcriptional profiling experiments have demonstrated that the immune effectors
upregulated by divergent pathogens, including several genes that require PMK-1, are largely
non-overlapping [27,29•,32••,34••]. These data suggest that the PMK-1 cascade coordinates
the induction of multiple immune effectors that differ depending on the infecting organism.

Work by Shivers et al. has recently shed light on a mechanism downstream of PMK-1 that
accounts for part of the immune specificity mediated by this protein [30••]. Using an
approach that highlights some of the advantages of working with a model genetic host such
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as C. elegans, these researchers fused the promoter for a PMK-1-dependent putative
antimicrobial peptide with the gene encoding GFP and integrated the array into the C.
elegans genome, thereby creating an in vivo sensor for the transcriptional activation of this
gene. By conducting a forward genetic screen for C. elegans mutants that were both
hypersusceptible to P. aeruginosa infection and exhibited diminished expression of this
transcriptional reporter, they uncovered mutations in each of the four genes in the p38 MAP
kinase cassette (TIR-1, NSY-1, SEK-1 and PMK-1) and also in ATF-7, a transcription factor
orthologous to mammalian ATF2/ATF7, which did not previously have a described immune
function in C. elegans. Subsequent characterization of ATF-7 in the C. elegans antibacterial
immune response revealed that it functions as a repressor of p38 MAP kinase PMK-1-
dependent genes in C. elegans when worms are feeding on E. coli. However, ATF-7
switches to become a transcriptional activator of immune response genes when it is directly
phosphorylated by PMK-1 during P. aeruginosa infection. Interestingly, it seems that ATF-7
is not a positive regulator of resistance to E. faecalis, despite the fact that PMK-1 is required
for normal defense against this Gram-positive pathogen. These data suggest that there are
PMK-1-dependent signaling regulators that are downstream of PMK-1 and independent of
ATF-7 that are differentially activated during E. faecalis infection. How one pathway
coordinates such disparate outputs remains an open and very interesting question.

Evolutionarily ancient mechanisms of pathogen detection
A remarkable feature of C. elegans innate immunity that has emerged from a number of
transcriptional profiling experiments is that the nematode is able to mount pathogen-specific
immune responses. The genes induced by infection with P. aeruginosa [27], S. aureus [34••],
Microbacterium nematophilum [35], and C. albicans [32••] are remarkably distinct.
Moreover, we recently found that the nematode selectively represses the transcription of
putative antibacterial immune effectors during infection with the pathogenic fungus C.
albicans [32••], an observation that was supported by a separate study of two nematode
fungal pathogens [36•]. Marsh et al. also reported that a single antimicrobial peptide required
for normal defense against a fungal pathogen of the nematode acts as a susceptibility factor
for a bacterial pathogen [37•]. Taken together, these data imply the existence of mechanisms
that enable the nematode to distinguish between invading microbes to coordinate pathogen-
specific defense responses.

Transcriptional profiling data have revealed that C. elegans induces the transcription of
putative defense effectors following exposure to heat-killed, avirulent C. albicans and S.
aureus [32••,34••]. These data suggest that surveillance for invading microorganisms in the
nematode may be mediated, at least in part, through ‘pattern recognition,’ an ancient
immune surveillance mechanism able to detect conserved microbial molecules [so-called
microbial-associated or pathogen-associated molecular patterns (MAMPs/PAMPs)] [38].
However, no direct evidence that C. elegans can detect MAMPs/PAMPs has been published.
Interestingly, pattern recognition may not play as important a role in the detection of P.
aeruginosa infection. Heat-killed P. aeruginosa fail to elicit an immune response [34••] and
the induction of a particular anti-pseudomonal defense gene was dependent on the
pathogenic potential of the infecting bacterial strain [39••]. In addition, unpublished
experiments from the Troemel and Ausubel laboratories suggest that C. elegans may
monitor the host effects of bacterial toxins to trigger an immune response. However, the
detailed mechanisms by which C. elegans monitors and responds to P. aeruginosa infection
are still not known. They may involve context-dependent signals generated during the
infection, which in other systems have been called ‘DAMPs’ [40–42] or ‘patterns-of-
pathogenesis’ [43]. In mammals, molecules released from damaged tissues including DNA,
uric acid, and ATP have been shown to activate innate immunity [40]. Although some
details are beginning to emerge [44–46], the receptors and downstream regulators involved
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in the detection and response to DAMPs have not yet been identified. Interestingly, plants
have evolved somewhat analogous mechanisms of immune defense that rely heavily on
indirect recognition of pathogen invasion. In addition to surveying for MAMPs/PAMPs,
plants utilize a family of conserved intracellular receptor structurally related to NOD-like
receptors (NLRs) in mammals [47] to monitor the activities of pathogen-encoded molecules,
so-called ‘effectors,’ and activate an immune response when host-derived target molecules
are modified [48]. Evidence for such ‘effector-triggered immunity’ is also beginning to
emerge in other metazoans, but not yet in C. elegans [49]. The genetic, genomic, and
morphological features of C. elegans summarized above make the nematode a powerful
model in which to further dissect conserved mechanisms of metazoan pathogen detection.

The unfolded protein response during bacterial infection
Several investigators have demonstrated a specific role for endoplasmic reticulum (ER)
unfolded protein response (UPR) pathways in the intestine during infection of the nematode
[50••,51••,52,53••]. Richardson et al. found that p38 MAP kinase PMK-1-mediated defenses
require compensatory activation of the UPR by the X-box binding protein (XBP-1) to handle
the accumulation of unfolded proteins in the ER, which occurs as the host mounts an
immune response that is comprised primarily of secreted genes [51••]. In a separate study,
these investigators also demonstrated a dynamic requirement for the UPR in the
maintenance of cellular homeostasis [54]. The UPR in C. elegans is also required for normal
defense against pore-forming toxins produced by pathogenic bacteria [52]. Interestingly, p38
MAP kinase PMK-1 and c-Jun N-Terminal Kinase (JNK)-like MAP kinase form a signaling
network that regulates both the UPR and other cellular defenses following exposure to pore-
forming toxins [53••]. In addition, Sun et al. found that inputs from the sensory nervous
system in the nematode suppress innate immune responses, which they conclude occurs via
the downregulation of the UPR in non-neuronal tissues [50••]. It also seems that these
sensory neurons receive signals from pathogenic, but not heat-killed bacteria, which raises
the intriguing hypothesis that they detect some pattern of pathogenesis to fine-tune the host
immune response during infection. An interesting body of literature suggests that the
nervous system also regulates a pathogen avoidance program that confers a survival
advantage for nematodes during infection [55–57]. The precise roles that neuronal signaling
pathways play in the regulation of immune signaling pathways, on the one hand, and
pathogen avoidance on the other, have not been fully resolved [57–59]. A detailed
discussion of the neural control of immunity and behavioral avoidance of pathogens is
outside the scope of this review.

Parallel pathways and the evolution of innate immune defenses
The p38 MAP kinase pathway coordinates the basal and infection-induced regulation of
immune effectors that are required for defense against most C. elegans pathogens, but it
does not act alone (Figure 2). The transcription factor ZIP-2 controls an immune signaling
pathway that acts independently of PMK-1 and is induced by only by virulent strains of P.
aeruginosa [39••]. C. elegans FSHR-1 is a G-protein coupled receptor and homolog of the
mammalian follicle-stimulating hormone receptor controls an immune signaling pathway in
C. elegans that is also distinct from the PMK-1 pathway [60]. Likewise, the β-catenin
homolog BAR-1 and the homeobox transcription factor EGL-5 are important for defense
against S. aureus [34••,61]. A third pathway regulated by the FOXO transcription factor
DAF-16 acts downstream of the insulin/insulin-like growth factor receptor DAF-2 to
regulate longevity, immunity, and stress resistance [27,62–64]. A recent report presents data
that the conserved transcription factor SKN-1, an ortholog of mammalian Nrf proteins,
coordinates a transcriptional program that protects the host from its own reactive oxygen
species, which are produced to fight bacterial infection of the nematode [65,66]. Using
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slightly different assay conditions, Shivers et al., however, did not find that SKN-1 was
required for defense against P. aeruginosa [30••]. Each of these pathways acts in parallel to
coordinate the elaboration of largely non-overlapping immune effectors. We hypothesize
that defense pathways in C. elegans evolved in response to environmental threats, further
dissection of which may yield clues about evolutionarily conserved immune mechanisms in
higher order hosts.

Novel anti-infective compounds identified using a C. elegans pathogenesis
assay

One potentially interesting application of C. elegans pathogenesis assays involves their use
in large-scale screens to identify novel antimicrobials [12]. Such assays are facilitated by the
fact that 15–20 adult C. elegans animals fit comfortably in the wells of standard 384-well
assay plates and can be lethally infected with a variety of microbial pathogens [1–13]. In the
first relatively high throughput study of this kind, Moy et al. tested 37,214 compounds in a
high-throughput assay and identified 119 small molecules that prolonged the lifespan of
nematodes infected with the Gram-positive human bacterial pathogen E. faecalis, including
a number that had no structural relationship to any known antimicrobials [67]. Interestingly,
several of these small molecules cured nematodes at doses lower than required to inhibit
bacterial growth. In contrast, traditional antibiotics, such as ciprofloxacin, ampicillin and
vancomycin cured E. faecalis-infected nematodes only at doses several fold higher than the
in vitro minimum inhibitory concentration (MIC) for the bacteria. These data raise the
intriguing possibility that a subset of the small molecules identified in the C. elegans-based
screen act either by inhibiting virulence factor production in the bacteria or by directly
stimulating the host innate immune response. Work is currently underway to characterize the
mechanism of action of these interesting compounds.

Conclusions
Dissection of the mechanisms of host defense and pathogen detection in C. elegans holds
promise to elucidate the origins and fundamental principles of innate immunity, and may
lead to important developments that broaden our understanding of such processes in higher
order hosts.
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Figure 1.
Features of C. elegans intestinal epithelial cells are strongly conserved. C. elegans intestinal
epithelial cells bear a striking resemblance to human intestinal cells. Both cells have a brush
border composed of microvilli (MV) anchored to a cellular structure called the terminal web
(TW).This image was originally published by Troemel et al. [15] and is reproduced here
with permission from Emily Troemel.
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Figure 2.
Multiple immune signaling pathways function in C. elegans epithelium. C. elegans
coordinate pathogen-specific immune responses toward ingested pathogens through several
signaling pathways that act in parallel. The transcriptional outputs from these signaling
mediators are unique, but can be overlapping.
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