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Abstract
Neuroblastoma remains responsible for a disproportionate amount of childhood cancer morbidity
and mortality despite recent significant advances in understanding the genetic basis of tumor
initiation and progression. About half of newly diagnosed patients can be reliably identified as
having tumors of low malignant potential, and these children have cure rates of greater than 95%
with little or no cytotoxic therapy. On the other hand, the other half of neuroblastomas typically
present in an explosive fashion with widely metastatic disease, and reliable tumor-specific
biomarkers have been defined for this phenotype as well. Empiric approaches to high-risk
neuroblastoma therapy have relied on dramatic escalation of chemotherapy dose intensity, and
recently the incorporation of targeted immunotherapy, but nearly 50% of children with high-risk
disease will be refractory to therapy or suffer a relapse, both of which are invariably fatal. Future
improvements in high-risk neuroblastoma outcomes will require the identification of disease and
patient-specific oncogenic vulnerabilities that can be leveraged therapeutically. Rational
development of novel approaches to neuroblastoma therapy requires forward-thinking strategies to
unequivocally prove activity in the relapse setting, and ultimately efficacy in curing patients when
integrated into frontline treatment plans.

BACKGROUND
Neuroblastoma is a pediatric cancer typically occurring in young children that arises from
the developing sympathetic nervous system1. Tumors arise in adrenal medullary tissue or
paraspinal ganglia and may be localized or widely metastatic at diagnosis. Children with
localized neuroblastoma and favorable tumor genomic characteristics have an excellent
overall survival probability with little or no cytotoxic therapy. However, approximately 50%
of neuroblastoma patients have a clinically aggressive form of the disease with overall
survival rates of less than 40% 1, 2. While high-risk neuroblastoma accounts for only 4% of
all pediatric cancer diagnoses, it is responsible for 12% of pediatric cancer deaths 3 and new
therapies are clearly needed.

For children with localized disease, the general trend has been on therapy reduction focused
on maintaining outstanding cure rates while minimizing treatment related morbidity. On the
other hand, there has been a several decades long trend of escalating chemotherapeutic dose
intensity for patients with the high-risk form of the disease. For example, neuroblastoma is
perhaps the only solid human malignancy where myeloablative chemotherapy followed by
autologous stem cell rescue has been proven by several investigators to improve survival4–6.
Thus, transplant after intensive chemotherapeutic induction chemotherapy has been standard
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practice in this disease. However, the improvements in outcome are modest and associated
with significant immediate and late toxicity. For patients who show a good anti-tumor
response to upfront chemotherapy, two major advances inform current practice. First,
Matthay et al showed that patients randomized to treatment with the differentiation agent
isotretinoin after myeloablative consolidation had a decreased rate of relapse compared to
randomized controls4. More recently, after years of preclinical and pilot studies, Yu et al
published results of a randomized phase 3 trial that was stopped early due to meeting early
criteria for efficacy, demonstrating that maintenance immunotherapy of a chimeric
monoclonal antibody ch14.18 directed against the GD2 ganglioside combined with
cytokines and isotretinoin was superior to treatment with isotretinoin alone (66% +/− 5% vs
46% +/− 5% at 2 years, p = 0.01) 7. Despite these recent advances in treatment, 10–20% of
patients with high-risk neuroblastoma will never achieve a remission and be refractory to
current treatment and 50–60% of patients who complete treatment will experience a relapse.
There are currently no known curative salvage regimens for refractory and recurrent high-
risk neuroblastoma. Identifying oncogenic vulnerabilities in children with refractory
neuroblastoma that can be leveraged therapeutically have the hope of changing this current
reality and ultimately impacting the newly diagnosed patient as well.

ON THE HORIZON
Biomarker discovery

Neuroblastoma has been in the forefront of incorporation of genomics into clinical practice.
Shortly after the identification of the MYCN oncogene in 1983, it was shown that children
with amplification of this gene have a worse clinical outcome, thus establishing MYCN as
the first DNA-based biomarker for therapy selection in cancer 8–10. Other tumor DNA
aberrations are likewise prognostic and are currently used clinically such as overall tumor
DNA index (ploidy) and copy number status at chromosome arms 1p and 11q2. Likewise,
RNA signatures appear to provide robust prognostic information11–15, but these have not
found their way into clinical practice. International cooperation will be absolutely essential
to provide robust validation cohorts in order to establish genomics-based prognostic
signatures with high enough sensitivity and specificity for clinical utility. Ultimately, many
of these biomarkers will also predict activity of many of the targeted therapeutics discussed
below.

Therapeutic target discovery
Several groups are exploring the hypothesis that oncogenic vulnerabilities in neuroblastoma
cells can be discovered via highly parallel resequencing of tumor genomes. Data will be
emerging shortly that will define the mutational landscape of high-risk neuroblastoma. An
early success was the identification of gain of function mutations in the anaplastic
lymphoma kinase gene (ALK), Figure 1. In addition to being the major familial
neuroblastoma predisposition gene, mutations or amplification of ALK occur in about 10–
15% of high-risk neuroblastoma cases16–20. Mutations result in constitutive activation of
this receptor tyrosine kinase, providing an oncogenic driver analogous to activation via
translocation events such as NPM-ALK in anaplastic large cell lymphoma and EML4-ALK
in non-small cell lung cancer. The remarkable activity, with minimal toxicity, of the ALK
inhibitor Crizotinib in ALK fusion positive small cell lung cancer21, provided additional
proof-of-concept for an ongoing pediatric phase I/II clinical trial testing ALK inhibition
strategies in neuroblastoma and other ALK activated pediatric neoplasms such as ALCL and
inflammatory myofibroblastic tumor.

The aurora kinase A (AURKA) gene provides another promising therapeutic target in
neuroblastoma. It has been shown that AURKA is highly expressed in high-risk tumors, and
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in addition to AURKA’s expected growth promoting roles, also stabilizes the MYCN
protein by direct physical association, preventing MYCN’s degradation 22. The Pediatric
Preclinical Testing Program (PPTP), which tests early phase agents in xenograft models of
pediatric cancers, identified the AURKA inhibitor MLN8237 as a potent inhibitor of
neuroblastoma – the only potent small molecular activity identified to date in this screening
program in the neuroblastoma panel, resulting in fast-tracked development of an ongoing
pediatric clinical trial23.

The insulin-like growth factor (IGF) signaling pathway plays an important role in the
development and maintenance of pediatric tumors, including neuroblastoma24. IGF1R
signaling has been shown to promote neuroblastoma tumorigenesis, inhibit apoptosis 24, 25

and disruption of IGF1R signaling by a small molecule inhibitor or antibody inhibits
neuroblastoma growth in both in vitro and in vivo models of the disease 26, 27. Inhibitors
against IGF1R and its downstream target mTOR, are currently being evaluated in early
phase pediatric clinical trials27, 28.

While not yet translated to the clinic, there are several other promising neuroblastoma
targets that also have small molecule inhibitors in adult trials. Through an unbiased RNAi
screen of the protein kinome in neuroblastoma cell lines, the cell cycle checkpoint kinase
CHK1 was identified as uniquely potent in inducing cytotoxicity following protein
depletion29, 30. CHK1 is constitutively activated in neuroblastoma cell lines and primary
tumor tissues. The unique single agent activity is likely through myc-induced replication
stress, a finding that was recently supported in MYC driven lymphoma models 30. Other
druggable targets include PLK1 which emerged from a small molecule screen in
neuroblastoma tumor initiating cells 31, MEK inhibitors which may reverse hyperactivated
ras mediated retinoid resistance in neuroblastoma32 and dual PI3K/mTOR inhibitors which
destabilize MYCN and inhibit tumor vasculature 33. Molecularly targeted agents are
currently being tested in combination with Irinotecan and Temozolamide because this
combination was well tolerated and had modest activity in a phase II clinical trial for
children with recurrent and refractory neuroblastoma34, providing a chemotherapeutic
backbone for new agent integration into more traditional therapeutic regimens
(ClinicalTrials.gov Identifier: NCT01141244)35.

Immunotherapy—A recent randomized phase 3 trial showed a significant improvement in
high-risk neuroblastoma patient survival in those treated with the chimeric monoclonal
antibody ch14.18 following conventional cytotoxic therapy7. This approach is both disease
and patient specific as this antibody targets the disialoganglioside GD2 expressed on the
surface of most neuroblastoma cells, and the effect is augmented by the addition of the
cytokines interleukin-2 (IL-2) and granulocyte-macrophage colony-stimulating factor
(GMCSF) due to antibody-dependent cytotoxicity (ADCC) 7, 36, 37. This pivotal trial
followed years of development of anti-GD2 approaches in early phase clinical trials that all
documented some degree of activity, as well as considerable toxicity such as dose limiting
pain, since GD2 is also expressed on pain fibers38–41. Current efforts are underway to
potentially improve both the antibody and augmentation of the immune response so that
future immunotherapy will be even more effective and less toxic. These strategies include a
fully humanized anti-GD2 protein, and physically linking this molecule to IL-2, potentially
allowing for ADCC in the proper microenvironment but limiting systemic toxicity such as
capillary leak, hypotension and fever42, 43. The results of the phase II study of the hu-14.18-
IL2 antibody showed that patients with a low burden of disease (stratum 2) had a 22%
complete response rate 43. Another humanized antibody, Hu14.18K322A, has modifications
that decrease antibody complement activation, which may result in fewer side effects, and
alternative post translational modification that may allow higher ADCC 44, 45. Most
investigators have considered immunotherapy as a post-chemotherapy remission-
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consolidation strategy targeting minimal residual disease, but it is also possible to use these
anti-GD2 agents with chemotherapy to more effectively induce remission. Future
randomized phase III trials of immunotherapeutic strategies will be required to definitively
establish which strategy provides the right balance of anti-tumor efficacy with toxicity.

Targeted radiotherapy—Neuroblastoma is an exquisitely radiosensitive neoplasm, but
its disseminated nature challenges successful implementation of conventional
radiotherapeutic approaches. Since neuroblastoma arises from neural crest progenitors,
nearly 85% of tumors have a functional sympathetic norepinephrine transporter (NET)
protein on their cell surface. Investigators have taken advantage of this by targeting
radiolabeled benzylguanidine (norepinephrine analogue) for diagnostic (low dose) and
therapeutic (high dose) purposes. Indeed, a large phase II clinical trial of children with
recurrent and refractory neuroblastoma treated with a single dose of 131I-
metaiodobenzylguanidine (131I-MIBG) showed an impressive objective response rate (CR
and PR) in 36% of patients, with an additional 34% having stable disease for a median time
of 6 months, and palliation of symptoms such as pain46. There are plans to test this agent in
a randomized controlled trial for newly diagnosed neuroblastoma patients in first response to
see if this targeted radiotherapeutic can provide improved durable remission rates when
integrated into consolidation therapy. Additional studies are aimed at providing enhanced
activity of 131I- MIBG by combination with radiosensitization agents such as Irinotecan,
histone deacetylase inhibitors (http://www.nant.org/), and perhaps targeted agents such as
CHK1 inhibitors47, 48. It should be noted that a hypothetical limitation of the 131I-MIBG
therapy is that I-131 emits largely beta-energy, which because of its relatively long path-
length, the resident cell itself is not targeted. Therefore, efforts are underway to test the α-
particle emitting norepinephrine analogue 211At-MABG, which may have superior efficacy
against minimal residual disease in neuroblastoma than 131I-MIBG due to its higher energy
transfer and much shorter path length49.

Epigenetic therapy
An emerging paradigm is that pediatric cancers have relatively few somatic mutations
compared to common adult malignancies 50–52. In neuroblastoma, this is despite the fact that
the genome is highly rearranged, with large chromosomal copy number alterations. Thus, it
is likely that defects in DNA methylation and acetylation play a major role in regulating the
high-risk neuroblastoma transcriptome. Ongoing efforts in epigenomic profiling are focused
on defining the likelihood that any such aberrancies result in targetable vulnerabilities for
drug development. Non-specific histone deacetylase inhibitors are currently being tested in
the clinic, and investigators must take advantage of any observed anti-tumor activity to
determine what defects in the tumor genome and/or epigenome could predict for clinical
efficacy47, 53.

Rational Drug Development Strategies
A paradigm that is emerging in cancer therapeutics is that while clearly there is differential
sensitivity to therapeutics between tumor types, the same is true within histologies, at
diagnosis and at relapse. For any therapeutic, be it a traditional chemotherapy, radiation or a
targeted small molecule, by identifying individuals most likely to respond, effective agents
will continue in clinical development in the appropriate populations, and more importantly
there will be improved efficacy. Our current understanding of the underlying molecular
circuitry of neuroblastoma is just emerging, and is years from contributing to a
comprehensive personalized approach to therapy, but this is on the horizon. To achieve this
goal, investigators must identify biomarkers of therapy response that are useful to the
clinician. The ultimate goal will be to have robust makers of specific oncogenic
vulnerabilities for each individual patient, and this will require access to tumor material in
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real time. This is especially critical in the traditional phase 1 setting, as most molecular data
is derived from diagnostic specimens and relapsed tumors are rarely biopsied. In order to
achieve this goal, several milestones must be reached. First, ongoing genomic profiling and
systems biology approaches must deliver on the accurate and complete characterization of
all mutant pathways in this disease, at diagnosis and at relapse. Second, investigators must
utilize large and well-annotated collections of neuroblastoma-derived cell lines and
transgenic preclinical models to test the hypotheses that specific biomarkers indeed predict
response to a therapy under development. Finally, pediatric oncologists will need to
reconsider traditional drug development paradigms, and seek to design early phase clinical
trials that select for patients most likely to show signs of anti-tumor efficacy but
understanding the tumor at the time of trial entry in order to support rapid development in
the refractory disease setting, allowing for early testing for impact on survival in newly
diagnosed high-risk neuroblastoma patients.
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Figure 1.
Targeted therapy in neuroblastoma: Current approaches to targeted therapy for
neuroblastoma involve several modalities including 1. small molecular inhibitors of
activated signaling pathways (ALK, IGF1R, MEK, PLK1, AURKA, PI3K and mTOR
inhibitors) 2. radiopharmaceuticals targeting the NET receptor (131I-MIBG, 211At-MABG)
and 3. immunotherapy (anti-GD2 antibodies).
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Figure 2.
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