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Caspases are the primary drivers of apoptotic cell death, cleaving cellular proteins that are
critical for dismantling the dying cell. Initially translated as inactive zymogenic precursors,
caspases are activated in response to a variety of cell death stimuli. In addition to factors
required for their direct activation (e.g., dimerizing adaptor proteins in the case of initiator
caspases that lie at the apex of apoptotic signaling cascades), caspases are regulated by a
variety of cellular factors in a myriad of physiological and pathological settings. For example,
caspases may be modified posttranslationally (e.g., by phosphorylation or ubiquitylation)
or through interaction of modulatory factors with either the zymogenic or active form of
a caspase, altering its activation and/or activity. These regulatory events may inhibit or
enhance enzymatic activity or may affect activity toward particular cellular substrates.
Finally, there is emerging literature to suggest that caspases can participate in a variety of
cellular processes unrelated to apoptotic cell death. In these settings, it is particularly im-
portant that caspases are maintained under stringent control to avoid inadvertent cell death. It
is likely that continued examination of these processes will reveal new mechanisms of
caspase regulation with implications well beyond control of apoptotic cell death.

Apoptosis is a form of programmed cell death
that eliminates individual cells within an

organism while preserving the overall structure
of surrounding tissue. Many of the prominent
morphological features of apoptosis were first
described in 1972 by Kerr, Wyllie, and Currie
(Kerr et al. 1972). However, it was not until
the mid-1990s that apoptosis was linked to the
activation of the cysteine-dependent aspartate-
driven proteases (caspases), which cleave key
intracellular substrates to promote cell death
(Cerretti et al. 1992; Nicholson et al. 1995; Al-
nemri et al. 1996; Liu et al. 1996; Thornberry

and Lazebnik 1998). Given the critical role that
caspases play in dismantling the cell during
apoptosis, their activation and subsequent ac-
tivity are highly regulated. Failure of a cell to
properly modulate caspase activity can cause
aberrant or untimely apoptotic cell death, po-
tentially leading to carcinogenesis, autoimmu-
nity, neurodegeneration, and immunodeficien-
cy (Thompson 1995; Hanahan and Weinberg
2000; Yuan and Yankner 2000; Li and Yuan 2008).

Caspases are synthesized within the cell as
inactive zymogens that lack significant protease
activity. Thus, caspases are, in essence, regulated
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from the moment of protein synthesis in that
they are not activated until receipt of specific
death stimuli (Earnshaw et al. 1999). The pri-
mary structure of a caspase is an amino-termi-
nal prodomain and a carboxy-terminal protease
domain, which contains the key catalytic cys-
teine residue. Caspases are categorized as initi-
ator or effector caspases, based on their position
in apoptotic signaling cascades. The initiator
caspases (caspase-2, -8, -9, and -10) act apically
in cell death pathways and all share long, struc-
turally similar prodomains. This group of en-
zymes is activated through “induced proximity”
when adaptor proteins interact with the prodo-
mains and promote caspase dimerization
(Boatright et al. 2003; Baliga et al. 2004; Pop
et al. 2006; Riedl and Salvesen 2007; Wachmann
et al. 2010). In contrast, the effector caspases
(caspase-3, -6, and -7) have shorter prodomains
and exist in the cell as preformed, but inactive,
homodimers. Following cleavage mediated by
an initiator caspase, effector caspases act directly
on specific cellular substrates to dismantle the
cell. Although many individual caspase sub-
strates have been implicated in specific aspects
of cellular destruction (e.g., lamin cleavage is
required for the efficient packaging of nuclei
into small membrane-bound vesicles), recent
proteomic approaches have greatly expanded
the known repertoire of proteolytic products
generated during apoptosis (Van Damme et al.
2005; Dix et al. 2008; Mahrus et al. 2008). Fur-
ther work will be needed to confirm these find-
ings and to determine how (or if ) all of these
substrates participate in the apoptotic process
(see Poreba et al. 2013), especially as new details
emerge on the relationship between posttrans-
lational modifications, like phosphorylation,
and caspase cleavage (Dix et al. 2012).

CASPASE ACTIVATION

Initiation of apoptosis occurs through either
a cell-intrinsic or cell-extrinsic pathway. Extrin-
sic pathway cell death signals originate at the
plasma membrane where an extracellular ligand
(e.g., FasL) binds to its cell surface transmem-
brane “death receptor” (e.g., Fas receptor), in-
ducing oligomerization of the receptor (Trauth

et al. 1989; Itoh and Nagata 1993; Danial and
Korsmeyer 2004). This, in turn, promotes clus-
tering of proteins that bind to the intracellular
domain of the receptor (e.g., FADD, or Fas-as-
sociated death domain-containing protein),
which then binds to the prodomain of initiator
caspases (e.g., caspase-8 or -10) to promote their
dimerization and activation; these complexes
are referred to as DISCs, or death-induced sig-
naling complexes (Kischkel et al. 1995). As ini-
tiator caspases, caspases-8 and -10 are activated
within the DISC through induced proximity
dimerization (Boatright et al. 2003; Wachmann
et al. 2010). Active caspase-8/-10 can then di-
rectly cleave and activate effector caspases, such
as caspase-3. In some cell types, this pathway is
sufficient to cause cell death (Type I cells). How-
ever, in other cells, caspase-8 must also engage
the mitochondria as described below for the
intrinsic pathway (Type II cells; Fig. 1) (Li et al.
1998; Luo et al. 1998; Scaffidi et al. 1998). Other
death receptors that, like FasL–Fas receptor,
participate in extrinsic apoptotic pathways in-
clude the TNF ligand–TNF-R1 complex and
the DR4/5–Apo2 L/TRAIL ligand complexes.

The intrinsic pathway proceeds through the
mitochondria and involves release of the respi-
ratory chain component, cytochrome c, from
the intermembrane space of the mitochondria
into the cytoplasm. Cytochrome c interacts with
the adaptor protein, Apaf-1 (apoptotic protease
activating factor-1), to form the heptameric
backbone of the apoptosome complex, which
recruits and activates caspase-9 through dime-
rization (Liu et al. 1996; Zou et al. 1997; Acehan
et al. 2002; Boatright et al. 2003). The remark-
ably similar phenotypes of the Apaf-1 – / – and
caspase-9 – / – mice suggest that caspase-9 is in-
deed dependent on this Apaf-1-based complex
for its activation (Cecconi et al. 1998; Hakem
et al. 1998; Kuida et al. 1998). Recent data sug-
gest that each apoptosome backbone recruits
and activates only two caspase-9 molecules,
creating a 7:2 ratio between Apaf-1 and cas-
pase-9 within the apoptosome (Malladi et al.
2009). Active caspase-9 cleaves and activates
downstream effector caspases, such as caspase-
3 (Slee et al. 1999) (Fig. 1). Although caspase-9
can autocleave and can also be directly cleaved
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Figure 1. Activation of initiator caspases. Caspase-8: The extrinsic pathway is initiated at the plasma membrane,
where a receptor (FasL) interacts with its transmembrane receptor (Fas), causing oligomerization of the recep-
tor. The Fas receptor has an intracellular DD (death domain), which allows for the recruitment of the adaptor
protein FADD from the cytoplasm through its DD. Caspase-8 is then recruited to the complex through
interactions between the DED (death effector domain) on FADD and similar DED sequences on caspase-8.
Active caspase-8 can directly activate caspase-3, or it can cleave Bid, which facilitates mitochondrial cytochrome
c release. Caspase-9: Caspase-9 is activated through the mitochondria-dependent intrinsic pathway. At the
mitochondria, the antiapoptotic bcl-2 family members like Bcl-2 and Bcl-xL inhibit cytochrome c release
from the mitochondrial intermembrane space. In contrast, proapoptotic bcl-2 family members, Bax and Bak,
facilitate cytochrome c release. BH3-only proteins help regulate the balance between the pro- and antiapoptotic
bcl-2 family members. After cytochrome c translocates into the cytosol, it interacts with Apaf-1, which under-
goes a conformational change and oligomerization into a heptameric structure known as the apoptosome. The
apoptosome recruits and activates the initiator caspase, caspase-9. (Legend continues on following page.)
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by active caspases, this modification does not
appear to be necessary for its activation (Rena-
tus et al. 2001; Boatright et al. 2003). Cleavage of
caspase-9 does, however, have a variety of im-
plications on its regulation, including the gen-
eration of a new epitope that is required for
subsequent caspase-9 inhibition by XIAP. Addi-
tionally, Bratton and colleagues have suggested
a model whereby cleavage of caspase-9 lowers its
affinity for the apoptosome (relative to procas-
pase-9), promoting its replacement by new in-
coming procaspase-9 molecules recruited to the
Apaf-1 caspase recruitment domains (CARDs)
for activation (Malladi et al. 2009).

Although caspase-2 is structurally and func-
tionally similar to the other initiator caspases,
the role of caspase-2 in apoptotic processes is
a bit less clear. It is activated similarly to other
initiator caspases via induced proximity di-
merization and autocatalytic processing with-
in an adaptor protein complex, and it appears
to function, at least under some circumstances,
upstream of the mitochondria (Baliga et al.
2004). The current model for caspase-2 acti-
vation involves two adaptor proteins, PIDD
(p53-induced protein with a death domain)
and RAIDD (RIP-associated ICH-1/CED-3
homologous proteins with a death domain)
(Duan and Dixit 1997; Read et al. 2002; Tinel
and Tschopp 2004). Together, these proteins
form the PIDDosome complex, which consists
of five PIDDs, seven RAIDDs, and seven cas-
pase-2 molecules (Park et al. 2007). Active cas-
pase-2 is thought to facilitate apoptosis by
cleaving the proapoptotic family member Bid
to promote mitochondrial permeabilization
and cytochrome c release, thereby propagating
the apoptotic signal (Gao et al. 2005; Bonzon et
al. 2006) (Fig. 1). Because one of its upstream
activators, PIDD, is a p53 target gene, caspase-2
is thought to play a role in at least some p53-
mediated cell deaths (Baptiste-Okoh et al. 2008;

Sidi et al. 2008). However, caspase-2 also ap-
pears to be activated under conditions of heat
shock in a p53-independent manner, which
suggests that there may be PIDDosome-inde-
pendent mechanisms for activating caspase-2
(Tu et al. 2006). Indeed, PIDD – / – mice were
found to have no defects in caspase-2-initiated
apoptosis following certain apoptotic stimuli,
such as DNA damage and ER stress. Addition-
ally, p53-induced caspase-2 activation following
5-FU treatment has been observed in the ab-
sence of PIDD (Vakifahmetoglu et al. 2006;
Manzl et al. 2009). Conversely, cells from cas-
pase-2 knockout mice are still susceptible to
some actions of PIDD, suggesting that PIDD
can use effectors other than caspase-2 to pro-
mote cell death (Berube et al. 2005).

CONSERVATION OF APOPTOTIC
PATHWAYS

The caspase family of proteins is highly con-
served between organisms, and, as seen in Figure
2, certain regulatory “modules” are conserved
between nematodes, fruit flies, and mammals,
although the precise ways in which these path-
ways are arranged and the individual factors
involved vary in their importance/prominence
in different organisms (Yan and Shi 2005). Ge-
netic characterization of programmed cell death
in the nematode identified ced-3, ced-4, ced-9,
and egl-1 as central regulators of cell death in that
organism (Yuan et al. 1993). EGL-1 is a Bcl-2
family member with a single block of Bcl-2 ho-
mology (a so-called BH3-only protein) that al-
leviates inhibition of the Apaf-1-like molecule
CED-4, by CED-9, an antiapoptotic Bcl-2-like
protein (Hengartner and Horvitz 1994; Conradt
and Horvitz 1998). Oligomerization of the
adaptor protein, CED-4 creates a high molecular
weight complex that parallels those made by
Apaf-1 in vertebrates (Yang et al. 1998; Qi et al.

Figure 1. (Continued) Active caspase-9 then directly cleaves and activates effector caspases, such as caspase-3.
Caspase-2: Caspase-2 appears to function as an initiator caspase upstream of the mitochondria. The most well-
understood mechanism for caspase-2 activation involves the PIDDosome. p53-dependent transcription of the
adaptor protein PIDD forms the backbone of the complex with RAIDD interaction through a DD–DD
interaction. Caspase-2 is recruited to RAIDD through a CARD–CARD interaction. Active caspase-2 then
cleaves and activates the BH3-only protein Bid, facilitating cytochrome c release from the mitochondria.
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2010; Yuan et al. 2010). This CED-4 complex
activates the CED-3 caspase, which functions
as a prominent executioner of cell death. Al-
though alterations in mitochondrial dynamics
have been reported to modulate apoptosis in
C. elegans, there is no evidence that the apoptosis
in this organism involves mitochondrial perme-
abilization, and the worm apoptosome is active

once EGL-1 relieves apoptosome inhibition.
Similar to the mammalian apoptosome, the
C. elegans apoptosome appears to contain two
CED-3 molecules, but with a ratio of eight CED-
4 to two CED-3 (Qi et al. 2010).

Drosophila cells share with their mammalian
counterparts certain features of caspase activa-
tion, including activation through oligomeri-
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Figure 2. Similarities and differences in apoptotic machinery across evolution. Many of the core proteins of the
apoptotic pathway are conserved in nematodes (C. elegans), fruit flies (D. melanogaster), and mammals, and
these protein families share some functional similarities (which is noted by matching colors in the figure). As an
example, Apaf-1, which forms the backbone of the caspase-9 activating apoptosome in response to cytochrome
c, has a homolog, dApaf-1 (dArk), in the Drosophila pathway, which facilitates Dronc activation, although it does
not appear to be activated by cytochrome c. In C. elegans, CED-4 also auto-oligomerizes to form a complex that
enables activation of the CED-3 caspase. For a more complete description of each pathway, including highlights
of similarities and differences between species, please see the text.
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zation of initiator caspases. As in worms, cyto-
chrome c does not appear to be broadly involved
in caspase activation. Rather, the fly apoptosome,
consisting of an Apaf-1-like protein known as
DARK and an initiator caspase called Dronc, has
the capacity for constitutive activity, but is held
in check by a caspase inhibitor, DIAP1. Follow-
ing an apoptotic stimulus, Dronc is activated
through removal of DIAP1 (it is both displaced
and degraded), leading to cleavage of the execu-
tioner caspases, DCP-1 and Drice. Although
there have been seven caspases identified thus
far in Drosophila, the remaining four, Dredd,
Decay, Damm, and Dream/Strica, appear to
have functions outside of apoptosis (e.g., innate
immunity) (Kornbluth and White 2005).

Given the crucial role that active caspases
play in the demise of cells in all eukaryotic or-
ganisms, it is not surprising that both their
activation and activityare highly regulated. Post-
translational modifications, including phos-
phorylation and ubiquitylation can block cas-
pase activation and activity. Additionally, other
proteins and molecules bind to either caspases
or components of their activation platforms,
modulating their activity. This work will focus
on the mechanisms for direct regulation of the
caspase proteins; additional details on the more
indirect mechanisms, including effects on com-
ponents of caspase-activating complexes, can be
found in a variety of recent reviews (Schafer and
Kornbluth 2006; Fadeel et al. 2008; Krumschna-
bel et al. 2009).

POSTTRANSLATIONAL MODIFICATIONS

Although synthesis of caspases in a zymogen-
ic, inactive form keeps basal activity low until
receipt of apoptotic stimuli, a variety of other
regulatory mechanisms have been characterized
for both initiator and effector caspases. These
additional layers of control allow a finely tuned
response to a death-inducing or survival sig-
nal. As described above, caspases are subject to
posttranslational modification and also interact
with modulatory proteins that can enhance or
suppress their activities. Moreover, posttrans-
lational modifications can indirectly affect cas-
pase activity by altering the ability of caspases

to interact with their binding partners (includ-
ing the activation platforms described above).
This chapter focuses on caspases and the direct
mechanisms known to regulate their activation
and/or activity.

Initiator Caspases

Caspase-9

As the initiator caspase component of the apop-
tosome complex, caspase-9 is activated down-
stream of mitochondrial cytochrome c release
and thus has a crucial role in activating effector
caspases in response to a variety of death stim-
uli. Caspase-9 serves as an important locus of
regulation at this point in the apoptotic path-
way; indeed, it may be the most well-character-
ized caspase with regard to posttranslational
modifications. A number of distinct phosphor-
ylation sites have been reported for caspase-9,
and they most frequently result in a reduction of
caspase-9 activation and/or cleavage (Allan and
Clarke 2009). One residue that appears to be the
locus of caspase-9 regulation by multiple signal-
ing pathways is Thr125, which is phosphorylat-
ed by several different kinases. Lying between
the CARD domain and the large subunit of cas-
pase-9, phosphorylated Thr125 decreases cas-
pase-9 activation (and consequently decreases
its proteolytic processing) through an unde-
fined mechanism (Allan et al. 2003). Thr125
was first identified as a site of phosphorylation
by the Erk kinase, but more recently, the cyclin-
dependent kinase cdk1, DYRK1A, and p38a
have all been reported to phosphorylate cas-
pase-9 at this site, reducing its activation and
the downstream activation of caspase-3 (Allan
et al. 2003; Allan and Clarke 2007; Laguna
et al. 2008; Seifert et al. 2008; Seifert and Clarke
2009) (Fig. 3). In all cases, this modification is
thought to contribute to antiapoptotic signal-
ing by the kinases involved, preventing full-
blown caspase activation in the event of mito-
chondrial cytochrome c release. In some cases,
the same kinases also act upstream of caspase-9
to inhibit cytochrome c release itself, suggesting
that the caspase-9 phosphorylation may simply
provide an extra layer of antiapoptotic protec-
tion in the event of inadvertent cytochrome
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c release. Phosphorylation of Thr125 can be
reversed by protein phosphatase-1a (PP1a),
a proapoptotic event (Dessauge et al. 2006).
Thr125 is conserved among mice, rats, and
some mammals such as primates. Although
not all of the caspase phosphorylation sites dis-
cussed below are as well-conserved as Thr125,
regulation of the Ser135 phosphorylation site
on Xenopus capase-2 is conserved throughout
mammals and there is similar regulation of the
Drosophila caspase Dronc (Nutt et al. 2005,
2009; Yang et al. 2010). When taken together,
examples of conserved modification sites help
highlight the importance these posttranslation-
al changes have in modulating caspase activity
to affect the ultimate fate of a cell.

In addition to phosphorylation at Thr125,
caspase-9 can be phosphorylated by PKCz
at Ser144 in response to hyperosmotic stress.
This modification also suppresses caspase ac-

tivity (Brady et al. 2005). In addition, three dif-
ferent PKA phosphorylation sites have been re-
ported for caspase-9, Ser99, Ser183, and Ser195
(Martin et al. 2005). However, the importance
of these sites in PKA-mediated suppression of
caspase activity is unclear because mutating
these sites failed to render the apoptosome re-
sistant to inhibition by PKA signaling, sug-
gesting that there might be other relevant sites
or that the effect of PKA was indirect. Akt and
CK2 kinases can phosphorylate caspase-9 at
Ser196 and Ser348, respectively (Cardone et
al. 1998; McDonnell et al. 2008). However, the
overall relevance of these sites is unclear because
they are not evolutionarily conserved (even
from mouse to human). In contrast to the pre-
ponderance of caspase modifications, c-Abl-
mediated caspase-9 phosphorylation at Tyr153
following DNA damage appears to enhance cas-
pase activity (Raina et al. 2005). These caspase-9
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Figure 3. Caspase regulation during mitosis. During the mitotic phase of the cell cycle, the apoptotic pathway
appears to be inhibited at multiple steps in the pathway. The mitotic kinase, cdk1/cyclin B, has been shown to
directly phosphorylate three of the initiator caspases (caspase-2, -8, and -9), leading to their inhibition. Caspase-
8 is phosphorylated by cdk1 at Ser387, which is located in the small subunit of the protein. This modification
diminishes caspase-8 processing in response to apoptotic stimuli. Cdk1 directly phosphorylates caspase-2 at
Ser340 (in human, Ser308 in Xenopus). This site is located in the linker region between the large and small
subunits, and phosphorylation at this site inhibits caspase-2 activation. Caspase-9 was the first caspase to be
identified as a cdk1 substrate. Phosphorylation at Thr125, which is located between the CARD and the large
subunit, blocks activation of the caspase through an unclear mechanism.
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phosphorylation sites, along with those affect-
ing the other caspases (see further below), are
summarized in Table 1.

In addition to phosphorylation, caspase-9
can be modified by nitrosylation, which occurs
when intracellular nitric oxide (NO) levels are
high (Torok et al. 2002). Treatment of cell lines
with a pharmacological NO donor, S-Nitroso-
N-acetyl-D,L-penicillamine (SNAP), does not
block mitochondrial cytochrome c release but
reduces caspase-9 activation in a cell-free sys-
tem. In vitro, SNAP was also able to negatively
regulate the activity of recombinant, human
capsase-9 although the relevant site was not
identified (Torok et al. 2002). Mannick et al.
(2001) have also showed nitrosylation of cas-
pase-9 in different subcellular compartments,
finding that a mitochondrial fraction of cas-
pase-9 was preferentially nitrosylated.

Besides modifications that alter its activity
or activation, caspase-9 can be controlled at
the level of protein stability through ubiquity-
lation. It has been reported that caspase-9 can
be ubiquitylated by XIAP (X-linked inhibitor
of apoptosis protein) E3 ubiquitin ligase, a
member of the IAP family of proteins, which
will be discussed further below for their role
in blocking caspase activity through direct in-
teraction (see Silke and Meier 2013). XIAP con-
tains a carboxy-terminal RING domain critical
for the protein’s ubiquitin ligase activity (Joa-
zeiro and Weissman 2000). XIAP can polyubi-
quitylate the large subunit of active caspase-9 in
vitro, but not the inactive procaspase-9 (Mori-
zane et al. 2005). Consistent with these obser-
vations, treatment of cells with the proteasome
inhibitor MG132, in conjunction with over-
expression of XIAP, promotes accumulation of

Table 1. Caspase regulation via phosphorylation

Substrate

Kinase/

phosphatase Sites þ/2a References

Initiator caspases
Caspase-8 Src, Fyn, Lyn Tyr380 2 Cursi et al. 2006; Senft et al. 2007; Jia et al. 2008
Caspase-8 Lyn Tyr465 2 Jia et al. 2008
Caspase-8 p38 MAPK Ser364 2 Alvarado-Kristensson et al. 2004
Caspase-8 CDK1 Ser387 2 Matthess et al. 2010
Caspase-8 RSK2 Thr263 þ Peng et al. 2011
Caspase-9 Erk1/2 Thr125 2 Allan et al. 2003
Caspase-9 CDK1 Thr125 2 Allan and Clarke 2007
Caspase-9 DYRK1A Thr125 2 Seifert et al. 2008
Caspase-9 p38a Thr125 2 Seifert and Clarke 2009
Caspase-9 PP1a Thr125 2 Dessauge et al. 2006
Caspase-9 PKCz Ser144 2 Brady et al. 2005
Caspase-9 c-Abl Tyr153 þ Raina et al. 2005
Caspase-9 PKA Ser99, Ser183, Ser195 Unclear Martin et al. 2005
Caspase-9 Akt Ser196 (human) 2 Cardone et al. 1998
Caspase-9 CK2 Ser348 (mouse) 2 McDonnell et al. 2008
Caspase-2 CDK1 Ser340 2 Andersen et al. 2009
Caspase-2 CK2 Ser157 2 Shin et al. 2005
Caspase-2 CaMKII Ser135 (Xenopus) 2 Nutt et al. 2005
Dronc CaMKII Ser130 Yang et al. 2010

Effector caspases
Caspase-3 PKCd ND þ Voss et al. 2005
Caspase-3 p38 Ser150 2 Alvarado-Kristensson et al. 2004
Caspase-3 PP2A Ser150 2 Alvarado-Kristensson and Andersson 2005
Caspase-6 ARK5 Ser257 2 Suzuki et al. 2004
Caspase-7 PAK2 Ser30, Thr173, Ser239 2 Li et al. 2011

aThe effect of phosphorylation at specific residues is listed as activating (þ) or inactivating (2). ND, not determined.

A.B. Parrish et al.

8 Cite this article as Cold Spring Harb Perspect Biol 2013;5:a008672



polyubiquitylated caspase-9 (Morizane et al.
2005). Additional studies are required to fully
understand the means by which XIAP-mediated
caspase-9 ubiquitylation can be controlled as
well as the importance of this activity in con-
trolling apoptotic progression.

Caspase-8

As the predominant initiator caspase in the
extrinsic pathway, caspase-8 has a vital role in
determining the fate of the cell following death
receptor activation. Although rodents only con-
tain caspase-8, other mammals also contain
caspase-10, which appears to have at least a
partially overlapping function with caspase-8
and is discussed in its own section below. Like
caspase-9 in the intrinsic pathway, the activity
of caspase-8 can also be altered by posttrans-
lational modification, particularly phosphory-
lation.

A variety of serine/threonine kinases have
been reported to directly phosphorylate cas-
pase-8. For example, a recent report by Matthess
et al. linked inhibition of the apoptotic machin-
ery with the onset of mitosis, showing that
active cdk1/cyclin B phosphorylates procas-
pase-8 at Ser387, which inhibits cleavage and
activation of the caspase (Fig. 3). Accordingly,
expression of a nonphosphorylatable caspase-8
mutant (Ser387 to Ala) rendered cells more sen-
sitive to Fas-induced apoptosis during M phase
(Matthess et al. 2010). Given the proximity of
Ser387 to the caspase-8 cleavage sites, it was
suggested that cdk1-mediated phosphorylation
of caspase-8 blocks its autoprocessing, thereby
protecting the cells from certain caspase-8-acti-
vating stimuli during mitosis.

Phosphorylation of caspase-8 by p38 MAPK
at Ser364 inhibits the active caspase and
protects neutrophils from Fas-induced death
(Alvarado-Kristensson et al. 2004). Caspase-8
phosphorylation at Thr263 by the RSK2 kinase
appears to both promote caspase-8 degrada-
tion and inhibit Fas-induced HeLa cell death
(Peng et al. 2011). Interestingly, Peng and col-
leagues showed EGF-mediated caspase-8 ubiq-
uitylation and degradation, which was reduced
when caspase-8 phosphorylation of Thr263 was

abrogated by mutation of Thr263 to Ala (Peng
et al. 2011).

Caspase-8 also appears to be regulated di-
rectly by tyrosine kinases. Following EGF stim-
ulation, the Src kinase phosphorylates caspase-
8 at Tyr380, inhibiting Fas-induced caspase-8
activation and subsequent apoptosis (Cursi et
al. 2006). Western blotting for Tyr380 phos-
phorylation revealed high levels of phosphory-
lated caspase-8 in colon cancer, where Src activ-
ity is often elevated (Cursi et al. 2006). This site
is also phosphorylated by other kinases in this
family, including Fyn and Lyn (Senft et al. 2007;
Jia et al. 2008). In studies with the Lyn kinase, it
was also determined that caspase-8 was phos-
phorylated at Tyr465, and both of these sites
(Tyr380 and Tyr465) could be dephosphorylat-
ed by the Src-homology domain 2 (SH2)-con-
taining tyrosine phosphatase 1 (SHP1) (Jia et al.
2008). In a model of neutrophil survival, this
dephosphorylation rendered caspase-8 more re-
sponsive than the phosphorylated protein to
apoptotic stimuli (Jia et al. 2008).

Ubiquitylation of caspase-8 also appears to
have an interesting role in directly regulating the
activity of the enzyme. Unlike ubiquitylation
reported for other caspases, polyubiquitylation
of caspase-8 by a cullin3-based E3 ligase en-
hances its enzymatic activity (Jin et al. 2009).
This polyubiquitylation of caspase-8 occurs af-
ter recruitment of caspase-8 to the DISC, and
the modification allows for the binding of ac-
tive caspase-8 to the poly-Ub binding protein,
p62 (Fig. 4A). Furthermore, p62 facilitates an as-
sociation between this complex and other sim-
ilar complexes in the cell, forming an aggregate
of active caspase-8 and p62. Interestingly, cas-
pase-8 activity appears to be enhanced with-
in these aggregated foci, perhaps through in-
creased stability of cleaved capase-8 (Jin et al.
2009). The deubiquitinating (DUB) enzyme
A20 was reportedly involved in reversing this
modification (Jin et al. 2009).

Nitrosylation appears to also play a role in
regulating caspase-8 activity. Nitric oxide (NO)
induces S-nitroslyation of caspase-8, which has
been reported to reduce the sensitivity of he-
patocytes to TNF-a/ActD-induced apoptosis
(Kim et al. 2000). Specifically, elevating levels
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Figure 4. Novel mechanisms of ubiquitylation in caspase regulation. (A) A novel mechanism in which caspase-8
activity is positively regulated via ubiquitylation. A proapoptotic ligand, such as TRAIL, initiates the extrinsic
apoptotic pathway at the plasma membrane through formation of the DISC and recruitment of procaspase-8.
Caspase-8 is then activated through induced-proximity dimerization. Once active, caspase-8 can be ubiquity-
lated by the neddylated form of CUL3/RBX1. This posttranslational modification on caspase-8 allows for its
interaction with p62. Through autoprocessing, active caspase-8 releases the catalytic domains, which remain
bound to p62. This active caspase-8 is moved into cytosolic aggregates rich in ubiquitin in which the caspase-8
remains active through stabilization of the dimer. (B) A unique mechanism for a negative feedback loop between
DARK (dApaf-1) and Dronc. The Drosophila IAP, DIAP1, inhibits Dronc and Drice/DCP-1 by interacting with
the caspases. DIAP1 also indirectly reduces downstream effector caspase activity by facilitating degradation of
the apoptosome complex through ubiquitylation of DARK-bound active Dronc. Active Dronc can also nega-
tively feedback on DARK by directly cleaving the protein, leading to destabilization of DARK and reduced
protein levels. Thus, Dronc and DARK are involved in a DIAP1-dependent negative feedback loop.
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of NO through an inducible NO synthase in-
hibited caspase-8 activity, caspase-3 activity,
and cytochrome c release. In vivo studies in
rats have showed that a liver-specific NO donor,
V-PYRRO/NO, blocked caspase-8 activity, Bid
cleavage, and mitochondrial cytochrome c re-
lease in the rat livers treated with TNF-a and
D-galactosamine (Kim et al. 2000).

Caspase-2

Caspase-2 is a critical initiator caspase in apo-
ptotic pathways activated by a number of cell
stresses, including nutrient depletion, heat
shock, DNA damage, and spindle disruption
(Robertson et al. 2002; Nutt et al. 2005; Tu
et al. 2006; Rudolf et al. 2009). In some of these
situations, caspase-2 is controlled through post-
translational modification.

For example, it has been shown that caspase-
2 is under metabolic control in the Xenopus oo-
cyte; when there are sufficient nutrients avail-
able to drive NADPH production by the pentose
phosphate pathway (PPP), a suppressive phos-
phorylation at Ser135 (Xenopus numbering)
within the caspase-2 prodomain is catalyzed
by calcium/calmodulin-dependent protein ki-
nase II (CaMKII) (Nutt et al. 2005). This phos-
phorylation appears to block its binding to
the activating adaptor protein, RAIDD (Nutt
et al. 2005). Ser135 phosphorylation is also con-
trolled by metabolism via binding of the phos-
phoserine/phosphothreonine-binding protein,
14-3-3. 14-3-3 binding protects Ser135 from be-
ing dephosphorylated by a constitutively bound
PP1 (Fig. 5). As nutrients in the oocyte are de-
pleted, 14-3-3 is removed from caspase-2, leav-
ing it to be dephosphorylated and subsequently
activated (Nutt et al. 2009). Interestingly, cas-
pase-2 – / – mice have excess oocytes resulting
from a failure of apoptosis, confirming the im-
portance of caspase-2 in mammalian oocyte cell
death as well (Bergeron et al. 1998).

Phosphorylation of caspase-2 appears to
also be involved in modulation of the extrinsic
apoptotic pathway induced by engagement of
TRAIL ligand. Specifically, CK2 was reported
to suppress caspase-2 through phosphorylation
at Ser157 in several cancer cell lines where low

levels of casein kinase 2 (CK2) correlated with
sensitization to TRAIL-induced death. Because
CK2-mediated phosphorylation of caspase-2
at Ser157 blocked activation of the caspase,
when CK2 activity was decreased, caspase-2 ac-
tivity was enhanced (Shin et al. 2005). Although
TRAIL-induced death in these cells requires cas-
pase-8, active caspase-2 appeared to cleave pro-
caspase-8, possibly priming these cancer cells
for TRAIL-induced death.

Posttranslational modification of caspase-2
appears to also provide a means to tether cas-
pase-2 activation to cell cycle status. Cdk1/cy-
clin B inhibits caspase-2 during mitosis because
of direct phosphorylation at Ser340 (human
numbering [Andersen et al. 2009]). This phos-
phorylation occurs in the linker region between
the large and small subunits, suggesting that
this phosphorylation may play a role in block-
ing full cleavage and activation of the caspase.
Protein phosphatase 1, PP1, may play a role in
dephosphorylating this site on caspase-2. This
mitotic phosphorylation of caspase-2 provides
a third example of direct caspase inhibition by
cdk1 during mitosis (Fig. 3). It is interesting to
note that while the cdk1 phosphorylation sites
on caspase-2 and caspase-9 are located in “link-
er regions” that are not part of the mature, active
caspase, the cdk1 phosphorylation site on cas-
pase-8 site is part of the small subunit of the
mature enzyme.

Caspase-10

Although caspase-8 and caspase-10 have both
been placed in the extrinsic pathway down-
stream of death receptor ligands, it is still a bit
unclear if these caspases are functionally equiv-
alent with regard to activation and cleavage of
downstream substrates. (Kischkel et al. 2001;
Wang et al. 2001; Sprick et al. 2002; Fischer et
al. 2006; Bae et al. 2008; Benkova et al. 2009;
Chen et al. 2009). A recent paper by Wachmann
and colleagues used in vitro dimerization as-
says to show that caspase-10 is also activated
through induced proximity dimerization, as de-
scribed for other initiator caspases (Wachmann
et al. 2010). In this analysis of caspase-10 ac-
tivation, active caspase-10 was able to cleave
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Bid, raising the possibility that capsase-10, like
caspase-8, can stimulate mitochondrial cyto-
chrome c release to aid in activation of effector
caspases. Further studies are necessary to more
carefully differentiate between caspase-10 and
caspase-8 in response to activation of death re-
ceptor signaling and to identify specific modes
of caspase-10 regulation that may or may not
differ from caspase-8.

Dronc

The Drosophila initiator caspase Dronc has
both caspase-9 and caspase-2-like properties.
In its activation through induced proximity by

an Apaf-1-homologous adaptor protein, Dronc
appears to function in the fly apoptosome in a
manner similar to caspase-9. However, in a par-
adigm similar to caspase-2, Dronc appears to
be negatively regulated by CaMKII phosphory-
lation in response to nutrient flux through the
pentose phosphate pathway (Yang et al. 2010).
Specifically, high levels of NADPH support
phosphorylation at a site within the prodomain
of the caspase (in this case Ser130), which re-
duces Dronc activation by impeding the inter-
action between Dronc and DARK. Decreasing
NADPH levels promotes Dronc’s dephosphor-
ylation, resulting in its activation and subse-
quent cell death. In vivo experiments in which
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Figure 5. Metabolic regulation of caspase-2. In conditions of high intracellular NAPDH, CaMKII has been
shown to phosphorylate caspase-2 at Ser135 (Xenopus laevis site). This phosphorylation leads to the recruitment
of the phosphoserine/phosphothreonine binding protein, 14-3-3. In this state, caspase-2 is held inactive. As
NADPH levels begin to drop, 14-3-3 is released from caspase-2, allowing the constitutively bound phosphatase,
PP1, to dephosphorylate Ser135. This dephosphorylation leaves caspase-2 primed for activation such that it can
be recruited to its activation platform (as with the PIDDosome shown here) following a prodeath stimulus.
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nonphosphorylatable Dronc was expressed in fly
neurons support the observation that NADPH
production attenuates Drosophila apoptosis and
the importance of Dronc phosphorylation at
Ser130 in maintaining metabolic suppression
of Dronc (Yang et al. 2010).

Dronc is also regulated through ubiquityla-
tion by the Drosophila IAP (DIAP1), and at least
part of DIAP1’s antiapoptotic activity is attrib-
utable to this function (Muro et al. 2002; Wilson
et al. 2002; Shapiro et al. 2008). Recently, work
by Shapiro and colleagues showed an interest-
ing feedback mechanism between Dronc and
DARK whereby active Dronc cleaves and de-
stabilizes its adaptor (Shapiro et al. 2008) (Fig.
4B). However, DARK also appears to play a feed-
back role in reducing Dronc protein levels. It
was shown that Dronc could be ubiquitylated
(presumably by DIAP1) only when present on
the apoptosome (and thus bound to DARK).
Interestingly, although details are still unclear,
deubiquitylases have also been suggested to play
a role in Drosophila apoptosis, likely helping to
maintain a critical balance in the levels of cer-
tain apoptotic proteins (Ryoo et al. 2002; Wing
et al. 2002; Ribaya et al. 2009).

Effector Caspases

Caspase-3

Caspase-3 is the most well-characterized effec-
tor caspase. Studies directed toward ordering of
the caspase cascade and characterization of cas-
pase substrates indicates that caspase-3 has both
distinct and overlapping roles with caspase-7
and caspase-6 (Slee et al. 1999; Lakhani et al.
2006; Luthi and Martin 2007; Inoue et al.
2009). Although it might appear that by the
time apoptotic signals reach the point of cas-
pase-3 activation, there is no salvaging the
cell, caspase-3 is still regulated through a variety
of posttranslational modifications. First, both
PKCd and p38 have been shown to phosphory-
late caspase-3. The PKCd site has not been iden-
tified, but interestingly, this modification ap-
pears to enhance caspase-3 activity (Voss et al.
2005). This isoform of PKC is sometimes re-
ferred to as a proapoptotic kinase, and thus its
role here may not be surprising. Caspase-medi-

ated cleavage of PKCd generates a shorter, active
form of the kinase, which suggests the presence
of a positive proapoptotic feedback loop be-
tween these two enzymes (Emoto et al. 1995;
Ghayur et al. 1996; DeVries et al. 2002). Simi-
larly to caspase-8, p38 phosphorylation of cas-
pase-3 at Ser150, located in the large subunit
of the protein, directly inhibits caspase-3 and
has been shown to impede Fas-induced apopto-
sis in neutrophils (Alvarado-Kristensson et al.
2004). Protein phosphatase 2A (PP2A) dephos-
phorylates Ser150, restoring caspase-3 activity
and rendering the neutrophils sensitive to Fas-
induced apoptosis (Alvarado-Kristensson and
Andersson 2005).

Caspase-3 is also modified by ubiquityla-
tion. Although the role of IAPs in regulating
effector caspases such as caspase-3 is not entire-
ly clear, at least one study has shown the ability
of cIAP2 to monoubiquitylate caspase-3 in vitro
(Huang et al. 2000). The physiological relevance
of this modification has yet to be determined.
More recent work has characterized cIAP1-de-
pendent ubiquitylation of an intermediate pro-
cessed form of caspase-3, leading to protea-
some-dependent degradation of the effector
caspase and increased resistance to TRAIL-in-
duced apoptosis (Choi et al. 2009). Indeed,
treatment of cells with the proteasome inhibitor
lactacystin has been reported to stabilize cleaved
caspase-3 (active subunits) enhancing apopto-
sis, while having only a small effect on caspase-8
and caspase-9 (Chen et al. 2003). Other work
has shown that XIAP can polyubiquitylate ac-
tive caspase-3 (not procaspase-3), leading to its
proteasome-dependent degradation (Suzuki et
al. 2001). Unfortunately, studies with mouse
models have not provided clarity on this issue.
Mice with a targeted deletion in the RING
domain of XIAP have decreased levels of ubi-
quitylated caspase-3. They also exhibit elevated
caspase-3 activity, consistent with lowered lev-
els of caspase-3 ubiquitylation (Schile et al.
2008). However, compared with control mice,
XIAP– / – mice do not express increased levels of
caspase-3, although this may be attributable to
compensation (Harlin et al. 2001).

It has been reported that caspase-3 can be
nitrosylated on its active site cysteine (Mannick
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et al. 1999). In this same study, caspase-3 was
shown to be denitrosylated in cells following
treatment with Fas ligand, thus increasing cas-
pase activity and cell death in response to Fas.
Subsequent work by this group has suggested
that only a subset of caspase-3 (and caspase-9,
as discussed above), localized to mitochondria,
is nitrosylated (Mannick et al. 2001). A recent
study reported caspase-3 nitrosylation in pri-
mary adhesion fibroblasts isolated from pa-
tients, and those cells appeared to have dimin-
ished apoptotic responsiveness when caspase-
3 was nitrosylated (Jiang et al. 2009). Other
models have also been used to show a role for
nitrosylation in regulating caspase-3, including
treatment of cadriomyocytes with SNAP and
doxorubicin (Dimmeler et al. 1997; Rossig et
al. 1999; Maejima et al. 2005).

Caspase-7

As for caspase-8 and caspase-10, it is currently
unclear the extent to which caspase-3 and cas-
pase-7 share functions. Initial work using pep-
tide libraries to characterize the substrate spe-
cificity of caspase-7 suggested that caspase-7
and caspase-3 have the same substrate prefer-
ences (Thornberry et al. 1997; Stennicke et al.
2000). Despite apparently overlapping substrate
specificity, caspase-7 and caspase-3 have been
shown to exhibit distinct subcellular distribu-
tions in mouse livers treated with anti-Fas anti-
body (Chandler et al. 1998). More recent studies
have supported distinct roles of these caspases
in cellular breakdown during apoptosis (Walsh
et al. 2008). These findings are reinforced by a
comparison of phenotypes from caspase-3– / – ,
caspase-7 – / – , and double knockout mice (and
MEFs), which suggests both separate and re-
dundant roles for these caspases (Lakhani et
al. 2006). As for caspase-3, it has been reported
that cIAP1 can ubiquitylate caspase-7, although
cIAP1 appears to act on the mature caspase-7
enzyme, rather than the partially processed
form, as for caspase-3 (Choi et al. 2009). Al-
though there do not appear to be parallel re-
ports of caspases-3 and -7 phosphorylation, re-
cent work has shown PAK2 (p21-activated
kinase)-mediated phosphorylation of caspase-

7 at Ser30, Thr173, and Ser239, which negatively
regulate caspase-7 activity (Li et al. 2011).

Interestingly, although caspases-3 and -7
share both upstream activators and some over-
lapping substrate specificity, their divergent
amino-terminal sequences appear to contribute
to different modes of regulation. Amino-termi-
nal sequences of caspase-7 present in the pro-
enzyme but absent from the mature enzyme
seem to negatively regulate capsase-7 function.
Removal of this amino terminus potentiates
caspase-7 activity, and Salvesen and colleagues
have hypothesized that these residues play an as-
yet undefined role in sequestering the enzyme
from its upstream activators (Denault and Sal-
vesen 2003).

Caspase-6

Although caspase-6 also functions as an effector
caspase, it has been known for some time that
caspase-6 has at least some unique cellular sub-
strates. It has been reported that caspase-6 is
activated only following activation of caspase-
3 or caspase-7 and thus is not activated directly
by an initiator caspase (Inoue et al. 2009). Once
active, caspase-6 can cleave initiator caspases-2
and -8, although the functional consequences
of this cleavage (away from the initiator caspase
activation platform) are unclear (Slee et al.
1999; Inoue et al. 2009). In contrast, other stud-
ies have showed that caspase-6 can be activated
in the absence of caspase-3 or -7 activity (Le-
Blanc et al. 1999; Allsopp et al. 2000; Doostza-
deh-Cizeron et al. 2000). Subsequent work has
provided support for the idea that caspase-6 can
activate itself in vivo (Wang et al. 2010). Using
the crystal structure of caspase-6, Wang and
colleagues have revealed that caspase-6 can reg-
ulate its own activity through intramolecular
caspase self-activation, although it is not clear
how this process is engaged physiologically. Like
caspase-7, the amino-terminal residues of cas-
pase-6 appear to serve an inhibitory function
(Klaiman et al. 2009; Wang et al. 2010).

Caspase-6 can be inhibited posttranslation-
ally by kinase ARK5 (Suzuki et al. 2004). In
the colon cancer cell line, SW480, which effec-
tively evades Fas-induced apoptosis, it has been
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shown that caspase-6 is held inactive by the
ARK5 kinase. Treatment of SW480 cells with
ARK5 antisense RNA liberated caspase-6 to
cleave c-FLIP to inhibit Fas signaling. Although
there are two putative ARK5 sites on capase-6,
the kinase appears to phosphorylate Ser257.
Mutation of Ser257 to Ala overrides ARK5-me-
diated inhibition and allows c-FLIP cleavage
and apoptosis to proceed in the SW480 cells
(Suzuki et al. 2004).

DRICE AND DCP-1

The Drosophila effector caspases, Drice and
DCP-1, are regulated through ubiquitylation,
catalyzed by the IAP proteins, DIAP1 and
DIAP2. Ribeiro and colleagues recently showed
a role for DIAP2 in the ubiquitylation and in-
activation of Drice (Ribeiro et al. 2007). Inter-
estingly, DIAP2 acts as a pseudosubstrate of
Drice; Drice’s attempt to cleave DIAP2 results
in trapping of DIAP2 in a covalent association
with Drice, which allows proximal ubiquityla-
tion of the associated Drice by the DIAP2 RING
domain.

In a distinct mechanism, the catalytic ac-
tivity of Drice also appears to be required for
its ubiquitylation by DIAP1. Drice cleaves
DIAP1, resulting in a conformational change,
which allows DIAP1 to interact directly with
Drice/DCP-1 for caspase ubiquitylation by the
DIAP1 RING (Ditzel et al. 2008). In S2 cells,
Drice polyubiquitylation does not appear to
facilitate its degradation. Rather, ubiquityla-
tion catalytically inactivates the protein and
inhibits its ability to cleave downstream sub-
strates. Although it is currently unclear exactly
how this polyubiquitylation inactivates Drice,
several possibilities exist. The polyubiquitin
chains may physically block substrate access to
the caspase’s catalytic site, or the posttransla-
tional modification may alter the confirmation
of the catalytic domain to preclude productive
enzyme–substrate interactions.

PROTEIN/PROTEIN INTERACTIONS

In addition to the changes that posttranslation-
al modifications can have on caspase function,

various proteins (by nature of their interaction
with a caspase) can impact apoptotic pathways
both positively and negatively. Some of the first
proteins discovered as direct caspase inhibitors
were of viral origin (such as p35 and CrmA) and
do not appear to have direct cellular count-
erparts (Clem et al. 1991; Ray et al. 1992). In
addition, there are many proteins that affect
caspase activity indirectly by modulating, for
example, the complex/platform on which the
caspase is activated. For example, the backbone
of the caspase-9-activating apoptosome, Apaf-
1, is regulated by a complex of proteins, hsp70,
CAS, and PHAPI (Kim et al. 2008). These pro-
teins facilitate nucleotide exchange on Apaf-1,
which is necessary for full apoptosome forma-
tion and subsequent caspase-9 activation. In-
terestingly, levels of other (nonprotein) cellular
components, such nucleotides and ions, also
appear to play critical roles in regulating certain
steps in the activation of caspases and the apo-
ptotic pathway (Cain et al. 2001; Chandra et al.
2006; Bao et al. 2007; Karki et al. 2007; Mei et al.
2010). Because there have been a variety of re-
cent reviews on the proteins that regulate cas-
pases indirectly, these circumstances are not
covered here (Schafer and Kornbluth 2006; Fa-
deel et al. 2008; Krumschnabel et al. 2009). In-
stead, we focus on a few key examples of pro-
teins that interact directly with caspases to alter
either their activation or enzymatic activity.

FLIP

The FLIP (FLICE-like inhibitory protein, so-
called because of the original caspase-8 name,
FLICE) family of proteins was first discovered in
a viral context, but homologs in other species,
including mammals, were discovered nearly si-
multaneously (Thome et al. 1997). Interesting-
ly, the FLIP proteins have been shown to func-
tion both as inhibitors and activators of the
apoptotic process. Mammalian cellular FLIP
(c-FLIP) is notably similar to procaspase-8 and
procaspase-10 in primary sequence. Specifi-
cally, the long FLIP isoform contains the two
death effector domains (DEDs) at the amino
terminus of the protein, and at the carboxyl
terminus, it has a pseudocaspase domain that
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lacks catalytic activity (Irmler et al. 1997). The
short isoform (c-FLIPs) is similar to the viral
FLIP, resembling a truncated caspase-8, with
two DEDs and no region homologous with the
catalytic domain. It has been shown that the
long form of c-FLIP is recruited to the DISC
and can be partially processed, with a portion
of the FLIP protein retained at the DISC. This
interaction with the DISC inhibits any sub-
sequent recruitment of caspase-8 to that site
(Goltsev et al. 1997; Han et al. 1997; Irmler
et al. 1997; Scaffidi et al. 1999). In addition, it
appears that the short isoform can completely
prevent processing of DISC-bound caspase-8,
whereas the long isoform appears to allow par-
tial processing (Krueger et al. 2001).

In contrast to the studies above, which char-
acterized FLIPL as an inhibitor of caspase acti-
vation, some studies have shown that FLIPL

can, in fact, facilitate caspase activation (Chang
et al. 2002; Micheau et al. 2002). It may be that
the local concentration of c-FLIP at the DISC
determines its role as an inhibitor or activator of
caspase-8. As an activator of caspase-8, c-FLIPL

appears to heterodimerize with casapse-8, ac-
tivating the caspase portion of the dimer. In-
deed, this hypothesis is supported by Boatright
and colleagues who used kosmotropes to in-
duce FLIP/caspase-8 dimers. These heterodi-
mers appeared to have a lower kinetic barrier
to activation than homodimers between two
wild-type caspase-8 molecules (Boatright et al.
2004). Interestingly, in contrast to the proapo-
ptotic caspase-8 homodimer, these heterodi-
mers of caspase-8 and FLIPL have been shown
to promote cell survival (Oberst et al. 2011; van
Raam and Salvesen 2012).

IAPs

The inhibitor of apoptosis proteins (IAPs) are a
conserved family of proteins that are defined by
the presence of at least one baculovirus IAP
repeat domain (BIR), and, as discussed above,
some of the IAPs also contain a RING domain
that confers E3 ubiquitin ligase function (Crook
et al. 1993). In addition, XIAP and DIAP pro-
teins have been shown to act as direct stoichio-
metric inhibitors of caspases. XIAP can inhibit

caspase-3 and caspase-7 by binding to the active
site, and caspase-9 by preventing or reversing
dimerization (Deveraux et al. 1997; Chai et al.
2001; Riedl et al. 2001; Srinivasula et al. 2001;
Shiozaki et al. 2003). This inhibitory action
of XIAP can be antagonized by mitochondri-
al proteins Smac/DIABLO and Omi/HtrA2,
which are released during an apoptotic stimulus
along with cytochrome c (Chai et al. 2000; Du
et al. 2000). These proteins are similar to the
Reaper, Hid, Grim (RHG) family of Drosophila
proteins, which can activate apoptosis in part by
displacing the DIAP1 protein from Dronc and
effector caspases (Fig. 2). As a direct inhibitor
of these caspases, XIAP has been detected on
the apoptosome (Bratton et al. 2001, 2002). In
a recent study of melanoma cell lines, XIAP was
also subject to caspase cleavage in a positive
feedback loop that reduces caspase inhibition
and XIAP levels through proteasomal degra-
dation (Hornle et al. 2011). Although XIAP is
the best-characterized vertebrate member of the
IAP family with regard to direct binding and
inhibition of caspases, one recent study showed
that cIAP1 can specifically block apoptosis
downstream of cytochrome c release by binding
to and inhibiting active caspase-9 within the
apoptosome, precluding downstream activa-
tion of procaspase-3 (Burke et al. 2010).

TRANSCRIPTIONAL REGULATION
OF CASPASES

Although we have focused thus far on the post-
translational regulation of caspases, some of the
caspase proteins are also regulated at the level of
expression through control of their mRNA tran-
scription. Although much less is known about
the mechanisms modulating mRNA expres-
sion levels, this type of regulation also appears
to contribute to control of caspase activity be-
fore or during an apoptotic stimulus. Interest-
ingly, caspase-2 transcriptional regulation ap-
pears to be coordinated with transcriptional
induction of its activators, PIDD and RAIDD
(Krumschnabel et al. 2009). One recent study
showed a p53/p21-dependent pathway for
down-regulating caspase-2 mRNA expression
in resting cells and in response to DNA damage
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(Baptiste-Okoh et al. 2008). Although this find-
ing seems a bit counterintuitive, the authors
postulate that this mechanism reduces unwant-
ed extraneous cell death. Following DNA dam-
age, the caspase-2 activator, PIDD, is transcrip-
tionally up-regulated, potentially overcoming
the reduced expression of caspase-2 and facili-
tating cell death.

Alternative splicing of caspase-8 plays a role
in modulating apoptotic induction via the ex-
trinsic pathway. Similarly to FLIP, the caspsase-
8 L splice variant has a functional DED but lacks
key residues in the catalytic domain, which al-
lows it to interact with the DISC at the plas-
ma membrane without being able to induce
downstream caspase activation (Curtin and
Cotter 2003). Thus, caspase-8 L behaves like c-
FLIP and acts like a caspase-8 inhibitor (Himeji
et al. 2002). Methylation of the caspase-8 gene
is thought to suppress caspase-8 expression in
a variety of tumors (Harada et al. 2002; Curtin
and Cotter 2003). Pediatric tumors, including
rhabdomyosarcomas, medulloblastomas, retino-
blastomas, and neuroblastomas, have all been
reported to exhibit methylation of the caspase-
8 gene, correlating with a decrease in caspase-8
expression. Interestingly, many of the cell lines
used for this study also had down-regulated cas-
pase-10 at a posttranscriptional level (Harada
et al. 2002).

The caspase-10 gene has been characterized
as a direct target of p53 following DNA damage
(Rikhof et al. 2003). Treatment of both p53-wild
type and p53-deficient cell lines with etopside
or adriamycin-induced caspase-10 mRNA ex-
pression in a p53-dependent manner without
an effect on caspase-8 expression. Caspase-10
mRNA levels are negatively regulated in Jurkat
cells expressing the HIV tat gene when com-
pared with control-treated Jurkat cells (Gibel-
lini et al. 2005). Although the levels of caspase-8
were unchanged, the reduction of caspase-10
mRNA coupled with a concomitant increase
in expression of cFLIP were sufficient to en-
hance the resistance of Tat-expressing T cells to
TRAIL-induced apoptosis.

Two different caspase-9 transcripts can be
derived from the caspase-9 gene, differing by
four exons. Caspase-9a includes these four ex-

ons, whereas caspase-9b does not. Importantly,
it appears that capsase-9a is proapoptotic, but
the shorter isoform, caspase-9b, is antiapo-
ptotic (Seol and Billiar 1999; Srinivasula et al.
1999). Recently, Shultz and colleagues have
found that this alternative splicing of caspase-
9 is defective in nonsmall cell lung carcinoma
(NSCLC) (Shultz et al. 2010). Specifically, the
authors showed that K-Ras12V overexpression
increased the ratio of caspase-9a to capase-9b,
while epidermal growth factor receptor (EGFR)
overexpression lowered this ratio. Furthermore,
they showed that the RNA splicing factor,
SRp30a, is phosphorylated by Akt, which affects
the inclusion of these four exons in the mature
caspase-9 transcript. It is interesting to note that
Apaf-1, the adapter protein for caspase-9, can
also be transcriptionally regulated by E2F1 and
p53 (Fortin et al. 2001; Moroni et al. 2001; Fur-
ukawa et al. 2002; Johnson et al. 2007).

CASPASE REGULATION IN NONAPOPTOTIC
CELLULAR PROCESSES

In addition to the various mechanisms that reg-
ulate caspases during apoptosis, many studies
have shown that active caspases play impor-
tant roles in nonapoptotic cellular functions,
including inflammation, protein secretion, and
differentiation (reviewed in Kuranaga and Mi-
ura 2007; Li and Yuan 2008; Feinstein-Rotkopf
and Arama 2009; Yi and Yuan 2009). Caspase
activity in the absence of a cell death signal
may have unintended deadly consequences in
the absence of finely tuned regulation. Thus,
caspase control is particularly critical in circum-
stances in which the proteases are activated for
short, well-defined periods of time or at isolated
subcellular locations. Phenotypes of the caspase
knockout mice have provided additional evi-
dence to support a role for caspases in non-
apoptotic processes (reviewed in Li and Yuan
2008). An exhaustive discussion of nonapo-
ptotic caspase activation/regulation is beyond
the scope of this article, but a few recent stud-
ies are described below to illustrate the nature
of such regulation and to highlight some out-
standing questions.
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In Drosophila melanogaster, tightly con-
trolled spatial regulation of effector caspase ac-
tivity is crucial during the terminal differentia-
tion of spermatids, a process also known as
individualization (Kaplan et al. 2010). Kaplan
and colleagues have shown that a spermatid con-
tains a distal-to-proximal gradient of the protein
Soti, which results in a similar directional gradi-
ent of the IAP dBruce (because Soti inhibits an
E3 ubiquitin ligase that ubiquitylates dBruce).
During spermatid individualization, dBruce in-
hibits caspase activity, thus creating an oppos-
ing gradient of effector caspase activity (proxi-
mal-to-distal). This prevents unwanted death in
the latest-individualizing region of the sperma-
tid and helps to properly drive differentiation.
As a result of the timing of individualization
and the presence of dBruce, caspase activation
is insufficient to initiate the full apoptotic pro-
gram and subsequent cell death.

In hippocampal neurons, a role for transient
activation of caspase-3 has been showed in syn-
aptic long-term depression (LTD) and AMPA
receptor internalization (Li et al. 2010). The
authors provide evidence to support a model
whereby caspase-3 is activated through a path-
way similar to that which occurs during intrin-
sic apoptosis. Indeed, NMDA treatment facili-
tates mitochondrial release of cytochrome c and
caspase-9 activation, which is necessary for the
activation of caspase-3. Additional evidence
suggests that cleavage and inactivation of Akt1
provides at least part of the link between cas-
pase-3 activity and LTD; overexpression of a
noncleavable Akt1 in hippocampal slice cul-
tures inhibited LTD, confirming the importance
of at least one caspase substrate during LTD
and AMPA internalization. How this activity
is limited to prevent neuronal death is not en-
tirely clear.

Another recent study using olfactory sen-
sory neurons (OSNs) has elucidated a nonapo-
ptotic role for Apaf-1 and caspase-9 signaling in
development (Ohsawa et al. 2010). This non-
apoptotic caspase activity leads to cleavage of
the membrane-bound protein, Semaphorin 7A,
which is critical for appropriate formation of
axonal projections (Pasterkamp et al. 2003). In
mice lacking Apaf-1 or caspase-9 expression, a

variety of problems exist, including OSN axons
that are routed erroneously and OSNs that have
not matured properly. However, there are no
changes in the number of neurons, supporting
the idea that Apaf-1 and caspase-9 are not im-
pacting generation of OSNs, but rather specific
formation of axonal projections.

CONCLUDING REMARKS

Because of the critical role that caspases play in
executing the apoptotic program, to avoid un-
planned cellular demise, their activation and ac-
tivity must be tightly regulated. By their very
structure, caspases are regulated as soon as they
are expressed. They are synthesized as zymogens,
which are only to be activated following the
appropriate stimulus. Both before and after ac-
tivation, caspases can be regulated through a
variety of mechanisms including posttransla-
tional modifications and protein/protein inter-
actions. Although caspase activity was initially
reported to occur only during apoptosis, more
recent evidence suggests that caspases play crit-
ical roles in other, nonapoptosis cellular pro-
cesses. Detailed analyses of these specific physi-
ological/pathological circumstances may yield
important insight into new and different modes
of caspase regulation, some of which may also be
important for understanding control of caspase
activation in apoptosis.
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