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Summary
Protracted inflammation leading to dysregulation of effector T-cell responses represents a
common feature of a wide range of autoimmune diseases. The interleukin-12 (IL-12)/T-helper 1
(Th1) pathway was thought to be responsible for the pathogenesis of multiple chronic
inflammatory diseases, including psoriasis, inflammatory bowel disease, arthritis, or multiple
sclerosis, mainly through their production of interferon-γ and its effects on macrophage activation
and chemokine production. However, this initial concept of T-cell-mediated chronic inflammation
required an adjustment with the discovery of an IL-12-related cytokine, designated IL-23. IL-23
was rapidly recognized for its involvement in the establishment of chronic inflammation and in the
development of a Th cell subset producing IL-17, designated Th17, which is distinct from the
previously reported Th1 and Th2 populations. This review aims to describe the characterization of
IL-23 and its receptor, its biological activities, as well as its involvement in the development of
human Th17 cells and autoimmunity.
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Interleukin-23, a novel heterodimeric cytokine involved in inflammation
Over 20 years ago, Mosmann and Coffman (1) described in mice the presence of two
distinct populations of T-helper (Th) cells, designated Th1 and Th2, which were
characterized by a specific cytokine signature. While interleukin-12 (IL-12) induces the
development of Th1 cells that produce IL-2, interferon-γ (IFN-γ), and lymphotoxin-α, and
elicit cell-mediated immunity against intracellular pathogens, Th2 cells differentiate in
response to IL-4, produce IL-4, IL-5, and IL-13, and are involved in humoral immunity
against parasites and allergy (2). Although it was relatively easy with the availability of T-
cell receptor (TCR) transgenic mouse strains to polarize naive mouse T cells in vitro into
pure Th1 and Th2 effector cells and to isolate effector T-cell clones from lymph nodes and
organs of mice subjected to strongly polarizing disease models, studies on Th1 and Th2 cells
in human were more challenging. A large percentage of T cells isolated from the blood of
healthy individuals produce a mixed cytokine phenotype upon activation. Eventually human
Th1 and Th2 cells were defined as differentiation protocols and culture conditions were
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optimized for human T cells with multiple rounds of priming (3–5). In addition, it turned out
to be important that for the isolation of T-cells clones with polarized phenotypes, T cells
were isolated from the actual site of inflammation from patients suffering from infectious or
allergic diseases. The discovery of additional cytokines and mediators, such as thymic
stromal lymphopoietin, IL-25, IL-33, IL-18, IFN-α, and Notch ligands that have the ability
to modulate Th1/Th2 differentiation, further illustrates the complexity of the T-cell
development process within and between different species (6, 7).

Protracted inflammation leading to dysregulation of effector T-cell responses represents a
hallmark of a wide range of autoimmune diseases. Th1 cells have been associated with the
development and maintenance of chronic inflammatory diseases, such as psoriasis,
inflammatory bowel disease (IBD), multiple sclerosis (MS), and rheumatoid arthritis (RA),
through their production of IFN-γ and its effects on macrophage activation and chemokine
production. Enhanced expression levels of IFN-γ, IL-12, and other critical components of
the Th1 pathway have indeed been demonstrated in these human inflammatory diseases and
their appropriate corresponding mouse models (2, 8). However, this initial concept of T-cell-
mediated chronic inflammation required an adjustment with the unexpected discovery that
mice deficient in IFN-γ or IFN-γ receptor were not resistant to experimental autoimmune
encephalomyelitis (EAE) but were actually more susceptible to central nervous system
autoimmunity (9–11). Observations in mice with targeted disruptions in the genomic regions
encoding the IL-12 subunits further questioned the association between IL-12 and
inflammatory disorders. IL-12 was the first identified cytokine with a heterodimeric protein
structure and is composed of a soluble cytokine receptor-like 40 kDa subunit p40 that is
covalently linked to a cytokine-like 35 kDa subunit p35 (12). Surprisingly, mice with a
targeted disruption of the gene encoding p35 were more susceptible to disease in models of
chronic inflammation, whereas mice lacking the p40 subunit of IL-12 were resistant (8, 13).
Conversely, IL-12p40-deficient mice were more susceptible than IL-12p35-deficient mice
with respect to Cryptoccocus neoformans and Listeria monocytogenes bacterial infections
(14, 15). Several years later, the identification of another cytokine-like binding partner for
IL-12p40 would provide the first plausible explanation for these unexpected findings (16).

Based on a computational screen of cDNA and expressed sequence tag databases with
structure-based algorithms modeled on the IL-6 helical cytokine family, we identified a
novel cytokine called p19. Characterization of p19 protein proved difficult at first, as the
protein was inefficiently secreted from transfected cells and did not show biological activity
in various in vitro bioassays. However, when we realized that p19 could be part of another
heterodimeric cytokine complex and evaluated potential binding partners in this family, we
demonstrated that p19 could form a p19–p40 heterodimer. Furthermore, we showed that the
p19–p40 heterodimer was expressed and secreted by primary dendritic cells (DCs) upon
activation, and that this heterodimer had biological activity on T cells, which, all together,
justified its designation as IL-23 (16).

The discovery of IL-23 has had a tremendous impact on our understanding of the cytokines
and T-cell pathways that govern chronic inflammation. Many previous studies that explored
the influence of IL-12 on chronic inflammation were based on the use of antibodies
neutralizing the IL-12p40 chain or of mice deficient in the IL-12p40 gene and needed to be
revisited, because this approach neutralized the biological activities of IL-12 and IL-23. That
IL-23, rather than IL-12, is crucial during the pathogenesis of autoimmune diseases became
clear when p19 and p35 subunits were targeted. IL-23p19-deficient but not IL-12p35-
deficient mice were resistant to EAE and collagen-induced arthritis (CIA) (17, 18). Cua and
colleagues (19) further showed that IL-23p19-deficient mice were still able to mount a Th1
response but failed to produce the proinflammatory cytokine IL-17 (reviewed in 20).
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Characterization of IL-23-induced signal transduction
IL-23 exerts its biological activities through the interaction with a heterodimeric receptor
complex composed of IL-12Rβ1 and IL-23R (21, 22) (Fig. 1). IL-23R is mainly expressed
by T cells, natural killer cells, and to a lower extent by monocytes and DC populations (21).
Like IL-12, IL-23 can directly bind the IL-12Rβ1 chain through its interaction with the
IL-12p40 subunit. Whereas IL-12 uses IL-12Rβ2, IL-23 requires IL-23R as heterodimeric
partner to allow signal transduction to occur. IL-23 and IL-12 activate the same Janus kinase
(JAK)/signal transducer and activator of transcription (STAT) signaling molecules. Non-
receptor protein tyrosine kinase-2 is associated with IL-12Rβ1, and JAK2 is constitutively
associated with the IL-23R chain. Binding of IL-12 and IL-23 to their receptor leads to
phosphorylation of STAT1, STAT3, STAT4, and STAT5. However, STAT4
phosphorylation induced by IL-23 is much weaker than that induced in response to IL-12,
and the formation of DNA-binding complexes are different, with mostly STAT4
homodimers formed in response to IL-12 and STAT3 homo- and heterodimers formed in
response to IL-23. The responsiveness of cells to either IL-12 or IL-23 is thus determined by
the respective expression of IL-12Rβ2 and IL-23R (21). Based on this pattern of receptor
expression and signal transduction pathways, it can be expected that IL-12 and IL-23 would
have overlapping but also unique biological activities.

Characterization of IL-23 bioactivity
In the initial characterization of IL-23 bioactivity, we compared the effects of IL-12 and
IL-23 on sorted naive and memory mouse T cells from IL-10-deficient mice in the presence
of anti-IL-2 monoclonal antibodies (16). Whereas CD4 CD45RBhigh naive T cells
proliferated in response to anti-CD3 stimulation and IL-12 but not IL-23, CD4 CD45RBlow

memory T cells proliferated in response to IL-23 but not to IL-12. These results are in
agreement with the observation that CD45RBhigh cells expressed high levels of IL-12Rβ2
and lacked IL-23R, whereas CD45RBlow cells expressed IL-23R but low levels of
IL-12Rβ2, and thus indicate that IL-23 preferentially acts as a growth factor for memory T
cells (21). IL-10-deficient mice spontaneously develop enterocolitis resembling Crohn’s
disease (CD), which can be blocked by treatment with anti-IL-12p40 monoclonal antibodies
(23). In a follow-up study, we showed that IL-12p35 × IL-10-deficient mice but not
IL-23p19 × IL-10-deficient mice spontaneously developed IBD, supporting a role of IL-23
in promoting intestinal inflammation (24). Furthermore, administration of IL-23 in a T-cell
transfer model of colitis accelerated disease development irrespective of whether naive or
memory cells from diseased IL-10-deficient mice were transferred into recombination-
activating gene knockout recipients. Presumably, the naive T cells were converted to
memory T cells in this inflammatory environment, making them responsive to IL-23.
Furthermore, as shown in the EAE model (19), IL-23 promoted the production of IL-17 and
IL-6 from the memory-activated T cells (24). These IL-17-producing T cells were present in
the gut of IL-10-deficient mice but not in IL-10 × IL-23p19-deficient mice. Similar results
on the role of IL-23 and production of IL-17 have also been described in other models of
IBD and are discussed in (25) by Powrie et al. These results thus clearly identified a role for
IL-23 in the proliferation of murine memory T cells, production of IL-17, and development
of inflammation.

In our initial characterization of the effects of IL-23 on human T cells, we compared the
activities of IL-23 and IL-12 on the proliferation and IFN-γ production by 7-day-old PHA
blasts, a classical bioassay for IL-12 activity (12). Both IL-12 and IL-23 enhanced
proliferation and IFN-γ production of anti-CD3- and anti-CD28-activated PHA blasts,
which was blocked by anti-IL-12Rβ1 and anti-IL-12p40 monoclonal antibodies (16).
However, the IL-23-induced activity could not be neutralized with anti-IL-12p35
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monoclonal antibodies. We also compared the activities of IL-12 and IL-23 on fluorescence-
assisted cell sorter (FACS)-sorted CD4+CD45RA+ naive and CD4+CD45RO+ memory T
cells isolated from peripheral blood. In these experiments, T cells were activated by plate-
bound anti-CD3 and soluble anti-CD28 in the presence of IL-2 and assessed for IFN-γ
production at days 3 and 6. CD45RO+ memory T cells responded to IL-23 and IL-12 at both
time points with enhanced IFN-γ production, although the levels were lower in response to
IL-23. CD45RA+ naive T cells produced IFN-γ in response to IL-23 at day 6 but not at day
3, whereas IL-12 enhanced IFN-γ production at both time points (16). IL-23R is expressed
on human memory T cells but is barely detected on naive cells (26, 27), suggesting that TCR
activation of naive human T cells leads to an upregulation of low levels of IL-23R
expression, rendering the cells sensitive to IL-23. In addition, IL-23 increases its own
receptor expression on activated naive T cells (27). This is analogous to the TCR-mediated
induction of IL-12Rβ2 expression in Th1 commitment (28) and further upregulation by
IL-27 (29). In the next series of experiments, we extended these observations using purified
cord blood CD4+CD45RA+ T cells in a culture system that was set up to study human Th1
and Th2 differentiation (4). T cells were cultured with anti-CD3 monoclonal antibody
crosslinked onto irradiated FcγRII+ (CD32), CD58+, and CD80+ transfected L-cell
fibroblasts in the presence of IL-2 and IL-23, IL-12, or IL-4, and expansion and
differentiation was determined following restimulation with plate-bound anti-CD3, soluble
anti-CD28, and IL-2 after 6 and 12 days. The addition of IL-2 to these cultures only affected
cell survival and proliferation of T cells and did not affect the differentiation of the CD4+ T
cells. Clonal expansion of naive CD4+ T cells stimulated in the presence of IL-23 was
slightly higher compared with control cultures containing IL-2 only after 6 and 12 days of
culture. The increase in cell number induced by IL-12 was higher compared with that
induced by IL-23 or IL-2 but lower compared with that induced by IL-4. Culture of naive
CD4+ T cells in IL-2 alone induced little IFN-γ after 6 or 12 days of stimulation, and
addition of IL-4 to the cultures abolished the induction of IFN-γ production (Fig. 2).
Strikingly, IL-23 induced the production of IFN-γ from naive CD4+ T cells after 6 days, and
this was even more pronounced after 12 days of stimulation. Addition of IL-12 to the CD4+

T cells induced production of the highest levels of IFN-γ, both after 6 and 12 days.
Interestingly, IL-23 also induced the production of tumor necrosis factor-α (TNF-α) from
CD4+ T cells, which again was slightly lower compared with the IL-12-cultured cells. No
significant effect of IL-23 on the production of the Th2 cytokines IL-4, IL-5, and IL-10
could be observed. Flow cytometric analysis was performed following intracellular cytokine
staining to determine the effect of IL-23 on cytokine production at the single cell level.
Clearly, after 6 days of priming, IL-23 induced a population of CD4+ T cells to produce
IFN-γ (Fig. 3). Consistent with the results obtained by enzyme-linked immunosorbent
assay, IFN-γ induction by IL-23 was more pronounced after 12 days of culture. IL-12 was a
more potent inducer of IFN-γ-producing cells at both culture time points. IL-23 induced
higher numbers of both IL-2 and TNF-α-producing T cells compared with the control-
stimulated T cells, although prolonged stimulation with IL-23 was required to observe this
effect. Similar observations were made in the presence of IL-12, with a more pronounced
effect than IL-23. To determine the specificity of the IL-23-induced cytokine induction,
experiments were carried out with neutralizing antibodies directed against IL-12p40,
IL-12Rβ1, or IL-12p35 present during the priming conditions. Addition of anti-IL-12p40
monoclonal antibody and anti-IL-12Rβ1 polyclonal antibodies significantly blocked the
IL-23- and IL-12-induced IFN-γ production (Fig. 4). The anti-IL-12p35 monoclonal
antibody was not capable of blocking the IFN-γ production induced by IL-23 but did block
IL-12-induced IFN-γ secretion. Taken together, the results of these early experiments on the
biological activities of IL-23 in human indicated that it could act on both memory and naive
T cells. The effects of IL-23 on naive T cells from peripheral blood and cord blood required
prolonged exposure, consistent with the need to further upregulate the IL-23R on these cells.
The read-out in these earlier experiments was the production of IFN-γ, mainly as we were
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comparing IL-23’s activity with that of IL-12. It is not uncommon for cytokines to have
redundant activities such as IFN-γ production, especially for those that share receptor
components and thus intracellular signaling pathways. There are many examples available,
e.g. IL-4/IL-13 for immunoglobulin E (IgE) production, IL-2, IL-4, IL-7, IL-9, IL-15, IL-21
as T-cell growth factors, IL-3/granulocyte-macrophage colony-stimulating factor for
myeloid cell growth. However, the most important activity of IL-23 that distinguishes it
from IL-12 is its ability to induce the production of IL-17, and differentiation of Th17 cells.

Discovery of a third Th cell subset: Th17 cells
IL-17 (30) was originally identified by Rouvier et al. (31) in rodent T-cell hybridoma clones
as cytotoxic T-lymphocyte-associated antigen 8 and the human version was cloned from a
CD4+ T-cell library (32). IL-17 is the founding member of a newly identified cytokine
family comprising IL-17 (IL-17A), IL-17B, IL-17C, IL-17D, IL-17E (IL-25), and IL-17F.
IL-17 is mostly known for its pro-inflammatory activities, both in vitro and in vivo, and its
expression is increased in inflammatory tissues (33).

Initial findings showed that Borrelia burgdorferi induced IL-17 production by human T cells
independently of Th1 or Th2 cytokine production (34). However, the concept that T cells
producing IL-17 should be classified as a distinct Th cell subset emerged from mouse
models of autoimmunity, such as EAE, IBD, or CIA, following the discovery of IL-23 (16,
17, 19, 35). Th17 cells are now recognized as a third T-effector cell subset (36–39), and the
IL-23/IL-17 pathway is linked to mucosal host defense against extracellular pathogens (40–
42) and to the induction and progression of a number of inflammatory diseases, including
psoriasis, IBD, arthritis, and MS (17–19, 24, 26, 43–46). Following their identification in the
mouse, we set out to define the development, cytokine profile, and function of human IL-17-
producing T cells (26). The characterization of specific surface markers and cytokines
defining human Th17 cells is critical to identify and ‘track’ those cells in the tissue during
inflammation. Furthermore, the understanding of the cytokines involved in Th17 cell
development and/or regulation is central in the perspective of new target discovery to cure
inflammatory disorders.

Cytokine profile of human Th17 cells
Culture of naive T cells in the presence of IL-23 and or IL-1β induced the differentiation of
human IL-17-producing T cells. In addition, based on the expression of the IL-23R, we
identified human Th17 cells as a subpopulation of CD45RO+ T cells in the blood from
normal healthy donors. Both the in vitro-derived Th17 cells and the in vivo-occurring Th17
cells were found to express a signature cytokine profile consisting of IL-17, IL-17F, IL-22,
IL-26, and CCL20. In addition, a significant proportion of these cells coexpressed IL-17 and
IFN-γ (26). This cytokine profile of human Th17 cells producing inflammatory cytokines,
such as IL-17, IL-17F, and IL-22, was observed by other groups (26, 27, 40, 47–49) and was
previously also shown in the mouse system (19, 35, 50, 51). Two groups independently
isolated IL-17-producing CD4+ memory T cells from peripheral blood or intestine of healthy
individuals as well as patients with active CD (40, 46), and these cells were found in both
central (CCR7+) and effector (CCR7−) memory CD4+ pools (40, 52). Both IL-17 and
IL-17F have major pro-inflammatory effects on epithelial cells and are important for the
recruitment of neutrophils (26, 33, 51, 53). IL-22 is a member of the IL-10 family, largely
described for its pro-inflammatory activities on keratinocytes and its upregulated expression
during inflammatory disorders (51, 54–59). Moreover, IL-22 was recently shown to be a
crucial cytokine during IL-23-induced dermal inflammation and acanthosis (59). We showed
that human Th17 cells also express IL-26 (26), an IL-10 family member recently reported to
induce inflammatory genes expression in intestinal epithelial cells and to be upregulated in
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colonic retinoid-related orphan receptor γt (RORγt)-expressing Th17 cells in CD patients
(60). The work of Liu and Rohowsky-Kochan (52) suggests that the majority of IL-17
producers also express TNF-α and IL-6.

Importantly, as we discussed above from our early IL-23 experiments, human Th17 cells can
also express IFN-γ (26, 27, 40, 46, 61). IFN-γ has been largely described for its
inflammatory activities, and its expression is elevated in a number of inflammatory diseases,
such as psoriasis and IBD (62–64). Moreover, IL-17 IFN-γ− (Th17) and IL-17+ IFN-γ+

(Th17/Th1) cells were identified in the intestine of patients with active CD (46). A
preliminary study addressing this question showed that Th17 and Th17/Th1 populations
expressed a similar chemokine receptor expression profile, at least for CCR4, CCR6,
CXCR3, and CXCR6 (65). A more extensive characterization of the surface markers and
cytokine profile expressed by these populations may improve the understanding of the
specific function of these two subsets of IL-17 producers.

Phenotype of human Th17 cells
Chemokines are differentially expressed in inflamed tissues by epithelial and immune cells
and induce the recruitment of specialized effector cells through the expression of specific
chemokine receptors. Whereas Th1 cells specifically express CXCR3, CCR5, and CXCR6,
Th2 cells express CCR4, CCR8, the prostaglandin D2 receptor CRTh2, and to a lesser extent
CCR3 (66). It is now well documented that IL-17-producing cells express CCR6 (40, 46, 47,
52, 65, 67). CCR6 expressed by Th17 cells is functional, as its ligand CCL20/macrophage
inflammatory protein-3a induced calcium influx in Th17 but not Th1 clones (46). Acosta-
Rodriguez et al. (40) further showed that expression of CCR6 and CCR4 defines a
population of Th17 cells expressing IL-17 but not IFN-γ, whereas cells expressing CCR6
and CXCR3 produce IL-17 and IFN-γ (Th1/ Th17) or IFN-γ only (Th1). CCR6 and CCL20
are highly expressed in inflammatory tissues and are involved in the recruitment of
pathogenic T cells in MS, RA, CD, and psoriasis (46, 68–72).

Whether CCR2 could be used as a ‘marker’ of Th17 cells remains unclear. Sato et al. (73)
described IL-17 producers as memory CD4+ T cells expressing CCR2. These cells secreted
IL-17 and IFN-γ. Further analyses using CCR5 indicated that CCR2+ CCR5− T cells
expressed high levels of IL-23R and IL-17 but not of IFN-γ. In contrast, CCR2+CCR5+ T
cells produced IFN-γ but not IL-17 (73). Singh et al. (67) also observed an increased
frequency of IL-17 producers in the CCR2+ CCR5− T cells compared with CCR2+ CCR5+ T
cells; however, only a minority of CCR2+ CCR5− T cells could be induced to make IL-17.
In addition, few Th17 cells from peripheral blood were found within the CCR2+CCR5−

subset. Whether the CCR6 Th17 population overlaps with CCR2+CCR5− T cells was not
examined.

It was recently shown that in vitro-derived Th17 cells have a higher expression of CCR9 and
CXCR6 as compared with Th1 and Th2 cells (67). Thus, CCR9 and CXCR6 may also be
expressed preferentially on Th17 cells. In line with this observation, CCR9+ lymphocytes
from the lamina propria have been described to produce IL-17 (74), and CCR9 together with
its ligand CCL25 have been reported to play an important role in small bowel immunity and
inflammation (75, 76).

Besides expression of a specific set of chemokine receptors, we and others identified IL-23R
as a specific marker for the Th17 population (26, 46, 47). In contrast, the specific IL-12
receptor subunit IL-12Rβ2 was expressed by all Th cell subsets (46). We showed that
circulating IL-23R+ memory CD4+ T cells isolated from healthy donors produced higher
levels of IL-17 than their IL-23R− counterparts, whereas IFN-γ levels were similar. IL-23R–
expressing cells also express the ‘signature’ cytokine profile of Th17 cells, including
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IL-17F, IL-22, IL-26, and CCL20 (26). Thus, as for Th1 and Th2 subsets, Th17 cells are
characterized by expression of specific chemokine receptors inducing their recruitment to
inflammatory sites expressing their specific ligands. In addition, the expression of lineage
specific surface markers, such as IL-23R, allows us to identify and track those cells in
inflamed tissues as well as in the periphery.

Human Th17 cell differentiation
Although initial studies showed a crucial role of IL-23 in production of IL-17 and Th17-
mediated autoimmunity, it became evident that IL-23 did not drive differentiation of naive T
cells into Th17 cells in the mouse system (77–79). These observations were not unexpected,
as naive T cells do not express IL-23R (21). Instead, transforming growth factor-β (TGF-β)
was identified as a critical factor for mouse Th17 cell differentiation. Indeed, whereas TGF-
β alone induces the development of regulatory T cells (Tregs) expressing Forkhead box
protein 3 (FoxP3) (79, 80), the presence of IL-6 or IL-21 will prevent the generation of
FoxP3+ cells and lead to the development of Th17 cells and upregulation of the IL-23R (77–
79, 81–83). Consequently, IL-23 is not required for early Th17 development; it is however
strictly necessary for the maintenance and pathogenicity of Th17 cells (50).

Several studies assessed the different cytokines possibly involved in the differentiation of
human Th17 cells (Fig. 5); however, it remains difficult to obtain a consensus between
groups, reminiscent of the early controversy with Th1 and Th2 cells in humans. The section
below highlights the main findings observed by different groups.

IL-1β and IL-23
We and others (26, 27, 49, 61, 84) have shown that the combination of TGF-β and IL-6 does
not drive human Th17 development. Instead, the culture of peripheral blood naive T cells in
the presence of IL-23 or IL-1β was sufficient to drive Th17 development (26, 27, 61).
Moreover, Acosta-Rodriguez et al. (61) further showed that IL-6 could enhance IL-1β-
driven IL-17 production. Furthermore, we (26) and O’Shea’s group (27) also described
IL-23 as a potent promoter of Th17 development. In vitro-derived Th17 cells also express
RORγt, IL-22, IL-17F, IL-26, CCL20, CCR6, and IL-23R. In addition, these cells are
characterized by the presence of both IL-17+ and IL-17+ /IFN-γ+ producers.

TGF-β or no TGF-β?
All the studies published so far agree that in contrast to mice, the combination of TGF-β and
IL-6 alone was not sufficient to drive human Th17 cell differentiation. Whether TGF-β is
required for human Th17 cell differentiation is still a matter of controversy. Indeed, three
independent groups (48, 49, 84) recently reported an absolute necessity of TGF-β to drive
Th17 cell development in human. Volpe et al. (48) detected IL-17 production when naive T
cells were cultured in the presence of IL-23, IL-1β, IL-6, and TNF-α, but observed that
IL-17 levels were strongly increased when TGF-β was added to this inflammatory cytokine
cocktail. This was true for naive T cells selected by magnetic cell sorting or FACS-sorted
from peripheral blood and cord blood cells. Manel et al. (49) showed that the combination of
TGF-β, IL-1β, and IL-23 was optimal to induce IL-17 producers from naive cord blood
CD4+ T cells and that endogenous levels of IL-6 or IL-21 were not required for Th17 cell
development. Th17 cells expressed increased levels of IL-17, IL-17F, IL-26, and IL-23R. In
contrast, IL-22 production was downregulated in the presence of TGF-β (49). In their study,
Volpe et al. (48) showed that IL-17 and IL-6 were associated with Th17 cells, whereas
IL-22, TNF-α, IL-21, and IFN-γ were expressed by both Th17 and Th1 cells. However,
Th17 cells polarized in the presence of TGF-β were IL-17 single producers, and no IL-17+

IFN-γ+ cells were detected. As both IL-17+ IFN-γ− and IL-17+ IFN-γ+ have been identified

Boniface et al. Page 7

Immunol Rev. Author manuscript; available in PMC 2013 May 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in inflamed tissues, for example the brain of mice after EAE induction (50, 85) or the
intestine of patients with active CD (46), one could ask whether in vitro Th17 cells polarized
in the presence of TGF-β reflect the Th17 populations present in vivo at sites of
inflammation. The work of Yang et al. (84) suggests that in a serum-free medium, the
combination of TGF-β and IL-21 drives the development of Th17 cells expressing increased
levels IL-17 but not IFN-γ or IL-22 from peripheral blood and cord blood naive T cells. In
contrast, Manel et al. (49) failed to see any induction of IL-17 production in the presence of
TGF-β and IL-21 from naive cord blood cells cultured in medium either containing serum or
not. They further showed that the neutralization of IL-21 during Th17 cell development did
not regulate the proportion of IL-17 producers. We also failed to detect any upregulation of
IL-17 production when peripheral blood naive T cells were stimulated in the presence of
TGF-β and IL-21 (unpublished data). The recent observation that IL-21 plays an important
role in the generation of T-follicular helper cells and is a potent inducer of Ig production
would challenge its physiological importance for Th17 biology (86, 87). Interestingly, we
and others (26, 27, 61, 77) showed that TGF-β inhibited IL-17 production induced by IL-23
or by the combination of IL-1β and IL-6.

How can the discrepancies observed in human Th17 development between groups be
explained? One possibility could be the presence of endogenous TGF-β in cultures
containing serum. Indeed, the use of serum-free medium leads to an increased proportion of
IL-17 producers compared with medium containing serum (49), suggesting that TGF-β
present in the serum can downregulate to some extent IL-17 production. Volpe et al. (48)
showed that the use of medium with or without serum required the same cytokines for Th17
development, although IL-17 levels were lower in a medium containing serum. Another
explanation could be the time of culture. The effects of IL-1β and/or IL-23 without addition
of exogenous TGF-β were analyzed in a 2-week culture assay. In contrast, cultures
performed in the presence of TGF-β were usually harvested after a 5-day culture period.
Despite the differences observed among the different studies, IL-23 and IL-1β emerge as
critical factors in the induction of IL-17-producing cells.

Transcription factors associated with human Th17 cell development
As T-bet/STAT4 and GATA-3/STAT6 are respectively related to Th1 and Th2 cells, Ivanov
et al. identified RORγt as a transcription factor specifically expressed in mouse and human
Th17 cells (26, 88, reviewed in 20). Transduction of human cord blood CD4+ T cells with
RORγt is sufficient to induce IL-17 production, and conversely knockdown of RORγt
results in much lower IL-17 production (49). As previously shown in mice (89), the
involvement of other ROR family members is conceivable, as RORα also induces IL-17
expression when overexpressed in primary human T cells (49). Interestingly, forced
expression of RORγt is not sufficient to induce IL-22 production (49), suggesting the
requirement of additional transcription factors. In this regard, Veldhoen et al. (77) identified
the aryl hydrocarbon receptor (AHR), a ligand-dependent transcription factor, as a critical
factor in the induction of IL-22 production in mice. They further showed that human Th17
cells express AHR. In addition to RORγt, human Th17 cells express also T-bet, which is
consistent with the observed production of IFN-γ (46).

An increasing body of evidence shows the requirement of STAT3 for Th17 cell
development. Indeed, in mice STAT3 is absolutely required for the induction of IL-17,
IL-17F, and RORγt (90–92). Moreover, patients suffering from autosomal dominant hyper-
IgE syndrome, associated with negative mutations in STAT3, had impaired Th17 cell
differentiation (93–96). These subjects secreted much lower IL-17 and IL-22 than control
individuals, showing the requirement of STAT3 to induce the production of these cytokines
in vivo in human. Thus, although there is still debate on the cytokines involved in Th17
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differentiation in mice and human, there is a consensus that STAT3 activation is essential. In
this light, it is relevant that IL-6, IL-21, and IL-23 are all able to induce STAT3
phosphorylation.

Negative regulators of human Th17 cell development
When looking at the strong potential of Th17 cells to cause damage to the host, it was
expected that this subset would be subjected to many regulatory processes. Initial studies
assessing lineage commitment of naive CD4+ T cells into Th1 and Th2 cells revealed that
these subsets cross-regulate each other through their specific signature cytokines IFN-γ and
IL-4, respectively (97–99). The same principle applies to Th17 cell regulation both in the
mouse and in the human systems. We showed that IL-4 and IL-12 prevented Th17
differentiation induced by IL-23 from human naive CD4+ T cells (26).

Regulation of Th17 responses can also happen in a cytokine-independent context. For
example, retinoic acid, an active metabolite of vitamin A, is a potent inhibitor of Th17
commitment in mice, while enhancing FoxP3+CD4+ Tregs (100–103). In contrast,
sphingosine 1-phosphate can enhance development of Th17 cells in mice (104). Thus, non-
cytokine immunomodulatory agents produced during inflammation also play an important
role in regulating Th17 responses, and further studies will undoubtedly help to better
understand how such agents positively or negatively modulate Th17 function.

Function of human Th17 cells
The link of Th17 cells to pathologic inflammation is much more established than our
understanding of their role in normal immune defense mechanisms. Several lines of
evidence support their involvement in mucosal immunity in mice, particularly against
extracellular bacterial infections. For example, IL-17, IL-22, and IL-23 are all necessary to
elicit full immune response to Klebsiella pneumoniae (105–107); mice deficient in IL-17RA
have enhanced susceptibility to Toxoplasma gondii and Candida albicans infection but not
to Mycobacterium tuberculosis or L. monocytogenes (106, 108, 109), and IL-22 is critical
for host defense against Citrobacter rodentium infection (110). However, while little is
known regarding the role of IL-23, IL-17, and IL-22 in resistance to infection in humans,
what has emerged in the last few years is indirect evidence that patients suffering from
diseases associated with various infections, including hyper-IgE syndrome, chronic
mucocutaneous candidiasis, or Mendelian susceptibility to mycobacterial diseases, have a
defect in Th17 cells (93–95, 111). In addition, both IL-17 and IL-22 induce anti-microbial
peptides production from various epithelial cell types in human (26, 51, 57, 107, 112),
suggesting their participation in host defense. Napolitani and colleagues (40) showed that
human memory T cells specific for C. albicans were mainly CCR6+CCR4+ Th17 subset,
whereas T cells specific for M. tuberculosis were present in the CCR6+CXCR3+ Th1
population, suggesting that Th17 and Th1 cells exhibit different immune functions in
response to pathogens. C. albicans in the hyphal form primed Th17 responses in vitro and
induced production of IL-23 but not IL-12 by human DCs (40).

Annunziato et al. (46) showed that Th17 cells exhibit poor proliferative capacity, low
cytotoxicity, and reduced susceptibility to suppressive activity of CD4+FoxP3+ Tregs
compared with Th1 and Th2 cells. They are also able to help B cells to induce the
production of IgG, IgM, and IgA, but not IgE (46). Accordingly, a recent study showed that
human Th17 cells, but not Th1 or Th2 cells, expressed B-cell chemoattractant CXCL13
(113). Thus, the Th17/B-cell interaction could lead to the production of Igs by B cells,
which would help in resolving the infection.
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IL-23/Th17 and/or IL-12/Th1-mediated autoimmune diseases?
While nature’s plan certainly envisioned a contribution of Th17 cells to host defense
mechanisms, this inflammatory Th cell subset is better known for its role in promoting
destructive tissue inflammation. Th17 cells are key mediators of chronic inflammation in
various animal models (17–19, 24, 45). However, even after the establishment of Th17 cells
as pathologic mediators, evidence remained for a contribution of the Th1 pathway during
inflammatory processes, reflecting the complexity of inflammatory diseases. For example,
IFN-γ producers are found in the brain of mice during EAE, inhibition of T-bet expression
by RNA interference ameliorates EAE, and IFN-γ has been described for its pathogenic role
in different mouse models of inflammation (50, 114–116).

The situation in human inflammatory diseases comes with an even higher degree of
complexity: Pène et al. (47) isolated CD4+ T cells from lesions of patients suffering from
chronic diseases, including psoriasis, CD, RA, and severe asthma, and identified Th1, Th2,
as well as Th17 cells in inflamed tissues. Th17 clones, selected for their elevated IL-17 and
IL-22 production, expressed higher levels of RORγt, IL-17F, IL-26, CCL20, TNF-α, CCR6,
IL-1R1, and IL-23R than Th1 and Th2 clones. Interestingly, Th17 clones contained low
levels of IFN-γ. To further understand the mechanisms of human inflammatory diseases, it
becomes then critical to determine the importance of the distinct Th cell subsets in each
particular disease.

A new line of evidence favors a role of IL-23/Th17 rather than IL-12/Th1 pathway during
the pathogenesis of autoimmune disorders, for example in MS. Increased levels IL-17 were
found in the cerebrospinal fluid and blood of MS patients (117, 118), and IL-23 but not
IL-12 production was increased in monocyte-derived DCs isolated from MS patients (118).
Prat and colleagues (44) directly investigated the involvement of human Th17 cells in
central nervous inflammation. IL-23-driven Th17 cells generated from peripheral blood
CD4+ T cells from healthy donors migrated more efficiently across the blood–brain barrier
than did IL-12-driven Th1 cells. These Th17 cells were IL-17, IL-22, or IL-17/ IL-22
producers. IL-17+IL-22+ cells preferentially expressed granzyme B and had enhanced
cytolytic activity toward neuronal cells isolated from fetal brain compared with nonactivated
lymphocytes (44).

If psoriasis was traditionally associated with IL-12/Th1-exacerbated responses, this
conclusion was mainly based on the upregulation of IL-12p40 expression in lesional skin.
However, we and others (26, 119–121) reported that IL-23 but not IL-12 expression is
increased in psoriatic lesions, as shown by upregulated expression of IL-23p19, IL-12p40,
but not IL-12p35. The expression of IL-1β, RORγt, and Th17 cytokines IL-17, IL-22,
IL-17F, IL-26, and of IFN-γ was also upregulated in psoriatic skin (26, 56, 58, 122, 123).
Overexpression of Th17 cytokines also led to the production of anti-microbial peptides and
chemokines. All together, this inflammatory milieu sets the stage for pathology (Fig. 6). The
involvement of IL-23 during cutaneous inflammation is also corroborated in vivo, as
intradermal injection of IL-23 in mice induced a psoriasis-like phenotype (59, 119, 124).
The most compelling evidence indicating a major role of the IL-23/Th17 pathway during
psoriasis came from the improvement in psoriasis area-and-severity index in patients when
anti-IL-12p40-neutralizing antibodies were administered (125–129). We now know that
neutralization of IL-12 by blocking IL-12p40 also neutralizes the function of IL-23, raising
the question for the actual mechanism of action. Cooper and colleagues (125) further
showed that the clinical improvement was associated with reduced expression of IL-12p40
and IL-23p19 but not of IL-12p35. Furthermore, genetic studies revealed an association
between IL23R and IL12B genes and susceptibility to psoriasis (130–132), making it likely
that the IL-23/Th17 pathway plays a dominant role in this disease.
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Mounting evidence supports a major role of IL-23 and Th17 cells in the pathogenesis of
IBD. IL-12, IFN-γ, IL-23, and IL-17 expression is increased in the colonic lamina propria of
CD patients (62, 63, 133–136). Clinical trials using anti-IL-12p40-neutralizing antibodies
are showing promising results in the treatment of CD (137, 138). Investigating how
IL-12p40 neutralization modulates the inflammatory response in CD patients, Mannon and
colleagues (133) identified reduced secretion of IL-23, IL-12, IL-17, and IL-6 by
mononuclear cells in the colonic lamina propria of patients that received anti-IL-12p40-
neutralizing antibodies.

Strong evidence for the importance of IL-23 in CD pathogenesis emerged from genetic
studies. Performing genome-wide analysis of single nucleotide polymorphisms in healthy
subjects and CD patients, Cho and colleagues (139) established the association between
IL23R gene polymorphisms and susceptibility to CD. Several studies performed in different
patient cohorts confirmed those results (139–145). In addition, it was recently reported that
IL23R gene polymorphisms correlate with IL-22 serum levels in CD patients (146). The
established link between IL-23 and CD raises the question for a biological involvement of
Th17 cells. Two groups recently cloned Th17 cells from the inflamed lamina propria of CD
patients and compared them to Th1 or Th2 clones isolated from the same tissue (46, 47).
These elegant studies were instrumental in characterizing the phenotype of human Th17
cells. The study of T-cell clones, however, provided only limited insight into the
involvement of Th17 cells in the inflammatory process itself. The increasing knowledge
about the phenotypical features of Th17 cells should soon enable studies of this important
immune pathway in health and disease.

Conclusion
The discovery of IL-23 has led to the identification of a new Th cell subset that
complements the Th1/Th2 paradigm. It is now clear that this Th17 pathway, with all its
complexity, is essential for protection against infectious agents but also for the pathogenesis
of inflammatory disorders. However, many questions still need to be answered. The precise
role played by TGF-β during mouse and human Th17 cell development remains to be
analyzed at a molecular level to get full insight in the importance of this factor. In addition,
we have not discussed in this review the interaction and relationship between human Th17
and Treg cells. It is known that the regulation of FoxP3 expression is different between mice
and humans (147) and that the interplay between FoxP3 and RORγt is important for the
decision of mouse Th17 versus Treg cell lineage commitment (148). In this respect it is
interesting that human Treg cells seem to be able to differentiate into IL-17-producing cells
when stimulated with IL-2 and IL-15 in the presence of monocytes (149).
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Fig. 1. Overview of IL-12 and IL-23 ligand and receptor complexes
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Fig. 2. IL-23 induces polarization of naive CD4+ T cells
Naive CD4+ T cells were isolated from cord blood, primed for 6 days, and recultured for an
additional 6 days in the presence of the indicated cytokines, anti-CD3, IL-2, and irradiated
CD32/CD58/CD80-transfected L cells. Cells were harvested at day 6 (left) and day 12
(right) and stimulated for 24 h.
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Fig. 3. IL-23 induces polarization of naive CD4+ T cells
Naive CD4+ T cells were isolated from cord blood, primed for 6 days, and recultured for an
additional 6 days in the presence of the indicated cytokines, anti-CD3, IL-2 and irradiated
CD32/CD58/CD80-transfected L cells. Cells were harvested at days 6 and 12 and stimulated
for 6 h.
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Fig. 4. IL-23-induced polarization is inhibited by neutralizing antibodies against p40 and
IL-12Rβ1 but not p35
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Fig. 5. Th17 cell differentiation in mouse and human
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Fig. 6. IL-23/Th17 pathway and inflammation
In response to inflammatory stimuli, dendritic cells produce IL-23 and IL-1β, which induce
development of Th17 cells that produce IL-17, IL-22, IL-17F, and other proinflammatory
cytokines. This inflammatory milieu, through its action on epithelial cells, will contribute to
epithelial barrier disruption and recruitment of immune cells.
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