Table 5.
Optimal Error and Area Under ROC Curve (AUC) for disease status classification. Best classifiers are highlighted.
| Classification Criterion |
Number of subjects |
Scoring function | Class with Higher Score |
AUC | Error |
|---|---|---|---|---|---|
| AD vs. Control | 63 AD, 32 Control | ELISA t-tau | AD | 0.778 | 0.225 |
| ELISA p-tau181 | AD | 0.737 | 0.225 | ||
| ELISA Aβ1–42 | Control | 0.868 | 0.169 | ||
| xMAP t-tau | AD | 0.728 | 0.258 | ||
| xMAP p-tau | AD | 0.744 | 0.247 | ||
| xMAP Aβ1–42 | Control | 0.921 | 0.124 | ||
| (ELISA p-tau)/(ELISA t-tau) | Control | 0.838 | 0.180 | ||
| (ELISA Aβ1–42)/(ELISA t-tau) | Control | 0.866 | 0.135 | ||
| (ELISA Aβ1–42)/(ELISA p-tau) | Control | 0.855 | 0.169 | ||
| (xMAP p-tau)/(xMAP t-tau) | Control | 0.666 | 0.270 | ||
| (xMAP Aβ1–42)/(xMAP t-tau) | Control | 0.828 | 0.169 | ||
| (xMAP Aβ1–42)/(xMAP p-tau) | Control | 0.840 | 0.146 |