INVESTIGATION

A Maximum-Likelihood Method to Correct
for Allelic Dropout in Microsatellite Data
with No Replicate Genotypes

Chaolong Wang,*' Kari B. Schroeder,” and Noah A. Rosenberg*

*Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, Centre for
Behaviour and Evolution, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH United Kingdom, and
*Department of Biology, Stanford University, Stanford, California 94305

ABSTRACT Allelic dropout is a commonly observed source of missing data in microsatellite genotypes, in which one or both allelic
copies at a locus fail to be amplified by the polymerase chain reaction. Especially for samples with poor DNA quality, this problem
causes a downward bias in estimates of observed heterozygosity and an upward bias in estimates of inbreeding, owing to mistaken
classifications of heterozygotes as homozygotes when one of the two copies drops out. One general approach for avoiding allelic
dropout involves repeated genotyping of homozygous loci to minimize the effects of experimental error. Existing computational
alternatives often require replicate genotyping as well. These approaches, however, are costly and are suitable only when enough DNA
is available for repeated genotyping. In this study, we propose a maximum-likelihood approach together with an expectation-
maximization algorithm to jointly estimate allelic dropout rates and allele frequencies when only one set of nonreplicated genotypes is
available. Our method considers estimates of allelic dropout caused by both sample-specific factors and locus-specific factors, and it
allows for deviation from Hardy—Weinberg equilibrium owing to inbreeding. Using the estimated parameters, we correct the bias in the
estimation of observed heterozygosity through the use of multiple imputations of alleles in cases where dropout might have occurred.
With simulated data, we show that our method can (1) effectively reproduce patterns of missing data and heterozygosity observed in
real data; (2) correctly estimate model parameters, including sample-specific dropout rates, locus-specific dropout rates, and the
inbreeding coefficient; and (3) successfully correct the downward bias in estimating the observed heterozygosity. We find that our
method is fairly robust to violations of model assumptions caused by population structure and by genotyping errors from sources other
than allelic dropout. Because the data sets imputed under our model can be investigated in additional subsequent analyses, our
method will be useful for preparing data for applications in diverse contexts in population genetics and molecular ecology.

ICROSATELLITE markers are widely used in popula-

tion genetics and molecular ecology. In microsatellite
data, distinct alleles at a locus represent DNA fragments of
different sizes, typically detected by amplification using the
polymerase chain reaction (PCR). Frequently, during micro-
satellite genotyping in diploid organisms, one or both of an
individual’s two copies of a locus fail to amplify with PCR,
yielding a spurious homozygote or a spurious occurrence of
missing data. This problem is known as “allelic dropout” (e.g.,
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Gagneux et al. 1997; Pompanon et al. 2005). For example, if
an individual has genotype AB at a locus, but only allele A
successfully amplifies, then only allele A will be detected, and
the genotype will be erroneously recorded as AA. If neither
allelic copy amplifies, then the genotype will be recorded as
missing. Here we follow Miller et al. (2002) by using “copies”
to refer to the paternal and maternal variants in an individual
and “alleles” to specify the distinct allelic types possible at a
locus.

Allelic dropout is common in microsatellite studies and
can lead to statistical errors in subsequent analyses (e.g.,
Bonin et al. 2004; Broquet and Petit 2004; Hoffman and
Amos 2005). For example, in estimating population-genetic
statistics, because allelic dropout can cause mistaken as-
signment of heterozygous genotypes as homozygotes, it can
lead to underestimation of the observed heterozygosity and
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overestimation of the inbreeding coefficient (Taberlet et al.
1999). Circumventing allelic dropout is therefore important
for microsatellite studies. One general strategy for correct-
ing for allelic dropout involves repeated genotyping, partic-
ularly for the apparent homozygotes (e.g., Taberlet et al.
1996; Morin et al. 2001; Wasser et al. 2007). Additionally,
computational approaches have been proposed to assess al-
lelic dropout, primarily when replicate genotypes are avail-
able (Miller et al. 2002; Wang 2004; Hadfield et al. 2006;
Johnson and Haydon 2007; Wright et al. 2009). In practice,
however, replicate genotyping is costly and often uninforma-
tive or impossible, owing to insufficient DNA or logistical
constraints, especially for natural populations with limited
DNA samples from noninvasive sources (e.g., Taberlet and
Luikart 1999; Taberlet et al. 1999). Therefore, in this study,
we develop a maximum-likelihood approach that can correct
for allelic dropout without using replicate genotypes.

It is believed that the cause of allelic dropout is stochastic
sampling of the molecular product, which can occur at two
stages of the genotyping process (Figure 1). If DNA concen-
tration is low, then one or both of the allelic copies might not
be present in sufficient quantity for successful amplification
(e.g., Navidi et al. 1992; Taberlet et al. 1996; Sefc et al.
2003). Poor quality of the template DNA (e.g., high degra-
dation) can also prevent binding by the PCR primers and
polymerase, resulting in dropout. An additional problem in
the binding step is that some loci might be less likely than
others to be bound. Previous studies have found that al-
though different alleles at the same locus have similar prob-
abilities of dropping out, loci with longer alleles tend to have
higher dropout rates than those with shorter alleles (e.g.,
Sefc et al. 2003; Buchan et al. 2005; Broquet et al. 2007);
differences in primer annealing efficiency and in template
DNA secondary structures might also contribute to different
dropout rates across loci (Buchan et al. 2005).

In this study, we explicitly model the two sources of allelic
dropout, using sample-specific dropout rates vy; and locus-
specific dropout rates vy, such that the probability of allelic
dropout at locus ¢ of individual i is determined by a function
of both ;. and vy,. With a single nonreplicated set of geno-
types, we jointly estimate the parameters of the model, in-
cluding allele frequencies, sample-specific dropout rates,
locus-specific dropout rates, and an inbreeding coefficient,
thereby correcting for the underestimation of observed
heterozygosity and overestimation of inbreeding caused by
allelic dropout. We use an expectation-maximization (EM)
algorithm to obtain maximum-likelihood estimates (MLEs).
With the estimated parameter values, we perform multiple
imputation to correct the bias caused by allelic dropout in
estimating the observed heterozygosity. We have imple-
mented this method in MicroDrop, which is freely available
at http://rosenberglab.stanford.edu.

We first employ the method to analyze a set of human
microsatellite genotypes from Native American populations.
Using the estimated parameter values, we generate a simu-
lated data set that mimics the Native American data, and we
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Figure 1 Two stages of allelic dropout. The red and blue bars are two
allelic copies of a locus in a DNA sample. The black X indicates the
location at which allelic dropout occurs. (A) Owing to sample-specific
factors such as low DNA concentration or poor DNA quality, one of the
two alleles drops out when preparing DNA for PCR amplification. (B)
Owing to either locus-specific factors such as low binding affinity be-
tween primers or polymerase and the target DNA sequences or sample-
specific factors such as poor DNA quality, one of the two alleles fails to
amplify with PCR. In both examples shown, allelic dropout results in an
erroneous PCR readout of a homozygous genotype.

employ this simulated data set to evaluate the performance
of our model. First, we compare the patterns of missing data
and heterozygosity between the simulated and real data to
check whether our model correctly reproduces the observed
patterns. Next, we compare estimated and true values of the
allelic dropout rates for the simulated data. Finally, we compare
the corrected heterozygosity with the “true” heterozygosity
calculated from the true genotype data prior to allelic drop-
out. We further evaluate the robustness of our model, using
simulations with different levels of inbreeding, population
structure, and genotyping errors from sources other than
allelic dropout. We conclude our study by using simulations
to argue that our MLEs of dropout rates and the inbreeding
coefficient are consistent. That is, we show that as the num-
ber of individuals and the number of genotyped loci increase,
our estimated values appear to converge to the true values of
the parameters.

Data and Preliminary Analysis

The data set on which we focus consists of genotypes for 343
microsatellite markers in 152 Native North Americans
collected from 14 populations over many years by the
laboratory of D. G. Smith at the University of California
(Davis, CA). We identify the populations according to their
sampling locations: three populations from the Arctic/Sub-
arctic region, two from the Midwest of the United States
(US), two from the Southeast US, two from the Southwest
US, three from the Great Basin/California region, and two
from Central Mexico. In this data set, the number of distinct
alleles per locus has mean 8.0 across loci, with a minimum
of 4 and a maximum of 24.
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Fraction of homozygous individuals at loci

Allelic dropout can generate both spurious homozygotes,
when one allelic copy drops out at a heterozygous locus, and
missing data, when both copies drop out at either homozy-
gous or heterozygous loci. Thus, under the hypothesis that
missing data are caused by allelic dropout, we expect
a higher proportion of missing data to be accompanied by a
higher proportion of homozygous genotypes. If allelic drop-
out is caused by low DNA concentration or low quality in
certain samples, then a positive correlation will be observed
across individuals between missing data and individual ho-
mozygosity. Alternatively, if allelic dropout is caused by locus-
specific factors such as differences across loci in the binding
properties of the primers or polymerase, we instead expect
a positive correlation across loci between missing data and
locus homozygosity. This type of correlation is also expected
if missing data are due to “true missingness”—for example,
null alleles segregating in the population at certain loci, as
a result of polymorphic deletions in primer regions (e.g.,
Pemberton et al. 1995; Dakin and Avise 2004). Here, we
disregard true missingness and assume that all missing gen-
otypes are attributable to allelic dropout.

For each individual, we evaluated the proportion of loci
at which missing data occurred and the proportion of homo-
zygotes among those loci for which data were not missing.
As shown in Figure 2A, missing data and homozygosity have
a strong positive correlation: the Pearson correlation is r =
0.729 (P < 0.0001, by 10,000 permutations of the propor-
tions of homozygous loci across individuals). This observa-
tion matches the prediction of the hypothesis that missing
data result from sample-specific dropout rather than locus-

specific dropout or true missingness. By contrast, an analo-
gous computation for each locus rather than for each individual
(Figure 2B) finds that the correlation between homozygosity
and missing data is much smaller (- = 0.099 and P =
0.0341, by 10,000 permutations of the proportions of ho-
mozygous individuals across loci). We therefore suspect that
missing genotypes in this data set arise primarily from the
allelic dropout caused by low DNA concentration or quality
in some samples and that locus-specific factors such as poor
binding affinity of primers and polymerase have a smaller
effect. In any case, for our subsequent analyses, we continue
to consider both sample-specific and locus-specific factors.

Model

Consider N individuals and L loci. Denote alleles at locus ¢ by
Ag withk =1, 2,...,K, where K, is the number of distinct
alleles at locus ¢. Denote the observed genotype data by W =
{wei=1,2,...,N;¢=1,2,...,L}, where genotyping has
been attempted for all individuals at all loci. Here, wy, is the
observed genotype of the ith individual at the ¢th locus. Each
entry of W consists of the two observed copies at a locus in
a specific individual. If the observed genotype is missing at
locus ¢ of individual i, then we specify w;, = XX. Otherwise,
Wi = AgAg, for some k, h € {1, 2, ...,K;}, where k and h are
not necessarily distinct. The true genotypes are denoted by
G=A{gwi=1,2,...,N;¢=1,2,...,L}. Adescription of the
notation appears in Table 1.

To model the dropout mechanism, we specify a set of
dropout states Z = {z;:i1=1,2,...,N;¢=1,2,...,L} that
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Table 1 Notation used in the article

Notation Meaning Type

i Index of an individual Basic notation

4 Index of a locus Basic notation

k, h Index of an allele Basic notation

N No. individuals Basic notation

L No. loci Basic notation

K, No. distinct alleles at locus ¢ Basic notation
A, Ak Allele k (h) at locus ¢ Basic notation

X Missing data (dropout) Basic notation

Yie Dropout probability at locus ¢ of individual / Basic notation

W Observed genotype at locus ¢ of individual i Observed data point
%% Observed genotypes, W = {w;} Observed data set
ic True genotype at locus ¢ of individual / Latent variable

Sie IBD state at locus ¢ of individual / Latent variable

Zi Dropout state at locus ¢ of individual / Latent variable

G True genotypes, G = {g;} Latent variable set
S IBD states, S = {s;} Latent variable set
Z Dropout states, Z = {z;} Latent variable set
p Inreeding coefficient Parameter

b Frequency of allele Ay Parameter

Vi Sample-specific dropout rate for individual / Parameter

Ve Locus-specific dropout rate for locus ¢ Parameter

) Allele frequencies, ® = {¢u} Parameter set

r Dropout rates, I' = {y;, y.4 Parameter set

v Model parameters, ¥ = {p, ®, I'} Parameter set

Nek No. independent copies of allele Ax Summary statistic
dy No. dropouts at locus ¢ for individual / Summary statistic
d;. No. sample-specific dropouts for individual i Summary statistic
dy No. locus-specific dropouts at locus ¢ Summary statistic
s No. genotypes having two alleles IBD Summary statistic

ie{l,2,..,NL,ee{1,2,...,},andk, he{l,2, ..., K}

connects G and W and that indicates which alleles “drop
out.” For a heterozygous true genotype gi = AgAm (h #
k), supposing allele A, drops out, the dropout state is
2, = AxX and the observed genotype is w; = AgAm. For
a homozygous true genotype g; = AaAyx, the dropout state
2, = AgX means that exactly one of the two allelic copies
drops out.

We make five assumptions in our model:

1. All distinct alleles are observed at least once in the data
set.

2. All missing and incorrect genotypes are attributable to
allelic dropout.

3. Both copies at a locus ¢ of an individual i have equal
probability vy; of dropping out. This probability is a func-
tion of a sample-specific dropout rate y;. and a locus-
specific dropout rate 7.

Yie = Vi + Ve~ ViVe 9]

4. All individuals are unrelated and have the same inbreed-
ing coefficient p, such that for any locus of any individual,
the two allelic copies are identical by descent (IBD) with
probability p.

5. Each pair of loci is independent (i.e., each pair of loci is at
linkage equilibrium).
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Denote I' = {vy;, yei=1,2,...,N;¢=1,2,...,L} and
D ={dg:t=1,2,...,L; k =1, 2,...,K}, in which ¢y is
the true frequency of allele Ay at locus ¢, v;. is the probability
of dropout caused by sample-specific factors for any allelic
copy at any locus of individual 7, and v, is the probability of
dropout caused by locus-specific factors for any allelic copy
at locus ¢ in any individual. Equation 1 arises by noting that
the dropout probability for an allelic copy at locus ¢ of in-
dividual i, considering the two possible causes as indepen-
dent, is y;; = 1 — (1 — y) (A — v.).

Using assumption 3, the conditional probability P(z;|
gir» I') can be expressed as shown in Table 2. The condi-
tional probability of observing genotype w;, given true
genotype g; and dropout rates vy;. and vy, can be calcu-
lated as

P(wilgie,I') = ZP(Widzihgitz)P(Zidgi(, ). 2)

Zie

Here, P(w;y |2y, gi) is either O or 1 because W is fully de-
termined by Z and G, and the summation proceeds over all
dropout states z; possible given the observed genotype w;,
(Table 2).

We use a set of binary random variables S = {s;} to in-
dicate the IBD states of the true genotypes G, such that s; =
1 if the two allelic copies in genotype g;, are IBD, and s; =



Table 2 lllustration of the outcomes of allelic dropout using two distinct alleles at locus ¢, A, and A,

True genotype Genotype frequency Dropout state

Conditional probability

Observed genotype Conditional probability

Jie P(gil®, p) Zj P(zidgiu T) Wi P(widgiu I)
AuAu (1= p)pg + pdye AuAuk (1 = 7e? AuAdk -
AuX 2vil1 = vi)
XX 'y,»zf XX 'in(
AdAn 2(1 P)Peben ArAk (- 7/{)2 AnAdn (1 - ’)’f()z
ApX Yil = vi) ArAn Yill = vi)
AgX Yil1 = vid) AgAw Vil = i)
XX y,-zf XX Vizl

Genotype frequencies are calculated from allele frequencies using Equation 5, where p is the inbreeding coefficient, a parameter used to model the total deviation from
Hardy-Weinberg equilibrium. Dropout is assumed to happen independently to each copy at locus ¢ of individual i, with probability vy, specified by Equation 1. h # k.

0 otherwise. Under assumption 4, we have (e.g., Holsinger
and Weir 2009)

. B p if Sit = 1
P(Sl[|p) - { 1-— p if Sit = 0 (3)
&% if gie = AdaAg and si =0
P(gilsi, D) = 2¢qba i g =AnAm (h # k) and s; =0
ity b if gie = AgAg and si =1
0 if gy =AgAn (h#k) and s = 1
(C))
1—p)d2 + pdy if gic = AgA
B(gi|®,p) = | (1~ P)Pu + pbac if gie = AuAue
(gw\ P) { ( _ P)d’[kd’éh if 8it = AuAm (h # k)
)

When p = 0, the genotype frequencies in Equation 5 follow
Hardy-Weinberg equilibrium (HWE).

With the quantities in Equations 2-5, the probability of
observing w;, given parameters WV is

P(w;| V) = ZP wielgie, )
8ie

P(gicl®, p). ©)

The summation proceeds over the set of all possible true
genotypes gi, that is, over all two-allele combinations
at locus ¢. The likelihood function of the parameters ¥ =
{®, T, p} is then given by

L

HP lequ

=1

P(W|W) = %)

=

Il
-
~

i

This likelihood assumes that dropout at a locus is inde-
pendent across individuals, so that each observed diploid
genotype of an individual at the locus is a separate trial
independent of all others. Further, assumption 5 enables us
to take a product across loci, as genotypes at separate loci
are independent. A graphical representation of the rela-
tionships among the parameters @, I', and p; the latent

variables G, S, and Z; and the observation W appears in
Figure 3.

Estimation Procedure

Given the observed genotypes W, we can use an EM algo-
rithm (e.g., Lange 2002) to obtain the MLEs of the allele
frequencies ®, the sample-specific and locus-specific drop-
out rates I', and the inbreeding coefficient p. Under the in-
breeding assumption (assumption 4), two allelic copies at
the same locus need not be independent. If two allelic copies
are IBD, then the allelic state of one copy is determined
given the allelic state of the other copy, so that the number
of independent allelic copies is 1. If two copies at the same
locus are not IBD, then the number of independent allelic
copies is 2. We introduce a random variable n, to represent
the number of “independent” copies of allele Ay in the
whole data set, considering all individuals. We also define
a random variable d; as the number of copies that drop out
at locus ¢ of individual i (d;, = 0, 1, or 2).

In the E-step of our EM algorithm, we calculate (1) the
expectation of the number of independent copies for all alleles,
Elng|W, ¥], summing across individuals; (2) for each indi-
vidual, the total number of dropouts caused by sample-
specific factors, E[di|W,¥] = S"F Bld|W,¥](v./ve); (3)

;P

I_ 1 ' 1
: :

! G ' Z
N ! N U
O Parameters i N

f | Latent variables

[:] Observed data

Figure 3 Graphical representation of the model. Each arrow denotes
a dependency between two sets of quantities: @ allele frequencies; p,
inbreeding coefficient; I', sample-specific and locus-specific dropout
rates; G, true genotypes; S, IBD states; Z, dropout states; and W, observed
genotypes. W is the only observed data, consisting of N x L independent
observations and providing information to infer parameters ®, p, and T'.
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Table 3 Posterior joint probabilities of true genotypes g; and IBD states s;, at a single locus ¢ of an individual i

Observed True
genotype genotype IBD state Joint probability Posterior probability
Wi Gie Sie P(Giu Sie Wid¥) P(9iu SidwWie, V)
AuAn AuAn 1 0 0
0 P)bude(l — ’)’if)z 1
Others 1 0 0
0 0 0
AdAw AdAn 1 0 0
0 201 = P)¢Ik¢th'}’if(1 - 'Vfi) 2(1 _p)¢ﬂh7/'f
p(1+vie) + (1= p)2vie — buvic + bu)
AuAu 1 pbu(1—v2) (1 + vi)
p(1+ i) + (1= p)2vie — buvie + bu)
0 —p)b2(1 - 72) (1= p)buc(1 + vi)
p(1+ i) + (1= p)2vie — buvie + du)
XX AuAn 1 0 0
0 2(1- P)¢[k¢(h7/2p 201 Plbacden
AnAk 1 pbu Yﬁ pPu
0 (1-p)dbave (1-p)di

The calculation of P(gy, si | wi, ) is based on Equation 8. h # k.

for each locus, the total number of dropouts caused by locus-
specific factors, E[dW,V¥] = Z?’zlE[di@\W, W(y,/vie); and
(4) the expectation of the total number of genotypes that
are IBD, summing across the whole data set, E[s|W, V] =
S S Efsy|W, W). The factors y./y; and vy./vy specify
the respective probabilities that sample-specific factors and
locus-specific factors contribute to the allelic dropouts at locus
¢ of individual i.

To obtain the expectations required for the E-step, we
need the posterior probabilities of g;, di, and s; given the
observed genotype w;, and the parameters W, for each (i, ¢)
withi=1,2,...,Nand ¢ = 1, 2,...,L. The posterior joint
probabilities of g; and s; given w;, and V¥ are listed in Table
3, and they are calculated from Bayes’ formula:

P(gie, Sie[wie, ¥)

_ P(gic, sie V)P (Wi gic, Sie, V)
Zgifzsl,-{:op(gifySiilq,)P(WiAgié:Sih ) (8)

_ P(sie|p)P(giclsic, P)P (Wielgie, Vie)
Egi,Zs,-f:OP(sidP) (giclsie, P)P (Wiclgie, vie)

The second equality holds because the probability of being
IBD (si = 1) depends only on the inbreeding coefficient p,
the true genotype g; is independent of p and the dropout
rate y; given s, and the allele frequencies ®, and the observed
genotype wy is independent of ® and p given g, and v;.

For example, suppose the observed genotype is wy =
AgAg, and we wish to evaluate P(g;, = AgAa, S = 1|wy =
AgAa, V), the posterior joint probability that the true geno-
type is g = AaAx and the two allelic copies are IBD. If w;, =
AgAq is observed, then the true genotype g; can be a homo-
zygote AgAy or a heterozygote AgAg, withh € {1, 2, ..., K}
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and h # k. Each term in the summation in Equation 8 is
a joint probability P(gy, si», wi|'¥). To calculate this quantity,
P(si| p) and P(gy|si, ®) are obtained using Equations 3 and 4,
respectively. The values of P(w;, = AgAw | gir» Vic) are given by
Table 2 and can be obtained using Equation 2. The resulting
probabilities P(g;, si, wi| V) appear in Table 3. Therefore,
for example,

2(8ie = A, Sic = Lwie = AgAge, V)
_P(gie= AtkArk sie = 1, wie = AgAw|V)
Engsl P(gie sit; Wie = AgcAac|P)
Pd7rk( - 'Vir)
P)bE](1—73) + Xy 2(1
hZk

B [Pd’fk +(1- = P)bacbanYie(1 — vie) 9
Py (1= 7g)
V5] (1= 72) +2(1 = p)da (1
_ p(1+ %)
p(L+ i) + (1= p)(2vi —

- [Pd’rk +(1-p = bu)Vie(L = vie)

SaYie + b))

Table 4 Posterior probabilities of true genotypes g; at a single
locus ¢ of an individual i

Observed True
genotype genotype Posterior probability
Wi Gie P(gidwi, W)
AdsAn AdAen 1
Others 0
2(1 = p)beYie
AuA AuA
o e p(1+ %) + (1= p) (27— bucvie + du)
v o+ (1= p)ul(1 + %)
p(1+ i) + (1= p)(2vie — buYie + du)
XX AsAn 201 — p)¢fk¢l’h
AaAwk pdy + (1 - P)¢f2k

The calculation of P(g; | w,, W) is based on Equation 10. h # k.



Table 5 Posterior probabilities of the IBD state s; at a single locus ¢
of an individual i

Observed IBD
genotype state Posterior probability
Wi, Sie P(sidwi, ¥)
AxAn 1 0
0 1
P(1 + 71()
AuA 1
e p(1+ i) + (1 = p)2vie — PaVie + bu)
0 (1 =p)2vie — buVie + Puc)
p(1+7vi) + (1 = p)2vie — baVie + du)
XX 1 p
0 1—-p

The calculation of P(s; | wy, ) is based on Equation 11. h # k.

With the values of P(gy, Si|wi = AsAa, V), the posterior
probabilities of g; and s; can be easily calculated with Equa-
tions 10 and 11, respectively. Results appear in Tables 4 and 5:

1

P(gielwie, ¥) = Z P(8ic: sielwie, V), (10)
si=0
1I|W1€7 Zpgw, l!|Wll7 ) (11)
8ic

The posterior probabilities of d;, given w;, and ¥ appear in
Table 6, and they are obtained by

P(die, wie| W) = D" P(dip, Wir, Zie|P)

8ie

= > P(die, wiclgie, Vie) P (&ic| P, p)
8ie

= > P(wielgie, die) P(dic| Vi) P (&it| P, p)-
8ic

(13)

Therefore, E[ng|W, V1, Bld;.|W, V1, E[d,|W, ¥], and
E[s|W, W] are calculated as

Elng|W, ¥] = Z Z Zf (A |ie sie) P (&ics Sielwie, V),

i=1 & s¢=0
a4
L 2 Vi
Bld: (W, W] =" > diP(di|wi, W) 25, (15)
=1 dz=0 Yie
N 2 v
[ [‘W ‘I’ Z Z dlfP lf|Wlfa )7[7 (16)
i=1 dy=0 Yie
N L 1
Elsw, ¥ =>" %" Z sicP (sic|wie, ¥ an

i=1 (=1 s

in which f(Ax| g i) indicates the number of independent
copies of allele Ay in genotype g;, given the IBD state s;, as
defined below:

d P(diﬁwl['q’) P(di{,Wi(PI’) 2 lf 8ie = A/kAFk and Sie = 0
A T T et P gy = 8 Aede and s 1 g
U d=0" \%it; Wie tk |8ics Sie) = .
‘ o 1 if g = AgAn (h #k)
Here, 0 otherwise.
Table 6 Posterior probabilities of the number of dropouts d;, at a single locus ¢ of an individual i
Observed
genotype No. dropouts Joint probability Posterior probability
Wi o P(di widP) P(didwi, P)
AsAdn 0 2(1 P)d’(kd’(’h“ - 7/()2 1
1 0 0
2 0 0
o+ (1= p)bu](1 = vi)
AdA 0 lp+ (1 — pdulda(l — vi)? !
i P+ U= Pl = e P70+ (1= D)@ v+ ba)
2
1 2¢avidl — vi) £
Pucri v p(1+ i) + (1 = p)(2vie — baie + bu)
2 0 0
XX 0 0 0
1 0 0
2 yizf 1
The calculations are based on Equations 12 and 13. h # k.
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In the M-step of the EM algorithm, we update the
estimation of parameters ¥ by

_ E[nlk|wa ‘If]

I}?:lE[n(h |Wa \P}

b for k=1,2,...,K, and

¢(=1,2,...,L, (19)
_ E[d.[W, V]

Vi, oL fori=1,2,...,N,

(20)

V= oN for ¢=1,2,...,L,

(2D

E[s|W, W]
p = ZSIW, ]

NL (22)

Justification of these expressions appears in Appendix A.
With the updated parameter values, we calculate the likeli-
hood P(W|W¥) using Equation 7 and then repeat the E-step
and the M-step. The likelihood is guaranteed to increase
after each iteration in this EM process and will converge
to a maximum (e.g., Lange 2002); the estimated parameter
values are MLEs if this maximum is the global maximum. To
lower the chance of convergence only to a local maximum,
we repeat our EM algorithm with 100 sets of initial values of
V. For each set, the allele frequencies, ® = {¢pg: k = 1,
2,...,K;¢=1,2,..., L}, are sampled independently at dif-
ferent loci from Dirichlet distributions, Dir(1x), 1(2), ..., 1))
for locus ¢; the sample-specific dropout rates y; (i = 1,
2,...,N), the locus-specific dropout rates y, (¢ = 1, 2, ...,
L), and the inbreeding coefficient p are independently sam-
pled from the uniform distribution U(0, 1). An EM replicate
is considered to be “converged” if the increase of the log-
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likelihood log1oP(W| W) in one iteration is <10~4; when this
condition is met, we terminate the iteration process. The
parameter values that generate the highest likelihood
among the 100 EM replicates are chosen as our estimates.

Imputation Procedure

To correct the bias caused by allelic dropout in estimating
the observed heterozygosity and other quantities, we create
100 imputed data sets by drawing genotypes from the
posterior probability P(G|W, W) = P(G|W, ®, T, p), in which
@, ', and p are the MLEs of @, I, and p, and P(G|W, V) is
specified in Equation 10 and Table 4. In using this strategy,
we not only impute the missing genotypes but also replace
some of the observed homozygous genotypes with hetero-
zygotes, as it is possible that observed homozygous geno-
types represent false homozygotes resulting from allelic
dropout. This imputation strategy accounts for the genotype
uncertainty that allelic dropout introduces.

Application to Native American Data

We found that in sequential observations of the likelihood of
the estimated parameter values, our EM algorithm con-
verged quickly for all 100 sets of initial values for @, I', and
p (results not shown). For each of the 100 sets, the EM
algorithm reached the convergence criterion within 300 iter-
ations. The difference in the estimated parameter values
among the 100 replicates was minimal after convergence,
indicating that the method was not sensitive to the initial
values (results not shown).

Histograms of the estimated sample-specific dropout
rates ¥; and the estimated locus-specific dropout rates ¥,
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appear in Figure 4. The mean of the ¥; is 0.094, and for
most individuals, %; < 0.1 (Figure 4A). The maximum ¥;, is
0.405; this high rate indicates that some samples have low
quantity or quality and is compatible with the fact that some
of the samples are relatively old. Samples from some pop-
ulations, such as Arctic/Subarctic 1 and Central Mexico 2,
have higher overall quality, as reflected in low estimated
sample-specific dropout rates.

Compared to the sample-specific dropout rates, the es-
timated locus-specific dropout rates are much smaller, with
mean 0.036 and maximum 0.160 (Figure 4B). The large
spread of the %; compared to the small values of the ¥, is
consistent with the observation that the positive correlation
between missing data and homozygotes is much greater
across individuals than across loci (Figure 2).

The estimated inbreeding coefficient is p = 0, the mini-
mum possible value, smaller than the positive values typical
of human populations. Several explanations could poten-
tially explain the estimate of 0. First, our samples might be
close to HWE. Second, our method might systematically un-
derestimate the inbreeding coefficient, a hypothesis that we
test below using simulations. Third, genotyping errors other
than allelic dropout, such as genotype miscalling, can poten-
tially also contribute to the underestimation. We use simula-
tions to examine this hypothesis as well.

In a given individual, the L loci can be divided into three
classes according to the observed genotypes: npom homozy-
gous loci, nye. heterozygous loci, and L — npem — Npee loci that
have both allelic copies missing. For each individual, we
calculated the observed heterozygosity as H, = npey/ (Mhom +
Nher), as shown by gray symbols in Figure 4C. High varia-
tion exists in H, for different individuals, and the mean H,
across individuals is 0.590 (standard deviation = 0.137).
The observed heterozygosities are negatively correlated
with the MLEs of the sample-specific dropout rates (Sup-
porting Information, Figure S1), as is expected from the
underestimation of heterozygosity caused by allelic dropout.
Averaging the estimated observed heterozygosity over 100
imputed data sets, we see that variation across individuals
in estimated heterozygosities is reduced compared to the
values estimated directly from the observed genotypes, and

the mean heterozygosity increases to 0.730 (standard de-
viation = 0.035, Figure 4C). The estimated individual het-
erozygosity does not vary greatly across different imputed
data sets (standard deviation = 0.014, averaging across all
individuals).

Simulations

We perform three sets of simulations to examine the per-
formance of our method. First, we consider simulations that
assume that the model assumptions hold, using as true values
the estimated parameter values from the Native American
data set (experiment 1). Next, we consider simulations that
do not satisfy the model assumptions, by inclusion of popu-
lation structure (experiment 2) and genotyping errors not
resulting from allelic dropout (experiment 3). These latter
simulations examine the robustness of the estimation pro-
cedure to model violations.

Simulation methods

To generate simulated allelic dropout rates for use in experi-
ments 2 and 3, we first fit the distributions of the estimated
sample-specific and locus-specific dropout rates from the Native
American data, using beta distributions Beta(«, 8). Denote the
sample mean and sample variance of the MLEs of the sample-
specific (or locus-specific) dropout rates as m and v, respectively.
We estimated « and B using the method of moments, with
a=mm(l—-m)/v—1] and B=(1—m)[m(1—m)/v—1]
(Casella and Berger 2001). The estimated sample-specific
and locus-specific dropout rates approximately follow Beta
(0.55, 5.30) and Beta(1.00, 27.00), respectively (Figure 4,
A and B).

Experiment 1. Native American data: We simulate data
under model assumptions 2-5 with parameter values esti-
mated from the actual Native American data (results from
Application to Native American Data). The simulation pro-
cedure appears in Figure 5A. Suppose @, I, and p are the
MLEs of @, I, and p estimated from the data. First, we draw
the true genotypes G, using probabilities specified by Equa-
tion 5, assuming that the allele frequencies are given by &
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and the inbreeding coefficient by p. Next, we simulate the
dropout state Z by randomly dropping out copies with prob-
ability specified by Equation 1, independently across alleles,
loci, and individuals. Using G and Z, we then obtain our
simulated observed genotypes W. This simulation approach
does not guarantee that model assumption 1 will hold, be-
cause some alleles might not be observed owing either to
allelic dropout or to a stochastic failure to be drawn in the
simulation. We simulate one set of genotypes at L = 343 loci
for N = 152 individuals.

Experiment 2. Data with population structure: To test our
method in a setting in which genotypes are taken from
a structured population, we simulate data for two subpo-
pulations with equal sample size (N; = N, = 76), genotyped
at the same set of loci (I = 343). We then apply our method
on the combined data set, disregarding the population struc-
ture. The procedure appears in Figure 5B.

First, we use the F model (Falush et al. 2003) to generate
allele frequencies for two populations that have undergone
a specified level of divergence from a common ancestral
population. We use the MLEs of the allele frequencies of
the 343 loci in the Native American data (results from Ap-
plication to Native American Data) as the allele frequencies
of the ancestral population, ®* = ®. Denote the estimated
allele frequencies at locus ¢ by a vector ¢,. Under the F
model, allele frequencies of locus ¢ for population 1, cb[(,l),
and for population 2, 4)22), are independently sampled from
the Dirichlet distribution Dir(((1 — F)/F)¢,), in which F is a
parameter constant across loci that describes the divergence
of the descendant populations from the ancestral popula-
tion. F can differ for populations 1 and 2, but for simplicity,
we set F to the same value for both populations. Using
Equations B1 and B2 in Appendix B and the independence
of d)é,i) and ¢§f ), the squared difference of allele frequencies
betyveen tbe two populations satisfies E[(d)ﬁ,}) — ¢§f))2} =
2F ¢y (1 — ¢y ), which is linearly proportional to F. In the
limit as F — 0, we get (bé_l) = (;')5_2) = ¢, for each ¢, so that
no divergence exists between either descendant population
and the ancestral population.

We choose six values of F (0, 0.04, 0.08, 0.12, 0.16, and
0.20) in different simulations. For each value, we first gen-
erate allele frequencies, ® and ®®, at all 343 loci for
populations 1 and 2. Next, we draw genotypes separately
for each population according to the genotype frequencies in
Equation 5, with the same value of the inbreeding coeffi-
cient p. We consider 16 values for p, ranging from 0 to 0.15
in increments of 0.01. In total, we generate 6 X 16 = 96 sets
of simulated genotypes with different combinations of set-
tings for F and p (although for ease of presentation, some
plots show only 36 of the 96 cases). Finally, we simulate
allelic dropout on each of the simulated genotype data sets
using vy;. and vy, sampled independently from a Beta(w, B)
distribution, in which « = 0.55 and 8 = 5.30 are estimated
from the MLEs of sample-specific dropout rates of the Native
American data (Figure 4A). We do not use the estimated «

660 C. Wang, K. B. Schroeder, and N. A. Rosenberg

and B from the MLEs of locus-specific dropout rates because
these MLEs lie in a relatively small range (Figure 4B) that
would not permit simulation of high dropout rates for testing
our method. Instead, use of the same beta distribution esti-
mated from the sample-specific dropout rates produces
a greater spread in the values of the simulated true locus-
specific dropout rates, providing a more complete evaluation.

Experiment 3. Data with other genotyping errors: In
our third experiment, we simulate data with stochastic
genotyping errors other than allelic dropout. The simulation
procedure appears in Figure 5C. Each simulated data set
contains a single population of N = 152 individuals geno-
typed for L = 343 loci. True genotypes are drawn with
probabilities calculated from Equation 5, with allele fre-
quencies ® chosen as the maximum-likelihood estimated
frequencies from the Native American data, and the inbreed-
ing coefficient p ranging from O to 0.15 incremented in units
of 0.01 for different simulated data sets. Next, we simulate
genotyping errors using a simple error model, in which at
a K-allele locus in the simulated true genotypes, any allele
can be mistakenly assigned as any one of the other K — 1
alleles, each with the same probability of e/(K — 1). The
parameter e specifies the overall error rate from sources other
than allelic dropout, such as genotype miscalling and data
entry errors (e.g., Wang 2004; Johnson and Haydon 2007).
We consider six values for e (0, 0.02, 0.04, 0.06, 0.08, and
0.10), such that we simulate 96 (= 6 x 16) data sets with
different combinations of e and p. In the last step, as in
experiment 2, we simulate allelic dropout in each data set
with both sample-specific and locus-specific dropout rates
independently sampled from a Beta(0.55, 5.30) distribution.

Simulation results

Experiment 1. Native American data: Because we simulate
under assumptions 2-5 with parameter values estimated
from the real data, we expect that if our model is correctly
specified, the simulated data can capture patterns observed
in the real data. By comparing plots of the fraction of missing
data vs. the fraction of homozygotes in the real and simu-
lated data (Figures 2 and 6), we can see that our simulated
data effectively capture the observed positive correlation
across individuals and the lack of correlation across loci ob-
served from the real data. For the simulated data set, the
Pearson correlation coefficient between the fraction of miss-
ing genotypes and the fraction of homozygotes is r = 0.900
(P < 0.0001) across individuals and r = 0.143 (P = 0.0045)
across loci. We can also compare the observed heterozygos-
ity for the simulated data (purple symbols in Figure 7C) and
the real data (gray symbols in Figure 4C). The simulated
data again reproduce the pattern of variation among indi-
vidual heterozygosities observed in the real data. These two
empirical comparisons display the similarity between the re-
al data and the data simulated on the basis of estimates
obtained from the real data and thus support the validity
of the allelic dropout mechanism specified in our model.
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We can formally compare the estimated dropout rates for
the simulation with the true dropout rates I' specified by the
MLEs of the dropout rates for the Native American data.
Figure 7A shows that our method accurately estimates the
sample-specific dropout rates for all 152 individuals (mean
squared error 2.6 x 10~%). The estimated locus-specific drop-

Figure 6 Fraction of observed missing data vs. fraction of
observed homozygotes for one simulated data set. (A)
Each symbol represents an individual with fraction x of
its nonmissing loci observed as homozygous and fraction
y of its total loci observed to have both copies missing. The
Pearson correlation between X and Y is r = 0.900 (P <
0.0001, by 10,000 permutations of X while fixing ¥). (B)
Each point represents a locus at which fraction x of indi-
viduals with nonmissing genotypes are observed to be
homozygotes and fraction y of all individuals are observed
to have both copies missing. r = 0.143 (P = 0.0045).

out rates are also close to their true values, but with a slightly
higher mean squared error of 5.2 x 10~# (Figure 7B). This
difference between the estimation of sample-specific drop-
out rates and that of locus-specific dropout rates can be
explained by the fact that the number of loci (L = 343) is
more than twice the number of individuals (N = 152).
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Figure 7 Estimated dropout rates and corrected hetero-
zygosity for the data simulated on the basis of the Native
American data set. (A) Comparison of the estimated sample-
specific dropout rates and the assumed true sample-
specific dropout rates. (B) Comparison of the estimated
locus-specific dropout rates and the assumed true locus-
specific dropout rates. (C) Individual heterozygosities in
the simulated data. True values of heterozygosity are in-
dicated by green symbols. With allelic dropout applied to
true genotypes to generate “observed” data, the uncor-
rected values of heterozygosity are colored purple. Means
of corrected heterozygosities across 100 imputed data sets
are colored black. Symbols follow Figure 6.
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Figure 8 Estimated dropout rates and inbreeding coefficients for simulated data with population structure. (A) Comparison of the estimated sample-
specific dropout rates and the assumed true sample-specific dropout rates. (B) Mean squared errors across all the estimated sample-specific dropout
rates for each of the 36 data sets shown in A. (C) Comparison of the estimated locus-specific dropout rates and the assumed true locus-specific dropout
rates. (D) Mean squared errors across all the estimated locus-specific dropout rates for each of the 36 data sets shown in C. (E) Comparison of the
estimated inbreeding coefficient and the assumed true inbreeding coefficient, in which each point corresponds to one of 96 simulated data sets. The 36
solid symbols correspond to the simulated data sets shown in A-D and F. Dashed lines indicate the effective inbreeding coefficients of structured
populations under the F model (Equation B11). (F) Overestimation of the inbreeding coefficient, calculated by subtracting the assumed true inbreeding

coefficient from the estimated inbreeding coefficient, or p — p.

Consequently, more information is available for estimating
a sample-specific rather than a locus-specific dropout rate.
For the inbreeding coefficient p, our estimated value is 1.7 x
107>, close to the true value of 0 that we used to generate
the simulated genotypes.

Finally, in Figure 7C, we can see that our method suc-
cessfully corrects the bias in estimating heterozygosity from
the simulated data. The true observed heterozygosity is cal-
culated using the true genotypes G and has mean 0.716,
averaging across all individuals. The mean estimated ob-
served heterozygosity, obtained from the observed uncor-
rected genotypes W, is 0.565, lower than the true value.
With imputed data sets, we obtain corrected heterozygosi-
ties that are close to the true values. The mean and standard
deviation of the corrected heterozygosities, evaluated from
100 imputed data sets and averaged across individuals, are
0.715 and 0.014, respectively. The low standard deviation
across different imputed data sets indicates that our impu-
tation strategy is relatively robust in correcting the underes-
timation of observed heterozygosity.
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Experiment 2. Data with population structure: To further
test the robustness of our method, we applied our method to
96 simulated data sets with different levels of population
structure (parameterized by F) and inbreeding (parameter-
ized by p). In Figure 8, A and C, we compare the estimated
dropout rates to their true values. Considering the 36 sim-
ulated data sets that are displayed, our method accurately
estimates both the sample-specific and the locus-specific drop-
out rates. The accuracy of our estimates is then quantified by
mean squared errors for each simulated data set separately, as
displayed in Figure 8, B and D. The performance in estimating
the sample-specific dropout rate is not greatly affected by
either the degree of population structure or the level of in-
breeding (Figure 8B). By contrast, while the mean squared
error of the estimated locus-specific dropout rates is roughly
constant for different levels of inbreeding, it increases with
the degree of population structure (Figure 8D).

One possible explanation for this observation is that the
accuracy of allelic dropout estimates is closely related to the
accuracy of the estimated allele frequencies. This accuracy



may decrease as the level of population structure increases,
because we do not incorporate population structure in our
model for estimation. The estimation of locus-specific dropout
rates is more sensitive to inaccurate estimates of allele fre-
quencies because the estimated accuracy of a locus-specific
rate relies on the estimation of allele frequencies at that
particular locus. By contrast, a sample-specific dropout rate is
obtained by averaging the expected number of sample-
specific dropouts across all loci in an individual and is less
dependent on the accuracy of estimated allele frequencies at
any particular locus. Therefore, sample-specific dropout rate
estimates are less sensitive to population structure than are
locus-specific estimates. When F = 0, with no population
structure, the difference between the mean squared error
for the sample-specific rates and that for the locus-specific
rates arises simply from differences in the numbers of loci
and individuals, as discussed for experiment 1.

Figure 8E shows the estimated inbreeding coefficient for
all 96 simulated data sets, compared to the simulated true
inbreeding coefficient in the subpopulations. With F = 0,
a scenario for which no population structure exists and the
data are generated under model assumptions 2-5, our
method tends to slightly underestimate the inbreeding co-
efficient. As F increases, the estimate becomes greater than
the simulated inbreeding coefficient (Figure 8F). This result
is consistent with our expectation, because according to the
Wahlund effect (e.g., Hartl and Clark 1997), a pooled pop-
ulation consisting of two subpopulations is expected to have
more homozygous genotypes than an unstructured popula-
tion, resulting in a pattern similar to that caused by a higher
level of inbreeding within the unstructured population. In-
deed, with no allelic dropout, a structured population under
the F model has identical expected allele frequencies and
genotype frequencies to those of an unstructured population
with a higher inbreeding coefficient p* = p + (1 — p)[F/
(2 — F)] (Appendix B). By comparing our estimated inbreed-
ing coefficient p with the “effective inbreeding coefficient”
p* (dashed lines in Figure 8E), we find that most of our
estimated inbreeding coefficients are slightly smaller than
the corresponding p*, indicating that the MLE of p is biased
downward. It is worth noting that with a single parameter p,
we capture the deviation of genotype frequencies from HWE
introduced by population structure, thereby obtaining accu-
rate estimated allelic dropout rates without explicitly incor-
porating population structure in our model.

We applied the imputation procedure to correct the bias
in estimating heterozygosity for each of the 96 simulated
data sets. Similarly to our application in experiment 1, we
calculated the uncorrected and true heterozygosities for
each individual from the simulated observed genotypes W
and the simulated true genotypes G, respectively. The cor-
rected heterozygosity was averaged across 100 imputed
data sets for each simulated data set. Results for 36 simu-
lated data sets appear in Figure S2, in which heterozygosi-
ties were averaged across all individuals in each data set.
Our results show a significant improvement of the corrected

heterozygosity over the uncorrected heterozygosity in all
simulations, in that the corrected heterozygosity is consid-
erably closer to the true heterozygosity. This improvement is
fairly robust to the presence of population structure.

Experiment 3. Data with other genotyping errors: This set
of simulations tested our method at different levels of
genotyping error from sources other than allelic dropout.
In all simulated data sets, with genotyping error ranging
from O to 10% and p ranging from 0 to 0.15, our method
is successful in estimating both sample-specific and locus-
specific dropout rates (Figure 9, A and C). The estimation
accuracy of dropout rates is not strongly affected by the
genotyping error rate (Figure 9, B and D). We can again
see that a smaller number of individuals than loci has led
to higher mean squared error for estimated locus-specific
rates (Figure 9D) than for sample-specific rates (Figure 9B).

Similar to the F = 0 case in our simulations with population
structure, the simulated data sets with no genotyping error (e =
0) are generated under model assumptions 2-5. Consistent
with the results for F = 0, our method slightly underestimates
the inbreeding coefficient p for most simulated data sets with
e = 0. As genotyping error increases, the underestimation also
increases (Figure 9, E and F). This result can be explained by
noting that the simulated genotyping error, which changes the
allele frequencies only slightly, tends to create false heterozy-
gotes more frequently than false homozygotes. Therefore, the
observed heterozygosity is increased while the expected hetero-
zygosity changes little, leading to a decrease in the estimated
inbreeding coefficient. Although our estimation of the inbreed-
ing coefficient p becomes less accurate when the genotyping
error rate is higher, the underestimation of p does not prevent
the method from accurately estimating allelic dropout rates.

For the heterozygosity, the corrected values obtained using
our imputation strategy are closer to the true values than are
the uncorrected values directly obtained from the observed
genotypes (Figure S3). However, as the genotyping error rate
e increases, our method starts to overcorrect the downward
bias in estimating the observed heterozygosity, and the cor-
rected values exceed the true values. Similar to our explana-
tion for the underestimation of the inbreeding coefficient, this
overcorrection is introduced by the simulated genotyping er-
ror, which creates an excess of false heterozygotes. This ex-
cess is in turn incorporated into the corrected estimates of
heterozygosity, because we do not model genotyping errors
other than those due to allelic dropout.

Discussion

In this study, we have developed a maximum-likelihood
approach to jointly estimate sample-specific dropout rates,
locus-specific dropout rates, allele frequencies, and the in-
breeding coefficient from only one nonreplicated set of mi-
crosatellite genotypes. Our algorithm can accurately recover
the allelic dropout parameters, and an imputation strategy
using the method provides an alternative to ignoring high
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Figure 9 Estimated dropout rates and inbreeding coefficients for simulated data with other genotyping errors. (A) Comparison of the estimated
sample-specific dropout rates and the assumed true sample-specific dropout rates. (B) Mean squared errors across all the estimated sample-specific
dropout rates for each of the 36 data sets shown in A. (C) Comparison of the estimated locus-specific dropout rates and the assumed true locus-specific
dropout rates. (D) Mean squared errors across all the estimated locus-specific dropout rates for each of the 36 data sets shown in C. (E) Comparison of
the estimated inbreeding coefficient and the assumed true inbreeding coefficient, in which each point corresponds to one of 96 simulated data sets. The
36 solid symbols correspond to the simulated data sets shown in A-D and F. (F) Overestimation of the inbreeding coefficient, calculated by subtracting
the assumed true inbreeding coefficient from the estimated inbreeding coefficient, or p — p.

empirical missing data rates or excluding samples and loci
with large amounts of missing data. Investigators can then
use the imputed data in subsequent analyses, such as in
studies of genetic diversity or population structure, or in
software that disallows missing values in the input data. We
have demonstrated our approach using extensive analyses of
an empirical data set and data sets simulated using parameter
values chosen on the basis of the empirical example.

We have found that our method works well on simulated
data. In particular, it performs well in estimating the sample-
specific dropout rates v;. and locus-specific dropout rates vy.,.
Further, in the examples we have considered, it is reasonably
robust to violations of the model assumptions owing to the
existence of population structure or to sources of genotyping
error other than allelic dropout. This robustness arises partly
from the inclusion of the inbreeding coefficient p in our
model, which enables us to capture the deviation from
HWE caused by multiple factors, such as true inbreeding,
population structure, and genotyping errors. Because the
various sources of deviation from HWE are incorporated into
the single parameter p, the estimation of p itself is more
sensitive to violation of model assumptions; therefore, it is
important to be careful when interpreting the estimated
value of p, as it may reflect phenomena other than inbreed-
ing. When data are simulated under our model, such as in
the cases of F = 0 and e = 0, our method tends to slightly
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underestimate p (Figures 8E and 9E), indicating that our
MLEs are biased, at least for the inbreeding coefficient.

We can use simulation approaches to further explore the
statistical properties of our estimates. To examine the con-
sistency of the estimators, we performed two additional sets
of simulations, in which we generated genotype data under
our model with either different numbers of individuals N or
different numbers of loci L (Appendix C). When L is fixed,
although estimates of the sample-specific dropout rates vy;.
are not affected by the value of N, our estimates of the
locus-specific dropout rates ., and the inbreeding coefficient
p become closer to the true values as N increases (Figure S4).
When N is sufficiently large (e.g., N = 1600), the estimates of
v.¢and p are almost identical to the true values. If we instead
fix N and increase L, then the estimates of y;. and p eventually
approach the true values, while the estimates of y, remain
unaffected (Figure S5). These results suggest, without a strict
analytical proof, that our MLEs of the dropout rates and in-
breeding coefficient are likely to be consistent.

For the Native American data, we can compare the es-
timated heterozygosities under our model with other data on
similar populations. Wang et al. (2007) studied microsatellites
in 29 Native American populations, including 8 populations
from regions that overlap those considered in our data. We
reanalyzed these populations, 3 from Canada and 5 from
Mexico, by calculating observed heterozygosity H, from the
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same 343 loci as were genotyped in our data. We obtained
a mean H, of 0.670 with standard deviation 0.051 across 176
individuals in the pooled set of 8 populations. In comparison,
mean H, across our 152 Native American samples is 0.590
(standard deviation = 0.137) before correcting for allelic
dropout, substantially lower than in Wang et al. (2007),
and it is 0.730 (standard deviation = 0.035) after correcting
for allelic dropout, higher than in Wang et al. (2007). Several
possible reasons can explain the imperfect agreement be-
tween our corrected heterozygosity and the estimate based
on the Wang et al. (2007) data. First, the sets of populations
might differ in such factors as the extent of European admix-
ture, so that they might truly differ in underlying heterozy-
gosity. Second, the Wang et al. (2007) data might have some
allelic dropout as well, so that our H, estimates from those
data underestimate the true values. Third, our method might
have overcorrected the underestimation of H,; our simula-
tions show that because we do not model genotyping errors
from sources other than allelic dropout, the existence of such
errors can lead to overestimation of H, (Figure S3). It is also
possible that missing genotypes caused by factors other than
allelic dropout could have been erroneously attributed to al-
lelic dropout, leading to overestimation of dropout rates and
hence to overcorrection of H,,.

Our model assumes that all individuals are sampled from
the same population with one set of allele frequencies and
that inbreeding is constant across individuals and loci. We
applied this assumption to the whole Native American data
set as an approximation. However, evidence of population
structure can be found by applying multidimensional scaling
analysis to the Native American samples. As shown in Figure
S6, individuals from different populations tend to form dif-
ferent clusters, indicating that underlying allele frequencies
and levels of inbreeding differ among populations. Although
our simulations have found that estimation of allelic dropout
rates is robust to the existence of population structure, esti-
mation of allele frequencies and the inbreeding coefficient
can become less accurate in structured populations. It would
therefore have been preferable in our analysis to apply our
method on each population instead of on the pooled data
set; however, such an approach was impractical owing to the
small sample sizes in individual populations. To address this
problem, it might be possible to directly incorporate popu-
lation structure into our model (e.g., Falush et al. 2003),
thereby enabling allele frequencies and inbreeding coeffi-
cients to differ across the subpopulations in a structured
data set. Further, because samples from the same population
are typically collected and genotyped as a group, full mod-
eling of the population structure might allow for a correla-
tion in dropout rates across individuals within a population.

An additional limitation of our approach is that during
data analysis, we do not take into account the uncertainty
inherent in estimating parameters. We first obtain the MLEs
of allele frequencies ®, allelic dropout rates I, and the in-
breeding coefficient p and then create imputed data sets by

drawing genotypes using ®, I', and p. This procedure is

“improper” because it does not propagate the uncertainty
inherent in parameter estimation (Little and Rubin 2002).
To obtain “proper” estimates, instead of using an EM algo-
rithm to find the MLEs of the parameters, we could poten-
tially use a Gibbs sampler or other Bayesian sampling
methods to sample parameter values and then create im-
puted data sets using these sampled parameter sets. In such
approaches, parameters sampled from their underlying dis-
tributions would be used for different imputations, instead
of using the same MLEs for all imputations.

Finally, we have not compared our approach with methods
that rely on replicate genotypes. While we expect that rep-
licate genotypes will usually lead to more accurate estimates
of model parameters, our method provides a general ap-
proach that is relatively flexible and accurate in the case that
replicates cannot be obtained. Compared with existing mod-
els that assume HWE (e.g., Miller et al. 2002; Johnson and
Haydon 2007), our model uses a more general assumption of
inbreeding, and we also incorporate both sample-specific and
locus-specific dropout rates. The general model increases the
applicability of our method for analyzing diverse genotype
data sets, such as those that have significant dropout caused
by locus-specific factors (e.g., Buchan et al. 2005). It is worth
noting that HWE is the special case of p = 0 in our inbreeding
model; when it is sensible to assume HWE, we can simply
initiate the EM algorithm with a value of p = 0. This choice
restricts the search for MLEs to the p = 0 parameter subspace,
because Equation 22 stays fixed at O in each EM iteration.
Similarly, if we prefer to consider only sample-specific drop-
out rates (or only locus-specific dropout rates), then we can
simply set the initial values of y, to 0 for all loci (or initial
values of vy;. to O for all individuals). These choices also re-
strict the search to subspaces of the full parameter space. We
have implemented these options in our software program
MicroDrop, which provides flexibility for users to analyze
their data with a variety of different assumptions.
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The main text describes an EM algorithm for estimating parameters in our model. Here, we provide the derivation of
Equations 19-22 for parameter updates in each EM iteration. We start from a general description of the EM algorithm (e.g.,
Casella and Berger 2001; Lange 2002).

To obtain the MLEs, our goal is to maximize the likelihood £ = P(W|W). Because £ is difficult to maximize directly, we
use an EM algorithm to replace the maximization of £ with a series of simpler maximizations. We introduce three sets of
latent variables: the true genotypes G, IBD states S, and dropout states Z, each representing an N x L matrix. Instead of
directly working on likelihood £, the EM algorithm starts with a set of initial values arbitrarily chosen for ¥ and, in each of a
series of iterations, maximizes the Q function defined by Equation A1. This iterative maximization is easier and sequentially
increases the value of £ (e.g., Lange 2002), so that the parameters eventually converge to values at a maximum of L.

In the E-step of iteration t + 1, we want to calculate the following expectation:

QW) =Eq g 5y yolln P(W,G,5,Z¥)) (A1)
This computation is equivalent to calculating E[G|W, ¥©®], E[S|W, ¥®], and E[Z|W, ¥®] and then inserting these
quantities into the expression for In P(W, G, S, Z| V), such that Equation Al is a function of parameters ¥ = {®, T, p}.
In the M-step, the parameters are updated with values W¢+1 that maximize Equation Al. The explicit expression for
Equation A1 is cumbersome, but given the dependency described in Figure 3, we can greatly simplify our EM algorithm
by a decomposition of P(W, G, S, Z|¥):
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P(W,G,S,Z|¥) = P(G,S|¥)P(Z|G,S, ¥)P(W|Z,G,S, V)
=P(G,S|®,p)P(Z|T')P(W|Z, G) (A2)
«P(G,S|®,p)P(Z|T').

Equation A2 implies that we can maximize B siw.wo [In P(G,S|®,p)] and Bz wo [In P(Z|I')] separately to maximize
Q(¥|¥®) (Equation Al). Further, it can be shown that ng, d;, d,, and s are sufficient statistics for ¢u, Vi, v and
p, respectively. Therefore, in the E-step, we can simply calculate the expectations of these four sets of statistics (Equations
14-17) rather than evaluating the full matrices E[G|W, V], E[S|W, V1, E[Z|W, ¥].

In the M-step, the dropout rates I' are updated by maximizing By o [ln P(Z|I')], resulting in Equations 20 and 21,
quantities that can be obtained intuitively by considering each dropout as an independent Bernoulli trial. The allele frequencies
® and the inbreeding coefficient p are updated by maximizing B siw.wo [In P(G, S|P, p)], resulting in Equations 19 and 22 after
some algebra. As an example, we show the derivation of Equations 19 and 22 for a single biallelic locus (L = 1, K, = 2).

Denote the alleles by A; and A, and the corresponding allele frequencies by ¢; and ¢», with ¢ + ¢ = 1. Suppose that in
the whole data set, X ,, individuals have true genotype ApAx (1 =h <k = 2) and IBD state u (u = 0 or 1). Then P(G, S| ®, p)
can be written as

e

2 1
F(G,S|®,p) = kH [T [P(ApAg, u|®, p)J ™

h=1 u=0

=h
= [(1=p)3] " (pd1 " [(1=p) 3] ™ (p2) ! [(1—p) 261 o] > (A3)

— 2X12,0pX11;[+X22.1 (1 _p)X11.0+X22,o+X12_0 ¢§-X11.0+X11,1 +X12,0 ¢§X22.0+X22,1 +X120
xp*(1=p)" "7 (1—¢1)"™,

in which s is the total number of genotypes that are IBD (u = 1), and n; and n, are the numbers of independent copies for
alleles A; and A, respectively. We can see from Equation A3 that s is a sufficient statistic for p, and n; and n, are sufficient
statistics for ®. Following Equation A3, Eg sw.wo [In P(G,S|®,p)] can be expressed as

E In 2(G,S|®,p)] =c+E [s|w, qf@} In p+ (N ~E [s|w, qfﬂ )1n(1 ~p)

+ E[n1|W, \I’(t)}ln b1+ E{nz\W, ‘I’(t)}ln(l —¢1),

ol
G,siw,p® (A4)

in which ¢ = E[x;2,0| W, ¥©]ln 2 is a constant with respect to parameters p and ®. To maximize EGS\WAI'(” In P(G,S|P,p), we
can solve the following equations:

5 E[s\w, \If(t)} —Np
5 Bswaelin P(G8@.p)] =—— 0= =0 (A5)
o E {nl |W, \I’([)} E [T12|W7 ‘I’(t)}

%EG,S\W,\I'(‘) (In (G, S|®,p)] = . B RS 0. (A6)

The solutions for the case of L = 1 and K, = 2 agree with Equations 19 and 22:

E[nl w, xp(ﬂ
"5 [n1|W, xlf“)} +E [n2|w, qfﬂ A7

E {S‘W, ‘I'“)}

N (A8)

p =

Appendix B: Inbreeding and the F Model

In the presence of population structure, the proportion of homozygotes in the pooled population exceeds that of an
unstructured population, leading to a deviation from Hardy-Weinberg equilibrium similar to inbreeding. Therefore, we
expect our algorithm to overestimate the inbreeding coefficient when population structure in the genotype data is not taken
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into account for the estimation. In this section, we derive an expression for this overestimation in a structured population
under the F model (Falush et al. 2003). We show that a structured population with two subpopulations, whose inbreeding
coefficients are p; and p,, has expected allele and genotype frequencies identical to those of an unstructured population with
a certain inbreeding coefficient p* higher than p; and p».

Consider a structured population with N; = ¢;N and N, = ¢oN = (1 — ¢;)N individuals sampled from subpopulations
1 and 2, respectively (Figure S7). Without loss of generality, we examine only a single locus with K alleles. Under the
F model, the allele frequencies of subpopulation j (j = 1, 2), ®; = {¢j1,..., ¢}, follow a Dirichlet distribution
®; ~ Dir(((1 — Fj) /F;)®a4), in which ®, = {¢a1, ..., Pax} denotes the allele frequencies of a common ancestral population
of the two subpopulations and F; measures the divergence of subpopulation j from the ancestral population. We need the first
and second moments of the allele frequencies ®;, quantities that can be obtained from the mean, variance, and covariance of
a Dirichlet distribution. For h # k,

E[dyk} = daks (B1)
E [d’fk} =E [‘ﬁjk} 2+Var(¢ﬂ<) = ¢%r + Fibar(1 — dar), (B2)
B[ bty ] = B[y B[] + Cov(dye d) = barhan (1~ F). (83)

Suppose the two subpopulations have inbreeding coefficients p; and p,, respectively. Under the inbreeding model (e.g.,
Holsinger and Weir 2009), the frequency of genotype AzAy, in subpopulation j can be written as

= (1 - pj)(’bjzk +pj¢jk if h=k (B4)
j.kh — - .
Using Equations B1-B4, in the structured population, homozygote A;Ax has expected genotype frequency
2 2 5
ElP] =B| > Pk | = 2 6B [(1 — )i+ de’jk}
= = (BS)
2 y 2
b1 601 F) )+ 6 S 6(1-p)(1-F).
j= j=
Similarly, the expected genotype frequency of heterozygote AiA, (h # k) is
2 2
ElPw] =E| > ¢Pjxn| = > GE [2(1 - Pj)d’jkd’jh}
j=1 j=1 (B6)

2
= 2¢axban X%cj(l —p)(1-E).
j=

We now search for the value of p* at which genotype frequencies in an unstructured population satisfy Equations B5 and
B6. If we are unaware of the population structure, then the allele frequencies in the pooled population are

2
‘DA = ch‘bj- (B7)
j=1

Our goal is to derive an inbreeding coefficient p* for an unstructured population with allele frequencies ®*, such that
expected genotype frequencies of an unstructured population with inbreeding are identical to those of the structured
population (Equations B5 and B6).

The expected genotype frequency of a homozygote AA in an unstructured population with an inbreeding coefficient p*
can be written as
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BIPL] = B[(1 - p) (60) +p* ¢
2

+p*E

2

2 Gk .

j=1 j=1
= dar[c3F1 + 3Fs + p* (1 — c3F1 — 3F2) ]| + ¢ (1 — p*) (1 — ¢3F1 — c3Fa).

= (1-p")E

i Cj¢jk:| (B8)

For a heterozygote A A, (h # k), the expected genotype frequency is

E[Piy] = B[2(1 — p*) by

( 22: de)jk) ( 22: Cj¢jh>} (B9)
=1 =1

= 2¢axpan(1 — p*) (1 — 2F1 — 3F2).

=2(1-p"E

Comparing Equations B5 and B6 and Equations B8 and B9, the genotype frequencies in the two scenarios agree if

_a(l=p)(A=F1)+ca(l = py)(1—F)

. B10
1—c2F, —c2F, (B10)

p*J::l

In summary, under the F model, for both homozygotes and heterozygotes, the expected genotype frequencies in a struc-
tured population are identical to those in an unstructured population with allele frequencies ®* (Equation B7) and in-
breeding coefficient p* (Equation B10). For testing the robustness of our method for allelic dropout, we simulated genotype
data with population structure using ¢; = ¢, = 0.5, F; = F, = F, and p; = p» = p (experiment 2). In this setting, Equation B10
reduces to

B F

P"=P+(1_P)ﬁ- (B11)

The values of Equation B11 for our simulated data sets are indicated by dashed lines in Figure 8.

Appendix C: Additional Simulation Procedures

To assess the performance of our method as a function of the size of the data set, we performed two additional sets of
simulations. In one, we fixed the number of loci and modified the number of individuals, and in the other, we fixed the
number of individuals and modified the number of loci.

Experiment C1. Simulating data with different numbers of individuals

We used a similar procedure to that shown in Figure 5A, following assumptions 2-5 of our model. We fixed the number of
loci at L = 250. This value is chosen to be between 152 (the number of individuals in the Native American data) and 343 (the
number of loci in the data). The numbers of individuals were chosen to be N = 50, 100, 200, 400, 800, and 1600. For each
pair consisting of a choice of N and L, we simulated data sets with the inbreeding coefficient p ranging from 0 to 0.15 in
increments of 0.01. Therefore, we generated 6 x 16 = 96 simulated data sets.

For each simulated data set, the allele frequencies ® at L loci were independently sampled (with replacement) from the
estimated allele frequencies of the 343 loci in the Native American data (results from Application to Native American Data).
Given the allele frequencies ® and the inbreeding coefficient p, true genotypes G were drawn according to the inbreeding
assumption. Next, the observed genotype data W were created by adding allelic dropout. The sample-specific dropout
rates ;. and the locus-specific dropout rates vy, were both independently sampled from Beta(0.55, 5.30), as in experiments
2 and 3 in the main text.

Experiment C2. Simulating data with different numbers of loci

The procedure we used to simulate data with different numbers of loci was similar to that in experiment C1, except that we
fixed the number of individuals at N = 250 and varied the number of loci (I = 50, 100, 200, 400, 800, and 1600). Therefore,
we generated 96 simulated data sets, each of which has the same amount of data as a corresponding data set generated by
experiment C1.
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Figure S1: The estimated sample-specific dropout rate versus the observed heterozygosity before
correcting for allelic dropout in the Native American data. For each individual, loci with both
copies missing are excluded from the calculation of observed heterozygosity.

C. Wang, K. B. Schroeder, and N. A. Rosenberg 15l



A F=0.00 B F=0.04 C F=0.08
« _ @ uncorrected @ true corrected © B uncorrected @ true corrected © B uncorrected @ true corrected
o o o
2 © 2 © > ©
o o = % o 7
S g g °
I?l\ < g < 2 <
S o 8 S Yy S
g o 8
(0]
T o 2o P oo
Q 4 4 = 4 o
o - o~ o - ‘ ‘
0.00 0.03 0.06 0.09 0.12 0.15 0.03 0.06 0.09 0.12 0.00 0.03 0.06 0.09 0.12 0.15
True inbreeding coefficient (p) True inbreeding coefficient (p) True inbreeding coefficient (p)
D F=0.12 E F=0.16 F F=0.20
© B uncorrected @ true corrected @ B uncorrected @ true corrected © B uncorrected @ true corrected
o 7] o 7] o 7]
2 © 2 © 2 ©
‘@ S ‘® oS ® oS
o o o
D D D
N R < R
o o ] © o o o
2 2 2
QL [aY) Q o QL [aV)
T 3o T 3o T I3
e 4 < e 4
o - o - o -
0.00 0.03 0.06 0.09 0.12 0.15 0.03 0.06 0.09 0.12 0.00 0.03 0.06 0.09 0.12 0.15
True inbreeding coefficient (p) True inbreeding coefficient (p) True inbreeding coefficient (p)

Figure S2: Correcting the underestimation of observed heterozygosity for simulated data with pop-
ulation structure. In each panel, a purple bar indicates the uncorrected observed heterozygosity
averaged across all individuals in a simulated data set after applying allelic dropout; a green bar
indicates the “true” observed heterozygosity averaged across all individuals in the same simulated
data set before applying allelic dropout; and a striped black bar indicates the corrected observed
heterozygosity averaged across all individuals and across 100 imputed data sets. The x-axis indi-
cates values of the inbreeding coefficient that were set for different simulations. Different panels
correspond to different values of the F' parameter in the F-model for simulating structured pop-
ulations. (A) F =0; (B) F = 0.04; (C) F =0.08; (D) F =0.12; (E) F = 0.16; (F) F = 0.20.
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Figure S3: Correcting the underestimation of observed heterozygosity for simulated data with
genotyping errors other than allelic dropout. In each panel, a purple bar indicates the uncorrected
observed heterozygosity averaged across all individuals in a simulated data set after applying allelic
dropout; a green bar indicates the “true” observed heterozygosity averaged across all individuals
in the same simulated data set before applying allelic dropout and before introducing genotyping
errors; and a striped black bar indicates the corrected observed heterozygosity averaged across
all individuals and across 100 imputed data sets. The x-axis indicates values of the inbreeding
coefficient that were set for different simulations. Different panels correspond to different levels of
simulated genotyping errors that come from sources other than allelic dropout. (A) e = 0; (B)

e =0.02; (C) e = 0.04; (D) e = 0.06: (E) e = 0.08; (F) e = 0.10.
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Figure S4: Estimated dropout rates and inbreeding coefficients for simulated data with different
numbers of individuals and the same number of loci (L = 250). Each data set was simulated with
no population structure and no genotyping errors other than allelic dropout. (A) Comparison of
the estimated sample-specific dropout rates and the assumed true sample-specific dropout rates.
(B) Mean squared errors across all the estimated sample-specific dropout rates for each of the 36
data sets shown in panel A. (C) Comparison of the estimated locus-specific dropout rates and
the assumed true locus-specific dropout rates. (D) Mean squared errors across all the estimated
locus-specific dropout rates for each of the 36 data sets shown in panel C. (E) Comparison of the
estimated inbreeding coefficient and the assumed true inbreeding coefficient, in which each point
corresponds to one of 96 simulated data sets. The 36 solid points correspond to the simulated
data sets shown in the other panels (A, B, C, D, and F). (F) Overestimation of the inbreeding
coefficient, calculated by subtracting the assumed true inbreeding coefficient from the estimated
inbreeding coefficient, or p — p.
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Figure S5: Estimated dropout rates and inbreeding coefficients for simulated data with different
numbers of loci and the same number of individuals (N = 250). The allele frequencies for the loci
were sampled with replacement from the MLEs of the Native American data. Each data set was
simulated with no population structure and no genotyping errors other than allelic dropout. (A)
Comparison of the estimated sample-specific dropout rates and the assumed true sample-specific
dropout rates. (B) Mean squared errors across all the estimated sample-specific dropout rates
for each of the 36 data sets shown in panel A. (C) Comparison of the estimated locus-specific
dropout rates and the assumed true locus-specific dropout rates. (D) Mean squared errors across
all the estimated locus-specific dropout rates for each of the 36 data sets shown in panel C. (E)
Comparison of the estimated inbreeding coefficient and the assumed true inbreeding coefficient, in
which each point corresponds to one of 96 simulated data sets. The 36 solid points correspond to
the simulated data sets shown in the other panels (A, B, C, D, and F). (F) Overestimation of the
inbreeding coefficient, calculated by subtracting the assumed true inbreeding coefficient from the
estimated inbreeding coefficient, or p — p.
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Figure S6: Multidimensional scaling (MDS) analysis of the Native American data. The results
of MDS analysis on the original microsatellite data are shown by colored points, with the x-axis
corresponding to the first principal coordinate and the y-axis corresponding to the second prin-
cipal coordinate. The results of MDS analysis on one set of imputed microsatellite data are dis-
played with gray points, Procrustes-transformed to best match the results from the original data
(Stat. Appl. Genet. Mol. Biol. 13: 9, 2010). Each pair of corresponding points is connected by a
gray line. The allele-sharing distance matrices calculated from the original data, averaging across
loci and ignoring loci for which one or both individuals was missing, and from one set of imputed
data (after correcting for allelic dropout) were used as the input to the cmdscale function in R.
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Figure S7: Ilustration of a structured population with two subpopulations, under the F' model.
® 4, denotes the allele frequencies of a common ancestral population of the two subpopulations.
®; and P, are allele frequencies of the two subpopulations. The F' parameter and the inbreeding
coeflicient for subpopulation j are F; and p;, respectively (j = 1,2). In the pooled genotype data
of N individuals, ¢; is the proportion sampled from subpopulation 1, producing genotype data G,
co = 1 — ¢y is the proportion sampled from subpopulation 2, producing genotype data Gs.
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