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ABSTRACT

Motivation: Inference of ancestry using genetic data is motivated by

applications in genetic association studies, population genetics and

personal genomics. Here, we provide methods and software for im-

proved ancestry inference using genome-wide single nucleotide poly-

morphism (SNP) weights from external reference panels. This

approach makes it possible to leverage the rich ancestry information

that is available from large external reference panels, without the ad-

ministrative and computational complexities of re-analyzing the raw

genotype data from the reference panel in subsequent studies.

Results: We extensively validate our approach in multiple African

American, Latino American and European American datasets,

making use of genome-wide SNP weights derived from large refer-

ence panels, including HapMap 3 populations and 6546 European

Americans from the Framingham Heart Study. We show empirically

that our approach provides much greater accuracy than either the

prevailing ancestry-informative marker (AIM) approach or the analysis

of genome-wide target genotypes without a reference panel. For

example, in an independent set of 1636 European American

genome-wide association study samples, we attained prediction ac-

curacy (R2) of 1.000 and 0.994 for the first two principal components

using our method, compared with 0.418 and 0.407 using 150

published AIMs or 0.955 and 0.003 by applying principal component

analysis directly to the target samples. We finally show that the higher

accuracy in inferring ancestry using our method leads to more effect-

ive correction for population stratification in association studies.

Availability: The SNPweights software is available online at http://

www.hsph.harvard.edu/faculty/alkes-price/software/.
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1 INTRODUCTION

Applications in genetic association studies, population genetics

and personal genomics motivate inference of genetic ancestry

using single nucleotide polymorphism (SNP) genotypes.

In genetic association studies, ancestry inference can be applied

to control population stratification, which can lead to spurious

association between the genetic variant and the phenotype under

study (Price et al., 2010). In personal genomics, many private

companies provide genetic testing on ancestry, which involves

inference of ancestry based on information of genetic data

from a single individual (Royal et al., 2010).

In genome-wide association studies (GWAS), several methods

have been proposed to adjust for population stratification (Price

et al., 2010). Methods that explicitly infer genetic ancestry in-

clude structured association (Pritchard et al., 2000), principal

component analysis (PCA) (Novembre and Stephens, 2008;

Novembre et al., 2008; Price et al., 2006) and multidimensional

scaling (Purcell et al., 2007). To infer genetic ancestry, these

methods can be either applied to the target samples only or

applied to the target samples combined with an external refer-

ence panel to improve accuracy; when inferring ancestry for a

single target individual in a personal genomics setting, it is ne-

cessary to include an external reference panel. As an alternative

to applying these methods to genome-wide data, they can be

applied to a subset of ancestry-informative markers (AIMs).

For example, AIM panels have been developed for European

Americans (Paschou et al., 2008; Price et al., 2008; Seldin and

Price, 2008; Tian et al., 2008) and Latino Americans (Galanter

et al., 2012).
The use of raw genotypes from a large reference panel to im-

prove accuracy poses several complexities, including the logistics

of obtaining and managing additional raw genotype data, con-

cerns about sharing raw genotype data owing to privacy or other

reasons and increased computational cost. Although the AIM

approach can ameliorate some of these complexities, restricting

to AIMs when genome-wide data are available reduces accuracy

(Price et al., 2010). Given that data on genome-wide markers

now can be generated through low-coverage sequencing at very

low cost, an approach that can fully use the ancestry information

of genome-wide markers is needed (Pasaniuc et al., 2012).
Here, we propose methods and software for ancestry inference

based on genome-wide SNP weights. This approach requires just

the raw genotypes from the target samples and a set of genome-

wide SNP weights pre-computed using external reference panels.

Notably, the reference panels of genotypes do not need to be

shared. Inferring ancestry using the genome-wide SNP weights*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1399



does not depend on the sample size or diversity of the study

samples, and can infer ancestry for related samples, for which

direct PCA is often confounded by family structure (Price et al.,

2010).
To demonstrate our method, we first built an ancestry infer-

ence model for African Americans using genome-wide SNPs and

validated our model using independent HapMap 3 samples

(Altshuler et al., 2010). This model predicts the first principal

component (PC1) for African Americans and can also transform

predicted PC1 into % European ancestry. We determined that

predicted ancestry using genome-wide SNP weights is more

accurate than predicted ancestry using a limited number of

AIMs. We extended the model to infer % ancestry from East

Asian, European and West African populations using PC1 and

PC2 from these populations. Once again, predicted ancestry

using genome-wide SNP weights was extremely accurate.

Finally, we built an ancestry inference model for European

Americans using Northwest European (NW), Southeast

European (SE) and Ashkenazi Jewish (AJ) ancestral populations

(Price et al., 2008). We used European American reference sam-

ples from the Framingham Heart Study (FHS) SHARe data to

build the model and validated the model with independent sam-

ples from a bipolar disorder (BD) GWAS and a breast cancer

(BCa) GWAS (Hunter et al., 2007; Lango Allen et al., 2010;

Price et al., 2008; Splansky et al., 2007). For both BD and

BCa datasets, the predicted PC1 and PC2 attained higher accur-

acy than direct application of PCA. In addition, simulations

showed that our method outperforms the AIM approach in cor-

recting population stratification in GWAS. Ancestry inference

software incorporating SNP weights for all of the populations

considered here can be downloaded from http://www.hsph.har

vard.edu/faculty/alkes-price/software/.

2 METHODS

2.1 Ancestry inference using genome-wide SNP weights

Our ancestry inference model is based on a set of genome-wide SNP

weights. To compute the SNP weights, we first normalize the genotypes

of ancestral samples and perform PCA on normalized genotypes. Then,

we compute SNP weights using PCs, corresponding eigenvalues and nor-

malized genotypes from ancestral samples. The SNP weights, once

obtained, can be applied to target samples to predict PCs and% ancestry.

Below, T denotes the transposition of a matrix, and tr(�) denotes the sum

of the diagonal elements of a matrix.

Let gij be a matrix of SNP genotypes for SNP i and individual j, where

i¼ 1, . . . ,M and j¼ 1, . . . , N. The N individuals are samples from the

ancestral populations for a given admixed population. We first normalize

gij by SNP to improve the result of PCA (Patterson et al., 2006). For each

entry in row i, we subtract the mean of each row from it and divide it by

[pi(1-pi)]
0.5, where the mean of each row is mi ¼ (

P
j gij)/N and pi¼mi/2.

The normalized gij matrix is denoted as X. Then, we perform PCA using

EIGENSOFT software on the N�N matrix XTX. From PCA, we can

obtain an N�N matrix V with the kth column as the kth PC of XTX with

the k
th largest eigenvalue, and an N�N diagonal matrix S with the k

th

largest eigenvalue lk at the k
th diagonal element. The SNP weights are

computed as W¼C�S
�1
(XV)

T. C is a standardizing constant (N� 1)/

tr(XTX). The standardizing constant is to account for the standardization

imposed by EIGENSOFT software on the input genotypes (Patterson

et al., 2006). The resulting SNP weights W form an N�M matrix with

the SNP weights for predicting the k
th PC in the k

th row.

Once the SNP weights are obtained, we can predict PCs for target

samples by applying the SNP weights to their genotypes. Let gij,new be

an M�P matrix for SNP i and individual j, where i¼ 1, . . . ,M and

j¼ 1, . . . , P. The P individuals are our target samples from an admixed

population with the ancestral populations corresponding to the SNP

weights. We first normalize gij,new using the same method described

above to obtain the normalized genotype matrix Xnew. Note that we

use the row means mi calculated with the ancestral population samples

to normalize the target samples. We can predict the PCs of Xnew
T
Xnew by

computing Vnew¼ (WXnew)
T, where Vnew is a P�N matrix with the kth

column as the kth predicted PCs for the P target samples.

2.2 Application to admixed samples using continental

ancestral populations

In general, we can use the predicted PC1 as a continuous axis of ancestry

for an admixed population with two ancestral populations, such as

African Americans. To build an ancestry inference model for African

Americans, we computed genome-wide SNP weights using a pooled

sample of 112 individuals with ancestry of Northern and Western

Europe (CEU) and 113 individuals with ancestry of Western Africa

(YRI) from HapMap 3 (Altshuler et al., 2010). For this model, we aim

at predicting PC1 (v1, new), which is the first column of Vnew, for the target

admixed samples. To test the model with independent samples, we used

genotype data collected from 49 African American individuals in the

southwestern USA (ASW) from HapMap 3. The HapMap3 samples

were genotyped on Affymetrix 6.0 and Illumina 1M arrays. We excluded

SNPs on chromosome X, A/T and C/G SNPs (to avoid strand ambiguity

issues), and SNPs with any missing genotype in the pooled sample of

CEU, YRI and ASW samples. The genotype data used to calculate SNP

weights contain 813 976 SNPs.

To assess the prediction ability of the ancestry inference model, we

compared the predicted PC1 with the gold standard, which is PC1 ob-

tained by performing PCA on the combined sample of the target samples

(ASW) and the ancestral samples (CEU and YRI). We used two metrics:

(i) R2 between predicted and true PCs and (ii) shrinkage of predicted PCs

compared with true PCs, defined as the regression coefficient b from the

linear regression model vk, new¼bvk, trueþ ", where vk, new is the k
th pre-

dicted PC of the target samples and vk, true is the kth PC of the target

samples obtained by performing PCA on the combined sample of target

samples and ancestral samples. We also calculate the asymptotic shrink-

age for each PC with corresponding eigenvalues, number of SNPs and

number of ancestral samples used to compute SNP weights (Lee et al.,

2010).

We can further perform a linear transformation on the predicted PC1

to obtain the % European ancestry for the target samples. We first per-

form PCA on a pooled sample of Europeans and West Africans and

calculate the average PC1 for the European samples (�e1) and the West

African samples (�e2) separately. Then we transform the predicted PC1

into % European ancestry by calculating a1,new¼ (v1,new� �e2)/(�e1� �e2).

The resulting percent European ancestry is a proportion indicating the

inferred European ancestry component for the African American individ-

uals. For any value in v1,new that is greater than �e1 or smaller than �e2, the

corresponding percent European ancestry will be set to 1 or 0,

respectively.

The model we described above can be readily extended to infer ances-

try for admixed samples with three ancestral populations. In this case, we

aim at predicting both PC1 (v1,new) and PC2 (v2,new), which are the first

and second columns of Vnew, respectively. We built the model with geno-

types from 112 CEU samples, 113 YRI samples, 84 samples of Han

Chinese in Beijing, China, and 85 samples of Chinese in Metropolitan

Denver, Colorado, from HapMap 3, which represent three continental

populations. We excluded SNPs on chromosome X, A/T and C/G SNPs,

and SNPs with any missing genotype in the pooled sample and used

661 708 SNPs in this analysis. We examined this model by predicting
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PC1 and PC2 for all HapMap 3 samples that were not used to build the

model, including 49 independent ASW samples, 50 independent samples

of Mexicans in Los Angeles, California (MXL), and 88 samples of

Gujarati Indians in Houston, Texas (GIH). The predicted PCs were

compared with the corresponding gold standards, which are the true

PC1 and PC2 obtained by performing PCA on the target samples plus

the ancestral samples.

To infer the ancestry components, we can perform a linear transform-

ation of the predicted PC1 and PC2 and obtain % ancestry of each

continental population. For target samples with three ancestral popula-

tions, we first calculate the average of PC1 and PC2 for each of the three

ancestral populations separately and denote the average PCs as �eij, where

i¼ 1, 2, denotes PCs, and j¼ 1, 2, 3, denotes three ancestral populations.

By assuming that an average sample from ancestral population 1 has

100% ancestry component from population 1, we can formulate a

system of equations for linear transformation between PC1 and PC2

and % ancestry of ancestral population 1 (Equation 1). A system of

equations for ancestral population 2 transformation can be formulated

similarly (Equation 2). We can solve both systems of equations:

1 ¼ a1 e11þb1 e21þg1

0 ¼ a1 e12þb1 e22þg1

0 ¼ a1 e13þb1 e23þg1

8<
: ð1Þ

and

0 ¼ a2 e11þb2 e21þg2

1 ¼ a2 e12þb2 e22þg2

0 ¼ a2 e13þb2 e23þg2

8<
: ð2Þ

for coefficients �1, �2, �1, �2, �1 and �2. With the condition that all %

ancestry for a given individual sum to 1, we can infer the ancestry com-

ponent with

a1, new¼ a1�v1, newþb1�v2, newþg1

a2, new¼ a2�v1, newþb2�v2, newþg2

a3, new¼ 1� a1, new�a2, new

where a1,new, a2,new and a3,new are inferred % ancestry with respect to

ancestral population 1, 2 and 3. We set the inferred% ancestry to 0 or 1 if

the calculated values exceed the range of 0–1 and rescale the inferred

percentages of ancestry to make the sum of percentages equal to 1 if

needed.

Previously, we implicitly assume that the genotype data of target sam-

ples gij, new contain the same set of SNPs as the SNP weights. In practice,

we may encounter the situation where the genotype data of target samples

contain fewer SNPs than the SNP weights. In this case, we can still

predict PCs with the genotypes available. Assuming that the SNP

genotypes are missing at random, we replace the missing genotype

data of target samples by 0 and calculate the predicted PCs as

Vnew¼ (WXnew)
T
� (M/M’), where M’ is the number of SNP genotypes

used to predict PCs.

To assess our method’s performance under different conditions, we

predicted PCs by using different numbers of random SNPs selected

across the genome, different numbers of AIMs selected by the largest

absolute value of SNP weight and genome-wide SNPs as well as using

different numbers of ancestral samples. In addition, we obtained PCs

from PCA performed on only the target samples. R2 and sample shrink-

age were used as accuracy measures.

2.3 Application to European Americans

Ancestry inference poses a greater challenge with more closely related

ancestral populations. Thus, we used genome-wide SNP genotypes

from FHS SHARe data to build an ancestry inference model for

European Americans using NW, SE and AJ ancestral populations. The

original SHARe project included 9215 individuals with 549782 SNPs

genotyped with the Affymetrix 500K array and 49 214 SNPs from the

Affymetrix 50K array. We selected a subset of 6546 unrelated European

American samples to build the model. We examined the model with two

sets of independent European American samples, a BD GWAS and a

BCa GWAS (Hunter et al., 2007; Price et al., 2008). We analyzed 1636

European American controls from the BD data genotyped on Affymetrix

500K arrays. We analyzed 343 070 SNPs after excluding SNPs on

chromosome X and A/T and C/G SNPs. We analyzed 2287 samples

from the BCa data genotyped on Illumina HumanHap550 chip, including

1145 BCa cases and 1142 matched controls, retaining 542944 SNPs. For

BCa GWAS samples, we also extracted self-reported ancestry informa-

tion from questionnaires, which classified samples into Scandinavian,

South European, Ashkenazi Jew or European without sub-population

ancestry information. We excluded BCa samples without sub-population

ancestry information in our analysis.

For BD samples, we first compared predicted PC1 and PC2 using

genome-wide SNP weights with the gold standards, which are the PCs

obtained by performing PCA on the combined sample of the target sam-

ples (BD) and the ancestral samples (FHS). We also compared PC1 and

PC2 from direct PCA on BD samples with the gold standard. R2 and

shrinkage were used as accuracy measures. In addition, we compared the

PCA plots of the predicted PCs, PCs from direct PCA and the gold

standard for BD samples. The PCA plots are color coded according to

the assigned groups as described below. We also compared PCA plots for

BCa samples, which are color coded by self-reported ancestry.

To assign BD samples to distinct ancestry categories, we calculated the

distance between each BD samples and three centroids of the three

European sub-populations based on the predicted PC1 and PC2

(Fig. 2c). We then assigned BD samples to one of the three groups

based on the shortest distance to the centroids. We also assigned BD

samples to distinct ancestry categories based on the gold standard and

compared the category assignment using predicted PCs versus gold stand-

ard. For estimating % ancestry components, we assigned the FHS sam-

ples to NW, SE and AJ groups based on the distance to the same

centroids mentioned above and calculated average of PC1 and PC2 for

each of the three populations separately. We used these average PC1 and

PC2 from the three groups in FHS to perform a linear transformation

from predicted PC1 and PC2 to % ancestry.

In addition to genome-wide SNP weights, we also used a panel of 300

AIMs specific to European American population to predict the first two

PCs for the BD samples and compared predicted PCs with gold standard

(Price et al., 2008). A subset of 150 AIMs, which are the intersection

between the AIM panel and our SNP genotype panel, was used in our

analysis. We also compared R2 and sample shrinkage of predicted PCs

obtained by using different numbers of random SNPs and AIMs for the

BD samples. We selected 100, 200, 500, 1000, 2000, 5000 and 10000

random SNPs and 10, 20, 50 and 100 AIMs based on SNP weights,

and predict the first PC for the BD samples based on selected SNPs.

2.4 Population stratification simulations

We conducted a simulation study to compare the performance of our

predicted PCs versus PCs inferred directly from target samples in adjust-

ing for population stratification in GWAS. The simulation framework is

similar to that in our previous work (Price et al., 2006). We used BD

samples and simulated a phenotype using SNP rs2322659 at the LCT

locus on chromosome 2. This SNP has an R2 of 0.638 with SNP

rs4988235, which is perfectly associated with the lactase persistence

phenotype (Enattah et al., 2002). This phenotype is known to be corre-

lated with within-Europe ancestry. We simulated a binary phenotype for

the GWAS samples by assigning 1 to individuals carrying one or two

reference alleles and 0 to individuals carrying zero reference alleles of

rs2322659. We performed association tests on all available genome-

wide SNPs except SNPs on chromosome 2. We computed unadjusted

�2 statistics and P-values and selected SNPs with genome-wide
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significance for adjusted analyses. We assume that these SNPs are asso-

ciated with simulated phenotype owing to population stratification. We

computed adjusted association statistics using genomic control (Devlin

and Roeder, 1999), predicted PCs based on genome-wide SNPs, PCs

obtained by direct PCA and predicted PCs based on AIMs and compared

the �2 statistics and P-values from these adjusted analyses.

3 RESULTS

3.1 Application to admixed samples using continental

ancestral populations

We first applied the method to African Americans, as a proof of

concept. We computed genome-wide SNP weights using 112

CEU and 113 YRI samples and predicted the first PC for 49

ASW samples. We compared predicted PC1 with the gold stand-

ard for ASW samples and found that predicted PC1 is accurate,

with an R2 of 1.000 [95% confidence interval (CI): 1.000–1.000]

and a sample shrinkage of 0.978 (SD¼ 0.0001) (Supplementary

Table S1).
We compared the prediction accuracy by using random SNPs,

AIMs and genome-wide SNPs (Fig. 1). The results showed that

the R2 increased with the number of SNPs included in the model

for both random SNPs and AIMs. Notably, AIMs are �10-fold

more informative than random SNPs for ancestry inference. The

R2 of the genome-wide SNP model is much higher than that of

all models built with a subset of random SNPs or AIMs. This

result highlights the advantage of using genome-wide SNPs over

using AIMs in ancestry inference. We repeated the analysis by

building the model with half of the CEU and YRI samples and

testing the model with the other half of the CEU and YRI sam-

ples. The results showed a similar trend as the previous analysis

but with much higher R2 (Supplementary Fig. S2), as expected

because ancestry inference for a sample with discrete structure is

easier than ancestry inference for admixed samples. We showed

that the sample shrinkage did not change substantially with the

number of SNPs used for predicting PCs (Supplementary Table

S1). In addition, we also built models with different numbers of

ancestral samples (Supplementary Table S1) and found that R2

remained at 1.000, regardless of the number of ancestral samples

used. However, the shrinkage decreased from 0.978 when using

225 ancestral samples to 0.777 (SD¼ 0.001) when using 20 an-

cestral samples. In addition to comparisons between predicted

PCs, we also evaluated PC1 from directly applying PCA on the

ASW samples, as compared with the gold standard. We observed

an R2 of 0.101 (95% CI: 0–0.201). The poor performance of PC1

from direct PCA is due to family relatedness between some of the

ASW samples, which prevents PCA from accurately estimating

the population structure for these ASW samples (Supplementary

Fig. S3).
Finally, we considered a model with three continental popu-

lations as ancestral populations and tested the model by predict-

ing PC1 and PC2 for HapMap 3 samples. R2 and shrinkage were

used to examine the accuracy of the predicted first and second

PCs. For ASW and MXL samples, the predicted PC1 and PC2

both had R2 of 1.000 (95% CI: 1.000–1.000). The sample shrink-

age was 0.992 and 0.968 for predicted PC1 and PC2 in ASW

samples, and 0.982 and 0.974 for predicted PC1 and PC2 in

MXL samples (Supplementary Table S2), respectively. We also

estimated % ancestry for ASW and MXL samples

(Supplementary Table S4 and Supplementary Fig. S1).
To investigate the results of applying our model to admixed

samples with no good match in the ancestral populations

included in the model, we predicted PC1 and PC2 for all

HapMap 3 samples and compared these predictions with the

top PCs obtained by directly applying PCA to all HapMap 3

samples. We obtain very similar results for predicted PCs and

PCs from direct PCA (Supplementary Fig. S4). In particular,

results are very similar for GIH samples, which have no good

match in the ancestral populations used (Supplementary Table

S2). Thus, predicted PCs and top PCs from direct PCA attain

similar results, even when the ancestral samples are not a good

match for the admixed samples.

3.2 Application to European Americans

Using genotypes from FHS SHARe data, we built a model that

predicts the PC1 and PC2 for European Americans. In most

European American datasets, PC1 distinguishes NW from SE

ancestry, and PC2 distinguishes SE from AJ ancestry (Price

et al., 2008). To validate the model, we used samples from a

BD GWAS and a BCa GWAS as independent testing datasets

(Hunter et al., 2007; Price et al., 2008). We predicted PC1 and

PC2 for the BD samples using the model built with SHARe data

and compared predicted PCs with the gold standard created by

performing PCA on the BD samples and the SHARe samples

combined. Using genome-wide SNP weights, the R2 for predicted

PC1 was 1.000 (95% CI: 1.000–1.000) and the R2 for predicted

PC2 was 0.994 (95% CI: 0.992–0.994) (Supplementary Table S3).

The sample shrinkage was 1.013 (SD¼ 0.002) for predicted PC1

Fig. 1. Comparison between R2 for ancestry inference using AIMs,

random SNPs and genome-wide SNPs. Models were built with 112

CEU samples and 113 YRI samples and tested with 49 ASW samples.

R2 was calculated with the predicted first PC and the gold standard,

which is the first PC obtained by applying PCA to combined samples

of CEU, YRI and ASW with 813 976 SNPs. The vertical bars represent

95% CIs
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and 0.844 (SD¼ 0.002) for predicted PC2. In addition, we per-

formed direct PCA on BD samples and compared PC1 and PC2

from direct PCA with gold standard. The R2 for PC1 from direct

PCA was 0.994 (95% CI: 0.951–0.960), and the R2 for PC2 from

direct PCA was 0.003 (95% CI: �0.007–0.006), which suggests

that direct PCA cannot distinguish samples with Ashkenazi

Jewish ancestry from others. In addition to comparing PCs dir-

ectly, we also assigned BD samples to one of the three European

sub-populations based on predicted PC1 and PC2. We compared

the assigned ancestry category with the assigned ancestry cat-

egory based on the gold standard. The assigned category based

on predicted PCs had only 5 out of 1636 samples misclassified

(Supplementary Table S5). We also estimated % ancestry from

NW, SE and AJ ancestral populations for BD samples

(Supplementary Table S4).

We created three PCA plots and color coded all BD samples

into three European sub-populations (Fig. 2). Comparing the

PCA plots, the predicted PC1 and PC2 had a very similar pattern

to the gold standard. We can visually distinguish the BD samples

with Ashkenazi Jewish ancestry from the BD samples with other

European ancestry with the predicted PCs. We can also see a

gradient of samples with Northwest and Southeast European

ancestry. In contrast, the PCs from direct PCA on BD samples

alone failed to distinguish the samples with Ashkenazi Jewish

ancestry from other samples. We also compared our PCA

plots with the PCA plots from Price et al. (2008). The

PCA plot we created here with predicted PCs is comparable

with Figure 2 from Price et al. (2008) using direct PCA on the

same BD samples plus three other additional datasets. This sug-

gests that the predicted PCs by using our model are not only

comparable with the gold standard here but also comparable

with PCs obtained by using other datasets. The analysis of

BCa samples produced similar results, as PCA based on pre-

dicted PCs showed better clustering of samples according to

self-reported ancestry than direct PCA on BCa samples

(Fig. 3). In summary, the results from both BD and BCa samples

showed that our method outperformed direct PCA on target

samples.

We also used 150 AIMs from a European American AIM

panel to predict PC1 and PC2 for BD samples (Price et al.,

2008). Using 150 AIMs, the R2 was 0.418 (95% CI: 0.354–

0.488) for predicted PC1 and 0.407 for PC2 (95% CI: 0.322–

0.505). These numbers are limited by the inclusion of only 150

of the 300 AIMs from Price et al. (2008) based on the intersection

of SNPs with our data, but it is nonetheless clear that ancestry

inference from a limited number of published AIMs substantially

underperforms the proposed use of genome-wide SNP weights.

In addition to using the AIM panel, we also used different num-

bers of random SNPs and AIMs that are selected by SNP

weights to predict PC1 and PC2 for BD samples. The R2 for

predicted PC1 using different numbers of random genotypes,

AIMs and genome-wide SNPs for BD samples are shown in

Figure 4. As expected, the R2 increased with the number of

random SNPs or AIMs used to predict PCs. However, the R2

obtained by using a subset of random SNPs or AIMs were much

lower than using the full set of genome-wide SNPs. Results for

predicted PC2 were similar to results for predicted PC1

(Supplementary Table S3).

3.3 Population stratification simulations

We conducted a simulation study of population stratification

using BD genotypes and phenotypes simulated from genotypes

of an SNP at the LCT locus, similar to the simulation study

described in our previous article (Price et al., 2006). We found

that five SNPs had spurious association with the simulated

phenotype, with genome-wide significant P-values (Table 1).

We compared several strategies for correcting for population

stratification: genomic control, PC correction using predicted

PC1 and PC2 based on genome-wide SNP weights, PC correc-

tion using PC1 and PC2 from direct PCA on BD samples only

and PC correction using predicted PC1 and PC2 based on 150

AIMs.

Fig. 2. Comparison between (a) the first and second PCs by performing

PCA on BD data alone, (b) predicted first and second PCs of BD data by

using model built with SHARe data and (c) the first and second PCs

obtained by performing PCA on combined BD and SHARe data. The

BD samples are color coded into three groups based on distance to cen-

troids in panel (c) (see Section 2)

Fig. 3. Comparison between (a) the first and second PCs by performing

PCA on BCa samples directly and (b) the predicted first and second PCs

of BCa samples by using ancestry inference model built with SHARe

data. These European American samples are color coded according to

their self-reported ancestry
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The adjusted �2 statistics and P-values showed that the gen-

omic control failed to correct for the spurious associations, and

all five SNPs were still genome-wide significant. In contrast, ad-

justment by the predicted PC1 and PC2 based on genome-wide

SNPs successfully removed the spurious association, yielding

non-significant genome-wide P-values. The adjustment by PC1

and PC2 from direct PCA also successfully removed the spurious

association and attained similar adjusted P-values as adjustment

by predicted PC1 and PC2. This can be explained by the fact that

stratification at the LCT locus is predominantly an NW versus

SE Europe (i.e. PC1) effect. The P-values after adjustment by

predicted PCs based on 150 AIMs were still more significant

than those adjusted by two predicted PCs based on genome-

wide SNPs or the first two PCs from direct PCA. This result

suggests that there is residual confounding after adjustment by

predicted PCs based on 150 AIMs and highlights the advantage

of using genome-wide SNP weights for PC prediction.

4 DISCUSSION

In this study, we presented methods and software for ancestry

inference using genome-wide SNP weights derived from large

reference panels. We showed empirically that this approach

can accurately predict PCs and % ancestry in populations of

admixed continental ancestry and in European Americans,

which have more subtle population structure. Our results high-

light the advantage of inferring ancestry using genome-wide

SNPs obtained from a large external reference panel.
We further compared predicted PCs obtained by using

genome-wide SNPs with those obtained by using subsets of

random SNPs or AIMs, and showed that predicted PCs using

genome-wide SNPs have the highest accuracy. AIM panels have

been proposed for ancestry inference in African Americans

(Ruiz-Narvaez et al., 2011), Latino Americans (Galanter et al.,

2012) and European Americans (Paschou et al., 2008; Price et al.,

2008; Tian et al., 2008). For African Americans, it had been

suggested that accurate ancestry inference requires only 30

AIMs (Ruiz-Narvaez et al., 2011). However, we observed that

genome-wide SNPs provide more accurate ancestry estimates

than even 100 AIMs in African Americans. Thus, our approach

based on genome-wide SNP weights outperforms the use of AIM

panels. Our simulation study of population stratification further

confirmed this point by showing that adjustment using our

method outperforms adjustment using 150 AIMs. In applications

in real data analysis, the AIM approach has the advantage that it

requires less genotyping work if genome-wide SNP genotypes are

not available. However, as the genome-wide marker data can

now be generated at very low cost, genotyping costs are less

likely to be a limitation going forward (Pasaniuc et al., 2012).

We also stress that our method can be used even when the input

genotypes contain an incomplete set of SNPs compared with the

genome-wide SNP weights, for example, if they were typed on a

different genotyping platform. Our simulations show that 1000

random SNPs or 10000 random SNPs are sufficient to predict

ancestry with high accuracy in African Americans or European

Americans, respectively. However, a smaller number of random

SNPs genotyped in candidate gene or targeted replication studies

would not be sufficient to infer ancestry in these populations.
By constructing SNP weights with a carefully selected unre-

lated reference panel, our approach can accurately infer ancestry

for related target samples, while direct PCA on related target

samples may provide inaccurate estimates of population

Table 1. SNPs have spurious association with simulated phenotype

SNP Chr Unadjusted �2 Genomic

control

Predicted PC1 and

PC2 by genome-wide SNPs

PC1 and PC2

by direct PCA

Predicted PC1 and

PC2 by 150 AIMs

rs2339390 1 46.90 (7.5� 10�12) 40.72 (1.8� 10�10) 7.47 (6.5� 10�3) 6.37 (1.2� 10�2) 10.55 (1.2� 10�3)

rs2339392 1 58.49 (2.0� 10�14) 50.78 (1.0� 10�12) 7.81 (4.9� 10�3) 6.90 (8.6� 10�3) 11.75 (6.1� 10�4)

rs9290629 3 54.76 (1.4� 10�13) 47.54 (5.4� 10�12) 7.95 (6.1� 10�3) 8.61 (3.3� 10�3) 9.67 (1.9� 10�3)

rs10437421 10 71.46 (2.8� 10�17) 62.04 (3.3� 10�15) 8.23 (4.2� 10�3) 9.35 (2.2� 10�3) 11.73 (6.1� 10�4)

rs7091038 10 67.15 (2.5� 10�16) 58.30 (2.2� 10�14) 13.23 (7.2� 10�4) 13.51 (2.4� 10�4) 16.80 (4.1� 10�5)

The unadjusted �2 statistics were obtained by Armitage trend test. The �2 statistics adjusted by predicted and observed PCs were obtained by logistic regression models.

Chr, chromosome.

Fig. 4. Comparison between R2 for ancestry inference using AIMs,

random SNPs and genome-wide SNPs. Models were built with 6546

FHS SHARe samples and tested with 1636 BD samples. R2 was calcu-

lated with the predicted first PC and the gold standard, which is the first

PC obtained by applying PCA to combined samples of FHS SHARe

samples and BD samples with 346 070 SNPs. The vertical bars represent

95% CIs
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structure. Zhu et al. (2008) proposed a method to correct for
population stratification in the presence of family relatedness
in the target samples, which uses a subset of unrelated samples

to predict PCs for all target samples. Their method can also
avoid biased estimation of ancestry due to relatedness, but the
ancestry inference is limited to the unrelated target samples,

which may have insufficient sample size and diversity. By using
a large external reference panel to compute the SNP weights, our
method is not limited to the target samples and can attain accur-

ate ancestry inference for related target samples.
Another advantage of our method is that it is based on pre-

computed SNP weights. The pre-computed SNP weights can be

readily shared with our software release. On the contrary, the
existing methods for accurate ancestry estimation usually require
raw genotypes from a large external reference sample. Access to

raw genotypes entails substantial administrative complexities,
which can be time-consuming. The sharing of SNP weights is
also more privacy preserving than the sharing of raw genotypes.

We note that it may be plausible to detect whether a given indi-
vidual is in the set of samples used to calculate the SNP weights,
analogous to detecting whether a given individual is in the set of

samples used to calculate summary statistics (Homer et al., 2008;
Sankararaman et al., 2009; Visscher and Hill, 2009). However,
because the samples that we used to calculate SNP weights in

were ascertained without regard to any phenotype, inferring
whether a given individual is in that set of samples reveals less
information than inferring whether a given individual is in a set

of samples ascertained for a particular phenotype.
Our method also has the advantage of reduced running time.

Existing software requires time O(MN2) to compute PCs, where

M is the number of SNPs and N is the number of samples
(Patterson et al., 2006; Price et al., 2006). In theory, randomized
eigenvector approximations can reduce the running time to

O(MN) (Rokhlin et al., 2009). However, a colleague of ours re-
ports that efforts to apply this approach to genetic data have not
yet been successful, as in large datasets, eigenvalues may be

highly significant (reflecting real population structure in the
data) but only slightly larger than background noise eigenvalues,
and thus sometimes missed by randomized methods (N.

Patterson, personal communication). Thus, our simple O(MN)
approach offers real practical advantages.
Our method relies on including samples from the appropriate

ancestral populations to build the model, to correctly infer %
ancestry component for given admixed samples. However, the
predicted PCs reflect the PCs obtained by performing PCA on

the combined raw genotypes from the admixed population and
the ancestral samples, irrespective of which ancestral samples
were included in the analysis. In the analyses presented here,

we built ancestry inference models using samples from three con-
tinental populations or NW, SE and AJ European populations.
When applying our method to samples with no good match in

the ancestral populations used, we still accurately predicted the
top PCs from PCA, although caution is warranted in interpreting
the results of either of these analyses with respect to the ancestral

populations used.
We can readily extend our method to build models with sam-

ples from other ancestral populations. For example, similar

models can be built for Indian and Native American populations
using appropriate reference panels (Reich et al., 2009, 2012).

Extension to more than three ancestral populations is straight-

forward, but accuracy is contingent on the sample size and di-

versity of the ancestral samples, as lower PCs may represent

more subtle population structure.
In summary, we have developed a method for ancestry infer-

ence using genome-wide SNP weights. Our method only requires

genotypes from the target samples and publicly available SNP

weights, and is highly computationally efficient. The method can

be readily applied in genetic association studies for population

stratification adjustment and in personal genomics for predicting

the ancestry component of an individual. For diseases or health

outcomes associated with ancestry, the predicted ancestry values

can be used for risk stratification and risk prediction (Alonso-

Perez et al., 2011; Hughes et al., 2008; Kumar et al., 2010; Yang

et al., 2011).
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