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ABSTRACT

Motivation: Text-mining mutation information from the literature be-

comes a critical part of the bioinformatics approach for the analysis

and interpretation of sequence variations in complex diseases in the

post-genomic era. It has also been used for assisting the creation of

disease-related mutation databases. Most of existing approaches

are rule-based and focus on limited types of sequence variations,

such as protein point mutations. Thus, extending their extraction

scope requires significant manual efforts in examining new instances

and developing corresponding rules. As such, new automatic

approaches are greatly needed for extracting different kinds of muta-

tions with high accuracy.

Results: Here, we report tmVar, a text-mining approach based on

conditional random field (CRF) for extracting a wide range of sequence

variants described at protein, DNA and RNA levels according to a

standard nomenclature developed by the Human Genome Variation

Society. By doing so, we cover several important types of mutations

that were not considered in past studies. Using a novel CRF label

model and feature set, our method achieves higher performance

than a state-of-the-art method on both our corpus (91.4 versus

78.1% in F-measure) and their own gold standard (93.9 versus

89.4% in F-measure). These results suggest that tmVar is a high-per-

formance method for mutation extraction from biomedical literature.

Availability: tmVar software and its corpus of 500 manually curated

abstracts are available for download at http://www.ncbi.nlm.nih.gov/

CBBresearch/Lu/pub/tmVar.

Contact: zhiyong.lu@nih.gov
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1 INTRODUCTION

In the past 10 years, the focus of biological research has shifted

from individual genes and proteins toward the study of entire

biological systems. One of the most important research issues is

gene/protein and disease relationship analysis. Sequence vari-

ation plays the key role between gene and disease. Therefore,
identifying sequence variation is one of the major approaches

for characterizing gene–disease relationships (Erdogmus and

Sezerman, 2007; Schenck et al., 2012), with many study results

subsequently reported in scientific publications. As such, text-

mining mutation-related information from the literature has

become an increasingly important task in many downstream
bioinformatics applications, such as the curation of mutation-
related biological databases (Gyimesi et al., 2012; Kuipers

et al., 2012), the systematic study of biological effects of pro-
tein mutations (Izarzugaza et al., 2012; Winnenburg et al.,
2009) and the interpretation of individual genomes toward per-
sonalized medicine in pharmacogenomics research (Capriotti

et al., 2012).
Despite some reported success in identifying specific mutation

types or identifiers, such as dbSNP RS numbers (Yu et al., 2009),

mutation identification from free text in general remains a chal-
lenge because most mutations are not described in accordance
with standard nomenclature (525% in our corpus) and only few

are mentioned with standard database identifiers, such as dbSNP
RS numbers (510% in our corpus). To the opposite, it is
common to see the same mutation described in many different
non-standard ways in the literature, which makes it similar to the

named entity recognition task in biomedicine (Lu et al., 2011;
Morgan et al., 2008).
In response, recently a number of automatic systems have been

developed for extracting mutation mentions from the biomedical
literature (Caporaso et al., 2007; McDonald et al., 2004) and
some investigated further with respect to mutations’ associations

with genes (Horn et al., 2004; Rebholz-Schuhmann et al., 2004),
diseases (Doughty et al., 2011; Furlong et al., 2008; Yeniterzi and
Sezerman, 2009) and other related information (Kanagasabai

et al., 2007; Naderi and Witte, 2012). Despite different scopes,
with regard to methods for mutation detection, most systems rely
on manually derived regular expressions. For instance, for
detecting protein point mutations (e.g. A42G) from text,

Caporaso et al. (2007) developed MutationFinder, which con-
tains4700 regular expression patterns and achieves state-of-the-
art performance of 90% in F-measure. Compared with the

overwhelmingly used rule-based systems, VTag (McDonald
et al., 2004) stands out with a machine-learning approach and
reports an F-measure of 0.82 on their evaluation data. We refer

readers to Izarzugaza et al. (2012) for a summary of previous
implementations for mutation extraction. Following VTag and
other previous studies on biomedical named entities (Doğan and
Lu, 2012b; Hsu et al., 2008; Leaman and Gonzalez, 2008), we

formulated the problem of named entity recognition as a
sequence-labeling problem. Therefore, a conditional random
field (CRF) model (Lafferty et al., 2001) was naturally chosen

as our learning algorithm. However, as detailed in our method
description, we developed a new CRF model with 11 labels*To whom correspondence should be addressed.
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(as opposed to the traditional BIO model), as well as a set of
novel features in this work. As shown in Section 4, both designs
helped improve extraction performance and made our method

compare favorably with the state of the art.
In addition, our work is also unique in extracting mutations of

many types that are not considered by previous methods.
Existing methods, such as MutationFinder either exclusively
aim for extracting point mutations in proteins or are limited to

a few mutation types, such as substitution and deletion in both
proteins and genes. To our best knowledge, this work is the first

attempt to identify various mutation types according to a stand-
ard nomenclature endorsed by the Human Genomic Variation

Society (HGVS) for the description of sequence variants
(mutations).
Finally, similar to MutationFinder, along with a public tool

for mutation extraction, we also contribute to the text-mining
community a large corpus (500 PubMed abstracts) of manually

annotated raw and normalized mutation mentions. A raw mu-
tation extraction is normalized when individual mutation com-
ponents are identified and standardized when applicable. For

instance, ‘Arg987Ter’ (PMID: 22188495) is normalized as
‘pjRj987jX’ to denote the replacement of an arginine residue at

position 573 by termination codon, where a single letter ‘p’ is
added to indicate the mutation type, and the standard one-letter

codes are used (with their respective positions in the normalized
notation) to represent the wild-type and mutant residue. As
noted earlier in the text, our corpus covers many kinds of mu-

tations not previously considered, such as ‘p.Pro246HisfsX13’
(PMID: 21738389) and ‘IVS3þ1G/A’ (PMID: 15111599).

2 METHODS

As shown in Figure 1, our method first performs tokenization on

the input text as pre-processing. Next, our method extracts mutation

mentions from text using a CRF-based approach, followed by some

post-processing steps. As illustrated in the figure, instead of extracting

a mutation mention such as c.2708_2711delTTAG as a whole, our CRF

module identifies each mutation component (e.g. ‘del’ as the mutation

type) individually. Finally, we have implemented a post-processing

module to handle some rare mutation formulas and nature language

mentions that are not curated in our own corpus. We describe details

of each step later in the text.

2.1 Pre-processing: tokenization

A tokenizer divides text input into a sequence of tokens, which generally

correspond to ‘words’. However, to capture individual components

within a mutation mention, we performed tokenization on a finer level

than traditional methods (Webster and Kit, 1992) that separate input text

by space or punctuation. Specifically, special characters (e.g. ‘-’, ‘*’, ‘þ’),

numbers, lowercase letters and uppercase letters are divided as separate

tokens. For instance, instead of regarding the mention

‘c.2708_2711delTTAG’ in Figure 1 as one token, we split it into seven

pieces as shown in the top row of Table 1.

2.2 Mutation identification: CRF module

As aforementioned, we regarded the mutation identification problem as

a sequence-labeling task. In particular, each mutation component was

considered as an individual label (Table 1) such that every mutation

mention becomes a sequence of labels. Accordingly, we adapted a prob-

ability-based sequence detection CRF model (Lafferty et al., 2001), which

defines the conditional probability distribution PðYjXÞ of label sequence

Y given observation sequence X.

PðYjXÞ ¼
expðFðX,YÞÞP
Y0 expðFðX,Y0ÞÞ

ð1Þ

where y1, . . . , yn is a label sequence from Y and x1, . . . , xn is a token

sequence from X. F X,Yð Þ ¼
Pn

j¼1

Pw
i¼1 !ifi yj, yj�1, X

� �
is a global

feature vector for label sequence Y and observation sequence X and

!1, . . . ,!w is a feature weight vector.

CRF is a log-linear model based on a set of the feature functions

fi yj, yj�1, X
� �

. This function determines the pair of state and observation

tokens to a binary value and associates with the weight !i. The weight

presents the importance of the tag and can be obtained from the training

data by a limited-memory Broyden–Fletcher–Goldfarb–Shanno

(L-BFGS) (Liu and Nocedal, 1989) method. This model can combine

the effects of many meaningful features. We then followed Wallach

(2004) to design the observation function D X, i, jð Þ and feature function:

D X, i, jð Þ ¼
1 if the jth token in X match to feature i
0 otherwise

�
ð2Þ

The observation function returns true, if the token in j position matches

the criteria of feature i and vice versa. For example, if the token at xj is

‘glycine’, then the observation function for the Protein symbols feature

would return true. Consider the following feature function:

fi yj, yj�1, X
� �

¼
D X, i, jð Þ yj ¼ s, yj�1 ¼ t s, t 2 STATES

0 otherwise

�
ð3Þ

The fi yj, yj�1, X
� �

would return true if the two labels of previous yj�1 and

current yj positions belong to one of our designed labels. The CRFmodel

is determined by the features fi yj, yj�1, X
� �

and their corresponding

weight !i.

Fig. 1. The system overview that includes three major components:

pre-processing (tokenization), mutation identification (CRF) and post-

processing (regular expression patterns)

Table 1. An example of mutation component labels in an excerpt ‘. . .

(c.2708_2711delTTAG, p.V903GfsX905) . . .’ in PMID: 22042570

… ( c . 2708 _ 2711 del TTAC . p . V 903 G fs X 905 ) …
O O A I P P P T M O A I W P M F F S O O

Each cell in the top row represents a token in our processing.

1434

C.-H.Wei et al.



In this work, the y1, . . . , yn indicate the label for the corresponding

tokens. Unlike the traditional BIO labeling models, which label each

token as being the beginning of (B), the inside of (I) or entirely outside

(O) of a span of interest, we designed 10 different labels (Table 2) for

describing mutation elements (i.e. tokens within the mutation mentions)

based on the HGVS nomenclature, and one additional label ‘O’ for all

tokens outside a mention (see Table 1 for an example). In this work, we

used the CRFþþ (http://crfpp.googlecode.com/svn/trun-k/doc/index.

html#download) for the actual implementation.

2.3 Features for CRF

We engineered six different types of features for this problem:

(1) Dictionary features. We followed the HGVS mutation nomencla-

ture and developed 11 (7 for genomic and 4 for protein mutations)

regular expressions patterns as shown in Table 3. When there

is a match, each token in the corresponding matched text will

be assigned to one of the three values (‘B/I/E’) for that

feature (B for the beginning token; E for the last token and I for

any other tokens in between B and E). Any token that is not

matched against these patterns will have the value of ‘O’ for this

feature.

(2) General linguistic features. Sometimes, the mutation mentions

may include brief nature language, such as ‘G–4A at nucleotide

position 2141’. To capture such mutations, we included the original

tokens (e.g. nucleotide), as well as stemmed tokens (e.g. nucleo-

tide), as features using the Porter’s stemmer.

(3) Character features. We noticed that many mutation mentions con-

tain numbers and special characters (e.g. the greater sign ‘4’ is

often used to represent amino acid substitution). Therefore, for

each token, we calculated several statistics as its features, including

its number of digitals, number of uppercase and lower letters,

number of all characters and presence or absence of mutation-spe-

cific characters (;,. -4þ � _ /?).

(4) Semantic features. We created several semantic classes for describ-

ing mutation-specific characteristics. All the following features

are binary: 1 when a corresponding word (e.g. del) is present;

0 otherwise.

� Reference sequence type: c (for coding DNA sequence), g (for

genomic sequence), r (for RNA sequence), m (for mitochondrial

sequence), p (for protein sequence)

� Exon/intron: IVS, Intron, Ex, Exon

� Mutation type: del, ins, dup, tri, delins, indel

� Frame shift mutation: fs, fsX, fsx

� DNA/RNA nucleotide: A, T, C, G, a, c, g, u

� Protein amino acid: e.g. glutamine, glu, E

� Mutation-type indicating word: deletion(s), insertion(s), repeat(s)

� Mutation unit: amino acid, acid(s), codon, position(s), bp,

nucleotide(s), residue(s)

� Word preceding mutation mention: intron, exon, promoter,

50-UTR, 30-UTR

(5) Case pattern features. A pattern is constructed to represent case

shifting in the token, and this pattern is included as an additional

feature. As such, each character in the token is represented in a

simplified form. Any upper case alphabetic character is replaced by

‘A’ and any lower case one is replaced by ‘a’. Likewise any number

(0–9) is replaced by ‘0’. Thus, the token ‘TTAG’ generates the case

pattern feature ‘AAAA’, and the token ‘2711’ generates the pattern

feature ‘0000’. Moreover, we also merged consecutive letters and

numbers and generated additional single letter ‘a’ and number ‘0’

features.

(6) Contextual features. We observed that the tokens in the mutation

mention are highly correlated with each other. Take the letter ‘G’

for example; only six possible suffixes (‘lycine’, ‘lutamic’,

‘lutamine’, ‘ln’, ‘ly’ and ‘lu’) can be associated with it to be an

Table 3. Regular expression patterns of genomic and protein mutations based on examination of HGVS mutation nomenclature

Type Regular expression patterns Example

Genomic ([cgrm]\.[ATCGatcgu \/\4\5\?\(\)\[\]\;\:\*\_\-\þ0-9]þ(invjdeljinsjdupjtrijquajconjdelinsjindel)[ATCGatcgu0-9\_\.\:]*) c.2708_2711delTTAG

Genomic (IVS[ATCGatcgu \/\4\5\?\(\)\[\]\;\:\*\_\-\þ0-9]þ(deljinsjdupjtrijquajconjdelinsjindel)[ATCGatcgu0-9\_\.\:]*) IVS2-58_55insT

Genomic ([cgrm]\.[ATCGatcgu \/\4\?\(\)\[\]\;\:\*\_\-\þ0-9]þ) c.467C4A

Genomic (IVS[ATCGatcgu \/\4\?\(\)\[\]\;\:\*\_\-\þ0-9]þ) IVS3þ18C4T

Genomic ([cgrm]\.[ATCGatcgu][0-9]þ[ATCGatcgu]) c.A436C

Genomic ([ATCGatcgu][0-9]þ[ATCGatcgu]) A436C

Genomic ([0-9]þ(deljinsjdupjtrijquajconjdelinsjindel)[ATCGatcgu]*) 912delTA

Protein ([p]\.[CISQMNPKDTFAGHLRWVEYX \/\4\5\?\(\)\[\]\;\:\*\_\-\þ0-9]þ(invjdeljinsjdupjtrijquajconjdelinsjindeljfsXjfsxjfs

xjfs)[CISQMNPKDTFAGHLRWVEYX \/\4\5\?\(\)\[\]\;\:\*\_\-\þ0-9]*)

p.G204VfsX28

Protein ([p]\.[CISQMNPKDTFAGHLRWVEYX \/\4\?\(\)\[\]\;\:\*\_\-\þ0-9]þ) p.G204V

Protein ([p]\.[A-Z][a-z]{0,2}[\W\-]{0,1}[0-9]þ[\W\-]{0,1}[A-Z][a-z]{0,2}) p.Ser157Ser

Protein ([p]\.[A-Z][a-z]{0,2}[\W\-]{0,1}[0-9]þ[\W\-]{0,1}(fsjfsxjfsX)) p.Ser119fsX

Table 2. We defined 10 different labels for tokens within mutation men-

tions: reference sequence (A); mutation position (P); mutation type (T);

wild-type (W); mutant (M); frame shift (F); frame shift position (S);

duplication time (D); SNP (R); other inside mutation tokens (I)

Mutation types A P T W M F S D R I

Substitution � � � � � �

Deletion � � � � �

Insertion � � � � �

Insertion/deletion � � � � �

Duplication � � � � � �

Frame shift � � � � � � � �

RS number �

Each mutation type has its own set of labels (e.g. substitution corresponds to six

labels).
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amino acid. To take advantage of contextual information, for a

given token, we included the dictionary and linguistic features of

three neighboring tokens from each side.

2.4 Post-processing: regular expression rules

Despite our best efforts, the CRF model may still miss a few mentions.

To minimize the number of false negatives within an article, we took the

mentions extracted by the CRF module and translated them into regular

expression patterns for finding additional mentions of similar kind in the

same article. Two rules were applied to make the translated patterns more

generalizable: (i) all numerical digitals become ‘[0-9]þ’; (ii) all lowercase

and uppercase letters become ‘[a-z]’ and ‘[A-Z]’, respectively, except three

special tokens IVS, EX and RS. As a result, ‘c.IVS64þ5C4G’ is trans-

lated to ‘[a-z]\.IVS[0-9]þ\þ[0-9]þ[A-Z]\4[A-Z]’. In addition, we also

added several regular expression patterns based on those of

MutationFinder. But instead of directly adding their 759 specific patterns

such as ‘[Wild type]-to-[Mutant] substitution at position [Position]’, we

built more robust and general patterns. As a result, only a few regular

expression patterns (510) were needed. The inclusion of such patterns

also complements our CRF-based approach in extracting those long nat-

ural-language mutation mentions in the article.

Based on examination of our method development data, we also de-

veloped several additional rules for matching irregular and rare mention

formats such as ‘glycine-594-valine’ and ‘dup33bp’. In addition, our post-

processing step also helps adjust text spans of mutation mentions, such

as adding a missing closing parenthesis p.(Asp569Valfs*93 !

p.(Asp569Valfs*93) or separating two consecutive mutations by semi-

colon rs1573496;C4G’! ‘rs1573496’ and ‘C4G’.

2.5 Corpus construction

As a result of past research on this topic(Bonis et al., 2006; Caporaso

et al., 2007; Furlong et al., 2008; Naderi and Witte, 2012), several muta-

tion corpora are publicly available, but they are either limited in size and/

or scope (protein point mutation) or lack mention-level annotations.

Hence, we decided to develop our own corpus in this work.

We used PubMed to obtain a corpus of MEDLINE abstracts that

contained a large number of mutation mentions. To construct a corpus

containing numerous mentions of the types of mutations we were inter-

ested in, we included many facets in our query, which is composed of both

MeSH (Medical Subject Heading) terms and other search field terms. To

ensure we returned abstracts containing mentions of clinically relevant

mutations, the MeSH ‘Diseases Category’ was an essential component.

We chose the MeSH terms ‘Mutation’ and ‘Polymorphism, Genetic’ to

obtain abstracts that had been indexed as pertaining to genomic variation.

The ‘Title/Abstract’ field was searched for terms identified to retrieve

information pertaining to sequence type, mutation type and mutation

location (see query later in the text). This strategy was chosen after

reviewing example abstracts containing desired mutation mentions and

attempting to retrieve abstracts with similar characteristics. Finally, we

included non-genetic facets that accounted for the other preferences we

had for our potential corpus. These aspects included needing abstracts in

English and specifically about humans. We also wanted to ensure that

only results containing abstracts were retrieved, and that we did not

retrieve review articles because we preferred articles about novel muta-

tions, as mutations are likely to be mentioned in formulaic fashion when

they are first described. The PubMed query is shown later in the text:

‘Diseases Category’[Mesh] AND (mutation[MeSH Terms] OR poly-

morphism, genetic[MeSH Terms]) AND (DNA[Title/Abstract]

OR nucleotide[Title/Abstract]) AND (deletion[Title/Abstract]

OR substitution[Title/Abstract] OR insertion[Title/Abstract] OR

duplication[Title/Abstract] OR indel[Title/Abstract] OR

delin[Title/Abstract] OR conversion[Title/Abstract] OR

translocation[Title/Abstract] OR inversion[Title/Abstract]) AND

(codon[Title/Abstract] OR exon[Title/Abstract] OR intron[Title/Abstract]

OR allele[Title/Abstract] OR gene[Title/Abstract] OR sequence[Title/

Abstract]) AND (genotyp*[Title/Abstract] OR homozyg*[Title/Abstract]

OR heterozyg*[Title/Abstract]) AND hasabstract[text] AND

‘humans’[MeSHTerms] ANDEnglish[lang] NOTReview[ptyp]’

We submitted this query and obtained 5116 abstracts from PubMed in

June 2012. We randomly selected 500 abstracts among those published

after 2001 for manual annotation using PubTator (Wei et al., 2012a,

2012b), a Web-based annotation tool (see a tool screenshot in Fig. 2).

Our corpus was developed in stages by human annotators who have

domain expertise as well as experience in NLP corpus development. In

the first phase, three human annotators annotated 50 abstracts individu-

ally. They then compared their results and only obtained inter-annotator

agreement of 46%. Most of the annotation discrepancies were found to

be because of boundary issues (text spans of mutation mentions are

overlapping but not identical) and varying conceptions of how to anno-

tate nature language mentions. After discussion, a set of annotation

guidelines was drafted (available with tmVar software and corpus).

In the second phase, two of the annotators finished another set of 50

abstracts, reaching 88% agreement this time. In the final round, one

annotator continued and finished the remaining 400 abstracts.

2.6 Baseline approach and additional gold standard

for evaluation

As shown in the Section 3 later in the text, we compared our method with

MutationFinder. As pointed out by Izarzugaza et al. (2012),

MutationFinder is ‘very competitive for recall and precision when com-

pared to other strategies’, and over the years it has been widely adopted

by many others for extracting protein point mutation (Gyimesi et al.,

2012; Schenck et al., 2012; Witte and Baker, 2007). In addition, along

with its public software, MutationFinder has a large corpus where both

raw mentions and normalized annotations are available, which allowed

us to perform cross-comparisons of both methods on two different gold-

standard datasets.

3 RESULTS

3.1 Gold-standard evaluation data

As mentioned, our mutation corpus contains 500 articles. As

shown in Figure 3, one mutation type (substitution) alone ac-

counts for �70% of total annotations. Hence, we further divided

the annotations in this group into two subgroups (i.e. amino acid

substitution versus nucleic acid substitution). Despite the fact

Fig. 2. A screenshot of our applied curation system
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that substitution plays a dominant role, there are a few other

types of sequence variations seen in our corpus, including dele-

tion, insertion and others.
To use it as the gold standard for the method development

and evaluation purposes, we randomly divided the whole set into

two subsets. Detailed statistics about our corpus are shown in

Table 4. Additionally, we also used the MutationFinder corpus

in benchmarking. Those statistics are also shown in the table

later in the text.

3.2 System performance

Following Caporaso et al. (2007), we computed precision, recall

and F-measure on all mentions (including duplicates), as well as

on normalized mentions, which emphasizes an evaluating sys-

tem’s ability of extracting different mutations. In all cases, our

method was compared with MutationFinder. Tables 5 and 6

show results on both our and MutationFinder corpus, respect-

ively. Because MutationFinder was designed exclusively for de-

tecting protein point mutation, we report its performance on all

mutations, as well as just protein point mutations, when using

our test corpus. As such, there are two rows of results in Table 5

for MutationFinder.

As can been seen in Tables 5 and 6, our method tmVar

achieved consistently higher F-measures than MutationFinder

(P50.05; two-sided t-test) on two independent datasets. On

the other hand, when benchmarked on our corpus,

MutationFinder’s results (Table 5) dropped significantly from

the performance on its own corpus (Table 6), especially in

recall, even though we limited our evaluation to its extraction

scope (protein point mutation). Our analysis shows that slight

drop in precision was mainly because its patterns incorrectly

identified DNA substitutions that are protein substitution-like

(e.g. C35322T in PMID: 21054465) in our corpus. In terms of

recall, most missed mentions are due to the lack of its patterns to

recognize nonsense point mutations (e.g. V561X in PMID:

15749661) and point mutations preceded with a sequence type

(e.g. p.A150P in 15880727).
Finally, we find our method tmVar is as fast as

MutationFinder in extracting mutation mentions from text.

When tested on a typical modern desktop computer with Core

2 Duo 3.16GHz CPU and 4 GB random access memory, the

required time for processing 5000 PubMed abstracts is compar-

able: 21.75 (tmVar) versus 24.17 min (MutationFinder).

4 DISCUSSION

4.1 Evaluation of post-processing step

As stated earlier, for optimal performance, the results of CRF

were further supplemented by a set of manually derived rules

for handling issues, such as mention boundaries, rare form

mentions and so forth. As shown in table later in the text,

when the post-processing module was removed altogether,

modest drop in overall performance was found because of the

loss in recall.

As can be seen in Table 7, experimental results using all men-

tions versus normalized mentions yields similar findings. Hence,

Fig. 3. The percentage of different mutation types in our corpus (500

abstracts)

Table 5. Results on the test set of our corpus in terms of precision (P),

recall (R) and F-measure (F)

Methods P (%) R (%) F (%)

All mutations MutationFinder 91.66 33.21 48.76

MutationFindera 89.66 69.15 78.08

tmVar 91.38 91.40 91.39

Normalized

mutations

MutationFinder 84.21 25.29 38.90

MutationFindera 84.09 63.25 72.20

tmVar 87.74 87.46 87.60

aProtein point mutations only.

Table 6. Results on the MutationFinder corpus in terms of precision (P),

recall (R) and F-measure (F)

Methods P (%) R (%) F (%)

All mutations MutationFinder 98.41 81.92 89.41

tmVar 98.80 89.62 93.98

Normalized

mutations

MutationFinder 98.47 80.63 88.66

tmVar 97.58 83.96 90.26

Table 4. Statistics of benchmarking datasets

Dataset Abstracts All mutations Normalized

mutations

Our training set 334 967 604

Our test set 166 464 311

MutationFinder corpus 507 907 480
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in the following analysis, only results using all mentions are

reported.

4.2 Performance comparison with different CRF labeling

models

As aforementioned, unlike previous rule-based approaches

(Caporaso et al., 2007; Doughty et al., 2011; Furlong et al.,
2008), we developed a CRF-based method for extracting differ-

ent elements of a mutation. Furthermore, different from the
common labeling models, such as B(beginning), I(inside),

O(outside) or B(beginning), I(inside), E(end), O(outside)
(Settles, 2004), for named entity recognition, our approach

used a finer-grained design including 11 different labels. As
shown in Table 8, such a design not only allowed us to recognize

individual mutation components, but also led to higher accuracy
in extracted results. Note that results in Table 8 do not involve

the use of post-processing patterns (i.e. we show results directly
derived from the CRF module).

4.3 Evaluation of different features

To examine the contribution of individual feature types, we per-

formed a feature ablation study where different types of features
were removed from the entire set of features one at a time. As

shown in Table 9, the largest drop in performance was due to the
removal of general linguistic features, followed by character and

semantic features. On the other hand, the removal of case pattern
or contextual features had little effect on final performance.

Same as results in Table 8, no post-processing patterns were
used in these experiments.

4.4 Error analysis

Despite our best efforts, there are still errors in our mutation

extraction results. We examined all the extraction errors from
the test set and classified them into several major categories.

As shown in Figure 4, majority of our errors were due to bound-
ary issues (shown in red), as we require exact string offset match

in our evaluation. Further analysis shows that in many cases, our
method only extracts partial mutation information, such as

‘A4G’ in ‘A4G polymorphism at position �670’. This kind
of errors affect both precision and recall. The second largest

error category (shown in green) affects recall only, as our
method simply missed true positive mutations like ‘p.S522fs

525stop’. Our method was also confused by some genotype de-
scriptions (shown in blue) that have similar appearance to mu-

tations by incorrectly predicting some genotypes (e.g. IVS9þ 459

GAþGG in PMID: 19880293) as mutations (false positive

errors). Meanwhile, our specific genotype-filtering rule removes

all mentions with identical wide type and mutant information

during the post-processing, resulting in the loss of silent muta-

tions (false negative errors). These three classes of errors

accounted for480% of the errors made by our method. Other

smaller error types (shown in gray) include identifying mentions

that look like mutations (e.g. ‘Gly-X-Y’) or the ones that are not

included in the gold standard (e.g. we excluded natural language

mutations).

5 CONCLUSION

In summary, we introduced a CRF-based machine-learning

method for mutation extraction from text with high

Fig. 4. Mutation extraction error types. False positive (FP) and negative

(FN) errors are shown, respectively

Table 9. Performance decrease when removing features in terms of pre-

cision (P), recall (R) and F-measure (F)

Features P (%) R (%) F (%)

All features 92.01 83.72 87.67

General linguistic features 86.62 58.02 69.49

Character features 87.78 80.44 83.95

Semantic features 87.12 80.66 83.77

Dictionary features 88.64 83.65 86.07

Contextual features 89.81 83.62 86.60

Case pattern features 91.02 82.97 86.81

All mentions in our test set were used in this study.

Table 7. Evaluation of post-processing steps using our corpus in terms of

precision (P), recall (R) and F-measure (F)

Methods P (%) R (%) F (%)

All mutations tmVar 91.38 91.40 91.39

Removing post-processing 92.01 83.72 87.67

Normalized

mutations

tmVar 87.74 87.46 87.60

Removing post-processing 88.40 82.17 85.17

Table 8. Performance comparison between different CRF labeling

models using all mutations in our test set in terms of precision (P),

recall (R) and F-measure (F)

CRF labeling model P (%) R (%) F (%)

Three labels (B, I, O) 85.81 80.82 83.24

Four labels (B, I, E, O) 86.18 81.59 83.82

Eleven labels (A, T, P, W, M, F, S, D, R, I, O) 92.01 83.72 87.67
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performance. Our method complements and extends existing

methods in extracting a wide range of different types of sequence

variants in scientific publications. There are several future direc-

tions for extending this work. First, tmVar is shown to be accur-

ate on PubMed abstracts in this study. Although tmVar is also

applicable to full text, future study is warranted to determine its

actual performance on different text genres. Second, despite the

fact this work in itself can be used and integrated by other re-

search, just like any other standalone mutation extraction tools

(e.g. MutationFinder), it is useful to extract and associate con-

textual information (e.g. gene/protein sequence) to the extracted

mutations. Third, given our high extraction performance, we are

interested in exploring direct applications of this work in the

framework of computer-assisted biocuration (Lu and

Hirschman, 2012; Névéol et al., 2011, 2012; Wei et al., 2012a).

Indeed, we have started discussing potential opportunities of

contributing our computer-generated results to dbSNP

(L.Phan, personal communication). Finally, together with our

ability to recognize proteins and diseases (Doğan and Lu,

2012a; 2012b; Lu et al., 2011; Wei et al., 2012c), we would like

to investigate automatic methods for characterizing de facto re-

lationships between sequence variations in complex diseases

buried in the biomedical literature.
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