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ABSTRACT

Motivation: Reverse engineering of gene regulatory networks remains

a central challenge in computational systems biology, despite

recent advances facilitated by benchmark in silico challenges that

have aided in calibrating their performance. A number of approaches

using either perturbation (knock-out) or wild-type time-series data

have appeared in the literature addressing this problem, with the

latter using linear temporal models. Nonlinear dynamical models are

particularly appropriate for this inference task, given the generation

mechanism of the time-series data. In this study, we introduce

a novel nonlinear autoregressive model based on operator-valued ker-

nels that simultaneously learns the model parameters, as well as the

network structure.

Results: A flexible boosting algorithm (OKVAR-Boost) that shares

features from L2-boosting and randomization-based algorithms

is developed to perform the tasks of parameter learning and network

inference for the proposed model. Specifically, at each boosting

iteration, a regularized Operator-valued Kernel-based Vector

AutoRegressive model (OKVAR) is trained on a random subnetwork.

The final model consists of an ensemble of such models. The empirical

estimation of the ensemble model’s Jacobian matrix provides an

estimation of the network structure. The performance of the proposed

algorithm is first evaluated on a number of benchmark datasets

from the DREAM3 challenge and then on real datasets related to the

In vivo Reverse-Engineering and Modeling Assessment (IRMA) and

T-cell networks. The high-quality results obtained strongly indicate

that it outperforms existing approaches.

Availability: The OKVAR-Boost Matlab code is available as the

archive: http://amis-group.fr/sourcecode-okvar-boost/OKVARBoost-

v1.0.zip.
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1 INTRODUCTION

The ability to reconstruct cellular networks plays an important
role in our understanding of how genes interact with each other
and how this information flow coordinates gene regulation and

expression in the cell. Gene regulatory networks (GRN) have the
potential to provide us with the cellular context of all genes of
interest, as well as with a means to identify specific subnetworks

that are malfunctioning in a given disease state (Cam et al., 2004;
Jesmin et al., 2010).
A diverse suite of mathematical tools has been developed and

used to infer gene regulatory interactions from spatial and tem-
poral high-throughput gene expression data (see Bansal et al.,
2007; Markowetz and Spang, 2007 and references therein). A fair

comparison for the relative merits of these methods requires
their evaluation on benchmark datasets, which the DREAM
(Dialogue for Reverse Engineering Assessments and Methods)

project (Marbach et al., 2009) provided. It aims to understand
the strengths and the limitations of various algorithms to recon-
struct cellular networks from high-throughput data (Stolovitzky
et al., 2007). In addition to the choice of the algorithm, network

reconstruction heavily depends on the input data type used. Data
that measure the response of the cell to perturbations—either by
knocking out or silencing genes—are particularly useful for such

reconstructions because they offer the potential to obtain a de-
tailed view of cellular functions. The downside is that obtaining
large-scale perturbation data is expensive and relatively few

methods have been proposed in the literature to infer regulatory
networks from such data due to computational challenges
(Gupta et al., 2011; Yip et al., 2010).

Data from time-course gene expression experiments have the
potential to reveal regulatory interactions as they are induced
over time. A number of methods have been used for this task,

including dynamic Bayesian networks (Morrissey et al., 2010; Yu
et al., 2004), Granger causality models (see Shojaie and
Michailidis, 2010b and references therein) and state-space
models (Perrin et al., 2003; Rangel et al., 2004). The first set of

methods is computationally demanding, while the latter two use
linear dynamics, hence limiting their appeal. Other approaches
are based on assumptions about the parametric nature of the

dynamical model and resort to time-consuming evolutionary
algorithms to learn the network (Sı̂rbu et al., 2010). Moreover,
in spite of the rich collection of methods used to solve the top-

ology and dynamics of GRNs, certain types of errors continue to
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challenge the modeling efforts, implying that there is still signifi-

cant room for improvement (Marbach et al., 2010; Smet and

Marchal, 2010).
This study makes a number of key contributions to the

challenging problem of network inference based solely on time-

course data. It introduces a powerful network inference frame-

work based on nonlinear autoregressive modeling and Jacobian

estimation. The proposed framework is rich and flexible, using

penalized regression models that coupled with randomized

search algorithms, and features of L2-boosting prove particularly

effective as the extensive simulation results attest. The models

used require tuning of a number of parameters, and we introduce

a novel and generally applicable strategy that combines boot-

strapping with stability selection to achieve this goal.

2 MODEL AND METHODS

2.1 Nonlinear autoregressive models and network

inference

Let xt 2 R
p denote the observed state of a GRN comprising

p genes, with S ¼ f1, � � � , pg. We assume that a first-order sta-

tionary model is adequate to capture the temporal evolution of

the network state, which can exhibit nonlinear dynamics cap-

tured by a function H : R
p
! R

p; i.e. xtþ1 ¼ HðxtÞ þ ut, where

ut is a noise term. The regulatory interactions among the genes

are captured by an adjacency matrix A, which is the target of our

inference procedure.
Note that for a linearly evolving network, A can be directly

estimated from the data. However, in our setting, it can be ob-

tained by averaging the values of the empirical Jacobian matrix J

of the function H, over the whole set of time points. Specifically,

denote by x0, . . . , xN�1 the observed time series of the network

state. Then, 8ði, jÞ 2 S � S, the empirical estimate of the

Jacobian matrix of model H is given by

JðHÞij ¼
XN�2
t¼0

@HðxtÞi
@ðxtÞj

ð1Þ

and an estimate of the adjacency matrix A of the network is given

by Âij ¼ gðJðHÞijÞ where g is a thresholding function. Note that

in the presence of sufficient number of time points (N44p) one

can use the above posited model directly to obtain an estimate of

A, provided that a good functional form of H is selected.

However, the presence of more genes than time points makes

the problem more challenging, which together with the absence

of an obvious candidate functional form for H make a nonpara-

metric approach an attractive option. Such an approach is

greatly facilitated by adopting an ensemble methodology,

where H is built as a linear combination of nonlinear vector

autoregressive base models defined over overlapping subsets of

genes (e.g. subnetworks). Let M be the number of subnetworks

and Sm � S (m ¼ 1, . . . ,M) be the subset of genes that consti-

tutes the mth subnetwork. Each subnetwork has the same size k.

We assume that H can be written as a linear combination of

M autoregressive functions of the form h : R
p ! R

p such that

bxtþ1 ¼ HðxtÞ ¼
XM
m¼1

�mhðxt;SmÞ ð2Þ

The paramater set Sm defines the subspace of R
p where h oper-

ates. This component-wise subnetwork approach is intended to

overcome the intractability of searching in high-dimensional

spaces and to facilitate model estimation. In our framework,

subnetworks do not have any specific biological meaning and

are allowed to overlap.

Efficient ways to build an ensemble of models include bagging,

boosting and randomization-based methods such as random

forests (Dietterich, 2000; Friedman et al., 2001). The latter two

approaches have been empirically shown to perform well in clas-

sification and regression problems. In this study, we use an L2-

boosting type algorithm suitable for regression problems

(Bühlmann and Yu, 2003; Friedman et al., 2001) enhanced

with a randomization component where we select a subnetwork

at each iteration. The algorithm sequentially builds a set of pre-

dictive models by fitting at each iteration the residuals of the

previous predictive model. Early-stopping rules developed to

avoid overfitting improve the performance of this algorithm.

Next, we discuss a novel class of base models.

2.2 A new base model

The ensemble learner is a linear combination of M base models

denoted by h [Equation (2)]. Even though h works on a subspace

of R
p defined by Sm, for the sake of simplicity we present here a

base model h : R
p ! R

p that works with the whole set of genes,

e.g. in the whole space R
p. Here, we introduce a novel family of

nonparametric vector autoregressive models called OKVAR

(Operator-valued Kernel-based Vector AutoRegressive) (Lim

et al., 2012) within the framework of Reproducing Kernel

Hilbert Space (RKHS) theory for vector-valued functions.

Operator-valued kernel-based models have been previously

used for multitask learning problems (Micchelli and Pontil,

2005), functional regression (Kadri et al., 2010) and link predic-

tion (Brouard et al., 2011).
OKVAR models generalize kernel-based methods initially de-

signed for scalar-valued outputs, such as kernel ridge regression,

elastic net and support vector machines, to vector-valued out-

puts. An operator (matrix)-valued kernel (as output space is R
p,

the operator is a linear application on vectors of R
p and thus a

matrix), whose properties can be found in Senkene and

Tempel’man (1973), takes into account the similarity between

two vectors of R
p in a much richer way than a scalar-valued

kernel, as shown next. Let x0, . . . , xN�1 be the observed network

states. Model h is built on the observation pairs

ðx0, x1Þ, . . . , ðxN�2, xN�1Þ and defined as

hðxt;SÞ ¼
XN�2
k¼0

Kðxk, xtÞ:ck ð3Þ

where Kð�, �Þ is an operator-valued kernel and each ck
(k 2 f0, . . . ,N� 2g) is a vector of dimension p. In the following,

we will denote by C ¼ ðck, iÞk, i 2 M
N�1, p, the matrix composed

of the N – 1 row vectors cTk of dimension p.
In this work, we define a novel matrix-valued kernel built

on the Hadamard product of a decomposable kernel and a trans-

formable kernel previously introduced in Caponnetto et al., 2008

(see details in the Supplementary Material): 8ðx, zÞ 2 R
2p,

Kðx, zÞij ¼ bij exp ��0jjx� zjj2
� �

: exp ��1ðxi � zjÞ
2

� �
ð4Þ
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K depends on a matrix hyperparameter B that must be a positive

semi-definite matrix. The term exp ��0jjx� zjj2
� �

is a classical

Gaussian kernel that measures how a pair of states ðx, zÞ are

close. More interestingly, the term exp ��1ðxi � zjÞ
2

� �
measures

how close coordinate i of state x and coordinate j of state z are,

for any given pair of states ðx, zÞ.One great advantage of such a

kernel is that it includes a term that reflects the comparison of all

coordinate pairs of the two network states and does not reduce

them to a single number. The matrix B serves as a mask, impos-

ing the zeros. When bij is zero, the i-th coordinate of x and the

j-th coordinate of z do not interact and do not play a role in the

output of the model.

In other words, for a given gene i 2 S, the output of the

model writes as follows: hðxt;SÞi ¼
PN�2

k¼0 ðKðxk, xtÞ:ckÞi ¼Pp
j¼1 bij

PN�2
k¼0 exp ��0jjxk � xtjj

2
� �

exp ��1ðxki � xtjÞ
2

� �
ckj

� �

hðxt;SÞi ¼
Xp
j¼1

bij fijðxtÞ ð5Þ

Equation (5) shows that the expression level of gene i at time tþ 1

is modeled by a linear combination of nonlinear terms

fijðxtÞ that share parameter C. The function fij itself is a non-

parametric function built from training data. fijðyÞ ¼PN�2
k¼0 exp ��0jjxk � yjj2

� �
exp ��1ðxki � yjÞ

2
� �

ckj

� �
. The function

fij expresses the role of the regulator j on gene i. If bij equals 0, then

gene j does not regulate gene i, according to the model.MatricesB

and C need to be learned from the available training data. If B is

fixed, C can be estimated using penalized least squares minimiza-

tion as in (Brouard et al., 2011). However, learning B and C sim-

ultaneously is more challenging, as it involves a nonconvex

optimization problem. We propose here to define B as the

Laplacian of an undirected graph represented by an adjacency

matrix W to ensure the positive semi-definiteness of B. Then,

learning B reduces to learn W. In this work, we decouple the

learning of W and C by first estimating W and then C.

2.3 OKVAR-Boost

The proposed algorithm is called OKVAR-Boost, as H models

the temporal evolution between network states xt with an

L2-boosting approach. As seen in Algorithm 1 and illustrated

in Figure 1, it generates HmðxtÞ, an estimate of xtþ1 at iteration

m, and updates this estimate in a while-loop until an early-

stopping criterion is met, or until the prespecified maximum

number of iterations M is reached. In the OKVAR-Boost

loop, H0ðxtÞ is initialized with the mean values of the genes

across the time points. The steps for estimating H in a subse-

quent iteration m are as follows: Step 1 computes the residuals

u
ðmÞ
tþ1 for time points t 2 f0, . . . ,N� 2g. Computing the residuals

in this step confers OKVAR-Boost its L2-boosting nature.

In Step 2, an early-stopping decision is made based on the com-

parison between the norms of the residuals and a prespecified

stopping criterion ". If the norms for all dimensions (genes) are

less than ", the algorithm exits the loop. In Step 3, a random

subset Sm of size k is chosen among the genes in S, whose norm

exceeds ". This step constitutes the ‘randomization component’

of the algorithm. Step 4 uses the current residuals in the subspace

to estimate the interaction matrix Wm and parameters CðmÞ.

Subsequently, �m is optimized through a line search. The mth

boosting model HmðxtÞ is updated in Step 5 with the current

Wm, C
ðmÞ and �m estimates. If the prespecified number of iter-

ations M has not been reached, the algorithm loops back to

Step 1. Otherwise, it exits the loop and estimates the adjacency

matrix Â by computing and thresholding the Jacobian matrix.
We next delineate how the interaction matrix Wm and model

parameters CðmÞ and �m are estimated from residuals in Step 4.

Algorithm 1 OKVAR-Boost

Inputs:

Network states: x0, . . . ,xN�1 2 R
p

Early-stopping threshold "

Initialization:

8t 2 f0, . . . ,N� 1g, H0ðxtÞ :¼ ð �x1, . . . , �xpÞT

Iteration m¼ 0, STOP¼ false

while m5M and STOP¼ false do

Step 0: Update m mþ 1

Step 1: Compute the residuals u
ðmÞ
tþ1 :¼ xtþ1 �Hm�1ðxtÞ

Step 2: STOP:¼ true if 8j 2 f1, . . . , pg, jjuj ðmÞjj � �

if STOP¼ false then

Step 3: Select Sm, a random subset of genes of size k � p

Step 4: (a) Estimate the interaction matrix Wm 2 f0, 1g
k�k from

u
ðmÞ
1 , . . . , u

ðmÞ
N and compute Bm as the Laplacian of Wm, (b) estimate

the parameters Cm and (c) estimate �m by a line search.

Step 5: Update the mth boosting model: HmðxtÞ :¼ Hm�1ðxtÞþ

�mhðxt; fSm,Wm,CmgÞ

end if

end while

mstop :¼ m

Compute the Jacobian matrix Jmstop
of Hmstop

across time points, and

threshold to get the final adjacency matrix Â.

2.4 Randomization and estimation of the

interaction matrix

Combining features of random forests and boosting algorithms

gave robust results in a previous study (Geurts et al., 2007). We

use this approach and select, at each iterationm (Step 3) a random

subset of genes denoted Sm � S. Then, in (Step 4), we use partial

correlation estimation, as a weak graph learner, on Sm to increase

the robustness of the algorithm and reinforce its ability to focus

on subspaces. The details of the statistical test for conditional

independence based on partial correlations can be found in the

Supplementary Material. Based on the matrixWm resulting from

this test, we define Bm as the Laplacian of Wm.

Fig. 1. General scheme of OKVAR-Boost. The mth learner is run on the

residuals of the globalmodel on a randomsubset of time series, denotedSm
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2.5 Autoregression using OKVAR

At each iteration m, an OKVAR model such as previously
described in Equation (3) is defined to work in the k dimensional

subspace associated with the subset Sm. Denoted by PðmÞ

the p� p diagonal matrix is defined as follows: p
ðmÞ
ii ¼ 1 if gene

i belongs to Sm, and pðmÞii ¼ 0 otherwise. Formally, hm ¼

hð�; fSm,Wm,C
ðmÞgÞ has to be learnt fromeuðmÞt ¼ PðmÞu

ðmÞ
t instead

of residuals uðmÞt . Then, we only need to complete Step 4(b) by

learning parameters CðmÞ. This estimation can be realized via the
functional estimation of hm within the framework of regulariza-
tion theory, e.g. the minimization of a cost function comprising

the empirical square loss and the square ‘2 norm of the function
hm, which imposes smoothness to the model. Moreover, our aim
is 2-fold: we do not only want to get a final model H that fits

the data well and predicts successfully future time points, but we
also want to extract the underlying regulatory matrix from the

model; therefore, the cost function to be minimized must also
reflect this goal. Following Subsection 2.1, the adjacency matrix
of the network A is estimated by the empirical Jacobian J(H),

expressed in terms of the empirical Jacobian JðmÞ of the
base models hm (m ¼ 1, . . . ,mstop) using the observed data (not

residuals): 8ði, jÞ 2 S � S, Jij ¼
Pmstop

m¼1 �mJ
ðmÞ
ij ¼

1
N�1

Pmstop

m¼1 �mPN�2
t¼0 JðmÞij ðtÞ where for a given time point t, the coefficients of

the Jacobian, JðmÞij ðtÞ, are given as follows:

J
ðmÞ
ij ðtÞ ¼

@hmðxtÞi
@ðxtÞj

¼
XN�2
k¼0

Xp
‘¼1

c
ðmÞ
k, ‘

@KðmÞðxk, xtÞi‘
@ðxtÞj

The full expression of the instantaneous Jacobian when KðmÞ is
chosen as the Gaussian matrix-valued kernel defined in Equation

(4) is given in the Supplementary Material. Whatever is KðmÞ,
when it is fixed, controlling the sparsity of the coefficients of
CðmÞ will impact the sparsity of JðmÞ and will avoid too many

false-positive edges. Therefore, we add to the cost function pre-
viously discussed, an ‘1 term to ensure the sparsity of CðmÞ:

LðCðmÞÞ ¼
XN�2
t¼0

euðmÞtþ1 � hmðeuðmÞt Þ

��� ���2 þ �2jjhmjj2H þ �1jjCðmÞjj1 ð6Þ
The respective norms can be computed as follows:

jjhmjj
2
H ¼

XN�2
i, j¼1

c
ðmÞT

i KðmÞðeuðmÞj ,euðmÞi Þc
ðmÞ
j

and jjCðmÞjj1 ¼
PN�2

t¼0

P
j2Sm
jcðmÞtj j. This regularization model

combining ‘1 and ‘2 penalties is known as the elastic net model

(Friedman et al., 2001) and it has been shown that not only does
it achieve sparsity like lasso penalized models, but also encour-

ages grouping effects, which might be relevant in our case to
highlight possible joint regulation among network variables
(genes). We used a projected scaled subgradient method

(Schmidt et al., 2009) to minimize the cost function.

3 IMPLEMENTATION

3.1 Data description

The performance of OKVAR-Boost was evaluated on a number
of GRNs obtained from DREAM3 in silico challenges.

Specifically, 4 and 46 time series consisting 21 time points

corresponding, respectively, to size-10 and size-100 networks

for Escherichia coli (2) and Yeast (3) were selected. The data

were generated by simulating from a thermodynamic model for

gene expression to which Gaussian noise was added. The mul-

tiple time series correspond to different random initial conditions

for the thermodynamic model (Prill et al., 2010). The topology of

the networks is extracted from the currently accepted E.coli and

Saccharomyces cerevisiaeGRNs, and exhibits varying patterns of

sparsity and topological structure. Some summary statistics for

the networks are presented in Supplementary Table S1. Yeast2

and Yeast3 have markedly higher average-degree, density and

lower modularity for both size-10 and size-100 networks.

Ecoli2 is seen to be different from Ecoli1 in that for size 10 is

denser, less modular, has higher average-degree, whereas for size

100, these relations are reversed. Yeast1 is observed to be closer

to the Ecoli networks for all three statistics.
In addition to these synthetic datasets, we applied OKVAR-

Boost to two other datasets. The first deals with activation

of T-cells (Rangel et al., 2004) and comprises 44 times series

(replicates) for 58 genes. The second dataset comes from the

In vivo Reverse-Engineering and Modeling Assessment (IRMA)

experiment (Cantone et al., 2009), where a size-5 network was

synthesized, with each gene controlling the transcription of at

least another gene. Further, galactose and glucose are, respect-

ively, used to switch on or off the network. In this study, we

focus on time-series measurements (four switch-off series and five

switch-on series) comprising 9 up to 20 time points.

3.2 Hyperparameters and model selection

Because the OKVAR-Boost algorithm depends on a number of

tuning parameters, some of them were a priori fixed, with the

remaining ones selected automatically with a new variant of sta-

bility criterion, appropriate for time series, called Block Stability.

Let us first summarize the hyperparameters that we fixed a

priori. They include a stopping criterion for the norm of the

residual vector, set to � ¼ 10�2, the size of random subnetworks

k in Step 1 set to eight genes for size-10 networks, to 17 for size-

100 networks, to six for T-cell and to four for IRMA (parameters

based on a grid search) and in Step 4 the level of the partial

correlation test is set to a conservative �¼ 5%. If the algorithm

fails to find any significant interactions with the partial correl-

ation test, the subnetwork is discarded and a new k� k subnet-

work is randomly chosen. This procedure is repeated for a

maximum of 100 iterations. In Step 5, the parameter of the

Gaussian matrix-valued kernel �1 Equation (4) is fixed to 0.2.

As the role of the scalar Gaussian kernel of Equation (4) is not

central in the network inference, �0 is fixed to 0 in those experi-

ments. For the other hyperparameters, we consider stability,

which is a finite sample criterion that has been applied to select

hyperparameters in various settings, such as clustering or feature

selection in regression (Meinshausen and Bühlmann, 2010). The

idea underlying stability-driven selection is to choose the hyper-

parameters that provide the most stable results when randomly

subsampling the data. We propose a new selection criterion,

called Block stability based on the block bootstrap. Block boot-

strap resamples time series by consecutive blocks ensuring that

each block of observations in a stationary time series can be

treated as exchangeable (Politis et al., 1999). For the DREAM
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data, we chose a length of 12 and 15 time points for size 10 and
size 100, respectively, and 7 for both the T-cell and IRMA

datasets, while the number of pairs of block-bootstrapped sub-

samples was set to B¼ 20. We define the Block instability noted
BIS for a pair of hyperparameters ð�1, �2Þ by measuring how the

two Jacobian matrices built from two models learnt from two

different subsamples differ in average. The reader will find the
expression of the BIS criterion in the Supplementary Material.

When L time series are available, the criterion becomes

BISð�1, �2;x
N�1, 1
0 , . . . , xN�1,L0 Þ ¼ 1

L

PL
‘¼1 BISð�1, �2; x

N�1, ‘
0 Þ. In

the experiments, hyperparameters �1 and �2 were chosen as

the minimizers of the block-instability criterion BIS when only

a single time series was available and BIS when multiple ones
were provided.

3.3 OKVAR-Boost with multiple runs

As OKVAR-Boost residuals diminish rapidly, there is a risk that

the potential regulators and their targets may not be fully
explored by the random subnetwork procedure of the algorithm.

To address this issue, the algorithm was run nRun¼ 10 times and

a consensus network was built by combining the predictions from
each run. Specifically, for each pair of nodes, the frequency with

which the edge appears over multiple runs was calculated, thus

yielding the final network prediction. If the frequency was above
a preset threshold, the edge was kept, otherwise discarded.

3.4 Consensus network from multiple time series

In many instances, multiple (L) time series may be available,
either because of multiple related initial conditions or due to bio-

logical and/or technical replicates. In this case, the procedure just

needs to be repeated accordingly and the L � nRun obtained
networks are combined as described above to provide a final

consensus network. We set Âij ¼ 1 if and only if

PL�nRun
r¼1

jÂðrÞij j � fcons � L � nRun, where ÂðrÞ is the estimated adja-

cency matrix for run number r and fcons 2 ½0, 1� is the consensus

threshold level for edge acceptance.
When doing multiple runs, fcons should be adjusted if prior

knowledge about the size, density and modularity of the under-

lying network is available. In general, the larger the size of a bio-
logical network, the bigger are the combinatorial challenges for

discovering true edges and avoiding false ones. Therefore, the con-

sensus threshold should be set to smaller values for larger net-
works. For a fixed size, the threshold will depend on the density

and modularity of the network. Denser and more modular net-

works have greater instances of co-regulation for certain genes,

which lowers prediction accuracy for network inference algorithms
(Marbach et al., 2010) and leads to a greater number of false

positives. In our experience, lower consensus thresholds are also

recommended for denser and more modular networks as well.

3.5 Network inference and evaluation

When ground truth is available for the network inference task,

namely for simulated data from DREAM3 challenges and real

data from the synthetic network IRMA, we evaluated the results

according to the DREAM3 challenge assessment. In DREAM3

challenges, the target graph is directed but not labeled with
inhibitions or inductions. The performance of the algorithm

is assessed using the following standard metrics: the receiver

operating characteristic curve (ROC), the area under ROC

(AUROC) and the area under the precision-recall curve

(AUPR). To extract the adjacency matrix from the Jacobian

(see subsection 2.1), the hyperbolic tangent transformation
applied to the normalized coefficients of the Jacobian was used

(for a matrix Q, jjQjjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i, j Q
2
ij

q
is the Frobenius norm of Q):

Âij ¼ s tanh
Jij
jjJjjF

� �
� �

� �
, with sðxÞ ¼ 1 if x40 and 0, otherwise

and � varying to get ROC and PR curves.

4 RESULTS

4.1 Numerical results for DREAM3 networks

Overall, the OKVAR-Boost algorithm succeeds in fitting the

observed data and exhibits fast convergence. In Figure 2, results
from the Ecoli2 networks (size 10 and size 100) are presented.

Note that the algorithm is rich and flexible enough to have the

mean squared error for genes diminishing fast toward zero in

only 5–10 iterations. The performance of the OKVAR-Boost

algorithm for prediction of the network structure is given in

Tables 1 and 2 and Supplementary Table S3. The results show
a comparison between the base learner alone when the true B is

provided for DREAM3 size-10 networks (Table 1), boosting

with multiple runs using a single time series and all the available

time series. The base learner is an elastic-net OKVAR model

learnt given the Laplacian of the true undirected graph and

applied on the whole set S of genes. The LASSO row corres-

ponds to a classical linear least squares regression: xtþ1, i ¼ xTt �i,
realized on each dimension (gene) i ¼ 1 . . . p subject to an ‘1
penalty on the �i parameters. An edge ði, jÞ is assigned for each

nonzero �ij coefficient. The LASSO was run on all the available

time series and a final consensus network is built in the same

fashion as delineated in section 3.4. The AUROC and AUPR

values obtained strongly indicate that OKVAR-Boost outper-
forms the LASSO and the teams that exclusively used the same

set of time-series data in the DREAM3 competition. The mul-

tiple-run consensus strategy achieved superior AUROC and

AUPR results for all networks except for size-10 Yeast2. We

particularly note that the OKVAR-Boost consensus runs ex-

hibited excellent AUPR values compared with those obtained
by teams 236 and 190. The consensus thresholds for multiple-

run and bootstrap experiments were chosen taking into account

network properties such as size, density, modularity, average-

degree and topology. For size-10 networks, Yeast2 and Yeast3

have substantially higher density and average-degree suggesting

Fig. 2. Mean squared error of OKVAR-Boost model for each gene using

Ecoli2 datasets. (a) Size-10 Ecoli2 (b) Size-100 Ecoli2. The algorithm

terminated after 14 and 4 iterations, respectively
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lower consensus thresholds. In light of this information, we used

a threshold of 50% for Ecoli1, Ecoli2, Yeast1, and 40% for

Yeast2 and Yeast3 for multiple-run experiments. For size-100

networks, we made use of the prior information that Ecoli2

has a star topology composed of few central hubs that regulate

many genes. Because it is more difficult to reconstruct such

special modularities, one should expect to observe lower edge

frequencies. Thus, a smaller consensus threshold would be

appropriate. For the multiple-run experiments, we used 20%

for Ecoli2 and 40% for all other networks.
A comparison between algorithms for size-100 networks

(Table 2) shows that OKVAR-Boost again clearly outperforms

Team 236, the only team that exclusively used time-series data

for the size-100 challenge. It is noticeable that AUROC values

for size-100 networks still remain high and look similar to their

size-10 counterparts, while AUPR values in all rows have stayed

lower than 10% except for size-100 Ecoli2. A similar decline

is also observed in the results of Team 236. It can be seen that

AUPR values can be impacted more strongly by the lower dens-

ity of the size-100 networks, where the non-edges class severely

outnumbers the edges class, rather than the choice of algorithm.

Additionally, for such difficult tasks, the number of available

time series may be too small to get better AUROC and

AUPR. Although there is no information on the structure

of team 236’s algorithm, its authors responded to the post-

competition DREAM3 survey stating that their method uses

Bayesian models with an in-degree constraint (Prill et al.,

2010). This in-degree constraint may explain their particularly

poor AUROC and AUPR performance for the high average-

degree networks Yeast2 and Yeast3 (average-degree values in

Supplementary Table S1). Team 190 (Table 1) reported in the

same survey that their method is also Bayesian with a focus on

nonlinear dynamics and local optimization. This team did not

submit predictions for the size-100 challenge.
Interestingly, Supplementary Table S2 highlights that as ex-

pected, performance depends on the number of the training time

series and that the use of all the provided time series allows to

reach significant gains. This illustrates that the number of obser-

vations required to get good performance is related to the com-

plexity of the dynamics in the state space. The optimal condition

to use this nonparametric approach is to visit as many different

initial conditions as possible. In practice, the user will also pay

attention that the number of time points in a single time series is

larger than the number of considered genes.

4.2 Results on IRMA datasets

OKVAR-Boost exhibits outstanding performance for the IRMA

network (Supplementary Table S3). Specifically, for the switch-off

series bothAUROC andAUPRperformancemetrics exceed 80%

(the inferred network is shown in Supplementary Fig. S1), while

for the switch-on series they get a perfect score. Themethod clearly

outperforms a Bayesian method using ordinary differential equa-

tions coupled with Gaussian processes (Äijö and Lähdesmäki,

Table 1. AUROC and AUPR for OKVAR-Boost (�1 ¼ 1,�2 ¼ 10 selected by Block Stability), LASSO, Team 236 and Team 190 (DREAM3 challenge)

run on DREAM3 size-10 networks

Size-10 Ecoli1 Ecoli2 Yeast1 Yeast2a Yeast3a

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

OKVARþTrue B 0.932 0.712 0.814 0.754 0.856 0.494 0.753 0.363 0.762 0.450

OKVAR-Boost (1 TS) 0.665	 0.088 0.272	 0.081 0.629	 0.095 0.466	 0.065 0.663	 0.037 0.256	 0.022 0.607	 0.049 0.312	 0.056 0.594	 0.072 0.358	 0.099

OKVAR-Boost (4 TS) 0.853 0.583 0.749 0.536 0.689 0.283 0.653 0.268 0.695 0.443

LASSO 0.500 0.119 0.547 0.531 0.528 0.244 0.627 0.305 0.582 0.255

Team 236 0.621 0.197 0.650 0.378 0.646 0.194 0.438 0.236 0.488 0.239

Team 190 0.573 0.152 0.515 0.181 0.631 0.167 0.577 0.371 0.603 0.373

Note: OKVAR-Boost results using one time series [OKVAR-Boost (1 TS)] (average	 standard deviations) and the four available time series [OKVAR-Boost (4 TS)] are from

consensus networks. The numbers in boldface are the maximum values of each column.
aConsensus thresholds for Yeast2 and Yeast3 are different due to their higher density and average-degree.

Table 2. AUROC and AUPR for OKVAR-Boost (�1 ¼ 0:001,�2 ¼ 0:1 selected by Block Stability), LASSO and Team 236 (DREAM3 challenge) run

on DREAM3 size-100 networks

Size-100 Ecoli1 Ecoli2a Yeast1 Yeast2 Yeast3

AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

OKVAR-Boost 0.718 0.036 0.772 0.107 0.729 0.042 0.650 0.073 0.643 0.069

LASSO 0.519 0.016 0.512 0.057 0.507 0.016 0.530 0.044 0.506 0.044

Team 236 0.527 0.019 0.546 0.042 0.532 0.035 0.508 0.046 0.508 0.065

Note: All the results are obtained using the 46 available time series. The numbers in boldface are the maximum values of each column.
aEcoli2 has a strong star topology, which suggests a different consensus threshold for this network.
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2009) for the switch-on series and lags by a small margin for the
switch-off series. The LASSO method gave fairly poor results.

4.3 Results on T-cell activation dataset

The reconstructed regulatory network using OKVAR-Boost is
given in Supplementary Figure S2. The following hyperpara-
meters were used: �1 ¼ 1, �2 ¼ 1 and a threshold for the consen-

sus network of 0.01. The resulting network contains 144 edges.
As discussed in Rangel et al., 2004, the main functional cate-

gories involved in T-cell response are cytokines, apoptosis and
cell cycle. Some important regulating and regulated genes include

FYB, GATA3 and CD 9 (inflammation), CASP 7 and 8 (apop-
tosis) and CDC2 (cell cycle). All of them appeared in the recon-

structed network. In addition, the algorithm identified CCNA2
involved in the cell cycle (Ody et al., 2000), SIVA involved in

apoptosis (Gudi et al., 2006) and MKBNIA, which has been
associated with T-cell immunodeficiency (Lopez-Granados
et al., 2008), as key hub genes. Overall, the algorithm identifies

previously known ones in T-cell activation, but also emphasizes
the role of some new ones.

5 DISCUSSION

Gene regulatory inference has been cast as a feature selection

problem in numerous works. For linear models, lasso penalized
regression models have been effectively used for the task (Fujita

et al., 2007; Perrin et al., 2003; Shojaie andMichailidis, 2010a). As
an alternative to lasso regularization, an L2 boosting algorithm
was proposed in Anjum et al., 2009 to build a combination of

linear autoregressivemodels that work for large networks. In non-
linear nonparametricmodeling, random forests and their variants,

extra-trees (Huynh-Thu et al., 2010), have recently won the
DREAM5 challenge devoted to static data by solving p regression

problems. Importance measures computed on the explanatory
variables (genes) provide potential regulators for each of the can-

didate target gene. Compared with these approaches, OKVAR-
Boost shares features with boosting and selected features of

randomization-based methods, such as the use of a random sub-
network at each iteration. It exhibits fast convergence in terms of
mean squared error due to the flexibilty of theOKVAR to capture

nonlinear dynamics. Further, it uses an original and general way
to extract the regulatory network through the Jacobian matrix of

the estimated nonlinear model. The control of sparsity on the
Jacobian matrix is converted into a constraint of the parameters

of each basemodel hm, for which the independencematrixWm has
been obtained by a conditional independence test. It should also

be emphasized that prior information about the regulatory net-
work can be easily incorporated into the algorithm by fixing

known coefficients of the independence matrices used at each it-
eration. OKVAR-Boost also directly extends to additional
observed time series from different initial conditions. Although

we only showed one specific OKVAR model that is of special
interest for network inference, other kernels can be defined and

be more appropriate depending on the focus of the study.
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Äijö,T. and Lähdesmäki,H. (2009) Learning gene regulatory networks from

gene expression measurements using non-parametric molecular kinetics.

Bioinformatics, 25, 2937–2944.

Anjum,S. et al. (2009) A boosting approach to structure learning of graphs with and

without prior knowledge. Bioinformatics, 25, 2929–2936.

Bansal,M. et al. (2007) How to infer gene networks from expression profiles. Mol.

Syst. Biol., 3, 78.

Brouard,C. et al. (2011) Semi-supervised Penalized Output Kernel Regression for

Link Prediction. ICML-11, 593–600.
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