Skip to main content
. Author manuscript; available in PMC: 2014 Jul 15.
Published in final edited form as: Pattern Recognit Lett. 2013 Mar 26;34(10):1130–1137. doi: 10.1016/j.patrec.2013.03.009

Table 2.

Recognition rates of proposed method compared with the state-of-the-art approaches on (top) UIUC dataset and (bottom) UMD dataset. Nt is the number of training images in each class.

Nt VG
[30]
MFS
[33]
Lazebnik
[16]
Zhang
[35]
SIFT
[18]
SURF
[2]
DAISY
[31]
ORB
[25]
CARD
[1]
MROGH
[10]
Our
method
5 82.86 82.24 91.12 88.62 91.96 90.73 86.80 79.03 73.99 88.76 90.86
10 87.85 88.36 94.42 93.17 95.42 95.15 92.54 86.26 83.00 94.13 95.55
15 90.62 91.38 96.64 95.33 96.87 96.14 94.16 89.40 87.18 95.93 97.07
20 92.31 92.74 97.02 96.67 97.84 96.75 95.21 90.73 89.69 96.82 97.91
Nt VG
[30]
MFS
[33]
Lazebnik
[16]
Zhang
[35]
SIFT
[18]
SURF
[2]
DAISY
[31]
ORB
[25]
CARD
[1]
MROGH
[10]
Our
method
5 90.92 85.63 90.71 91.56 91.68 90.41 90.81 81.85 84.38 90.39 91.23
10 94.09 90.82 94.54 96.00 96.01 94.49 94.92 87.87 90.41 94.54 96.06
15 96.22 92.67 96.29 96.79 97.21 96.13 96.47 90.87 93.05 96.01 97.59
20 96.36 93.93 96.95 97.62 97.64 96.98 97.58 92.84 94.23 97.03 98.20