Table 2.
Recognition rates of proposed method compared with the state-of-the-art approaches on (top) UIUC dataset and (bottom) UMD dataset. Nt is the number of training images in each class.
| Nt | VG [30] |
MFS [33] |
Lazebnik [16] |
Zhang [35] |
SIFT [18] |
SURF [2] |
DAISY [31] |
ORB [25] |
CARD [1] |
MROGH [10] |
Our method |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 5 | 82.86 | 82.24 | 91.12 | 88.62 | 91.96 | 90.73 | 86.80 | 79.03 | 73.99 | 88.76 | 90.86 |
| 10 | 87.85 | 88.36 | 94.42 | 93.17 | 95.42 | 95.15 | 92.54 | 86.26 | 83.00 | 94.13 | 95.55 |
| 15 | 90.62 | 91.38 | 96.64 | 95.33 | 96.87 | 96.14 | 94.16 | 89.40 | 87.18 | 95.93 | 97.07 |
| 20 | 92.31 | 92.74 | 97.02 | 96.67 | 97.84 | 96.75 | 95.21 | 90.73 | 89.69 | 96.82 | 97.91 |
| Nt | VG [30] |
MFS [33] |
Lazebnik [16] |
Zhang [35] |
SIFT [18] |
SURF [2] |
DAISY [31] |
ORB [25] |
CARD [1] |
MROGH [10] |
Our method |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 5 | 90.92 | 85.63 | 90.71 | 91.56 | 91.68 | 90.41 | 90.81 | 81.85 | 84.38 | 90.39 | 91.23 |
| 10 | 94.09 | 90.82 | 94.54 | 96.00 | 96.01 | 94.49 | 94.92 | 87.87 | 90.41 | 94.54 | 96.06 |
| 15 | 96.22 | 92.67 | 96.29 | 96.79 | 97.21 | 96.13 | 96.47 | 90.87 | 93.05 | 96.01 | 97.59 |
| 20 | 96.36 | 93.93 | 96.95 | 97.62 | 97.64 | 96.98 | 97.58 | 92.84 | 94.23 | 97.03 | 98.20 |