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Abstract

Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers and is associated with a poor survival
rate. Clinically, the level of alpha-fetoprotein (AFP) has been used as a biomarker for the diagnosis of HCC. The discovery of
useful biomarkers for HCC, focused solely on the proteome, has been difficult; thus, wide-ranging global data mining of
genomic and proteomic databases from previous reports would be valuable in screening biomarker candidates. Further,
multiple reaction monitoring (MRM), based on triple quadrupole mass spectrometry, has been effective with regard to high-
throughput verification, complementing antibody-based verification pipelines. In this study, global data mining was
performed using 5 types of HCC data to screen for candidate biomarker proteins: cDNA microarray, copy number variation,
somatic mutation, epigenetic, and quantitative proteomics data. Next, we applied MRM to verify HCC candidate biomarkers
in individual serum samples from 3 groups: a healthy control group, patients who have been diagnosed with HCC (Before
HCC treatment group), and HCC patients who underwent locoregional therapy (After HCC treatment group). After
determining the relative quantities of the candidate proteins by MRM, we compared their expression levels between the 3
groups, identifying 4 potential biomarkers: the actin-binding protein anillin (ANLN), filamin-B (FLNB), complementary C4-A
(C4A), and AFP. The combination of 2 markers (ANLN, FLNB) improved the discrimination of the before HCC treatment
group from the healthy control group compared with AFP. We conclude that the combination of global data mining and
MRM verification enhances the screening and verification of potential HCC biomarkers. This efficacious integrative strategy
is applicable to the development of markers for cancer and other diseases.
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Introduction

Hepatocellular carcinoma (HCC) is the fifth most common

cancer worldwide and the third leading cancer-related cause of

death [1]. Since many HCCs are asymptomatic before the

development of end stage disease, regular surveillance for HCC is

mandatory for patients with chronic hepatitis or cirrhosis to detect

a tumor at an early stage and to improve patients’ outcomes after

curative treatment [2]. Currently, most practice guidelines

recommend routine surveillance for HCC using ultrasonography

and serum tumor markers, such as alpha-fetoprotein (AFP). [3,4,5]

However, the use of AFP as a single biomarker for HCC is

challenging due to its limited specificity and sensitivity.

Tumor biomarkers are defined as substances that reflect current

cancer status or predict its future characteristics. Biomarkers are

potentially useful for screening cancers and determining their

prognosis, predicting therapeutic efficacy [6]. The most commonly

used serum marker of HCC is AFP, which has a reported

sensitivity of 39% to 65% and specificity of 65% to 94%;

approximately one-third of early-stage HCC patients with small

tumors (,3 cm) have normal levels of AFP [2,7]. Thus, clinicians

are dissatisfied with AFP as a marker due to its high false-positive

and false-negative rates [8]. Consequently, there is an urgent

clinical need to identify new biomarkers that classify HCC more

accurately.

To obtain HCC biomarker candidates, we initially screened a

published database on HCC using 5 types of datasets, comprising

proteomics, cDNA microarray, copy number variation, somatic

mutation, and epigenetic data. This method easily encompassed

all biological heterogeneities of liver cancer. The candidates that

resulted from global data mining were subject to high-throughput

verification using individual HCC serum samples by multiple

reaction monitoring (MRM) [9]. In MRM verification, specific

peptides of candidates are selected to represent the protein from

which they are quantitated against a spiked internal standard (a

synthetic stable isotope-labeled peptide), yielding a measure of its

concentration [10].
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Three clinically well-characterized serum samples–from the

healthy control, Before HCC treatment, and After HCC

treatment groups–were used to quantify the candidate biomarkers,

of which we identified significant candidates for differentiation

between the before the former and latter groups. Two MRM-

verified biomarkers were distinguished between the 3 groups.

Further, in combination, this 2-marker panel distinguished the

groups better than the individual markers.

In this study, MRM verification was combined with global data

mining to verify the biomarker candidates that were screened from

an initial global data mining step in identifying and developing

valuable HCC biomarkers. The MRM verification resulted in 9

potential markers with an area under the curve (AUC) that

exceeded 0.7, wherein 2 of the 9 verified markers were combined

to construct a 2-marker panel by multivariate analysis. The 2-

marker panel had an improved AUC compared with AFP (0.981

versus 0.756, respectively). This approach enabled us to verify

HCC biomarkers–especially a promising multimarker panel that

can be used to improve HCC detection alone or in combination

with AFP levels.

Materials and Methods

Ethics Statement and Clinical Sample Information
The institutional review board of Seoul National University

Hospital (approval No. H-1103-056-355) approved the study

protocol, and written informed consent was obtained from each

patient or legally authorized representative. The clinical charac-

teristics of the study patients are shown in Table 1.

Healthy control group samples were obtained from 36 healthy

volunteers who visited the Healthcare Center of Seoul National

University Hospital. All subjects in healthy control group were

confirmed with normal liver function test results, including serum

alanine and aspartate aminotransferases, and with negative results

for hepatitis B virus surface antigen and anti-hepatitis C virus

antibody. Liver ultrasonography was performed to screen fatty

liver disease, and all healthy controls had normal findings.

Eighteen patients before HCC treatment who were infected with

hepatitis B virus (HBV) and underwent successful locoregional

therapy were also enrolled, from whom serum samples were

collected and classified as the Before and After HCC treatment

groups, respectively.

The diagnosis of HCC was based on the recommendation of the

American Association for the Study of Liver Diseases by a

hepatologist with more than 20 years of experience [11]. All HCC

patients were after treatment with locoregional modality including

transarterial chemoembolization and percutaneous ethanol injec-

tion therapy. The treatment response was evaluated with serum

AFP and enhanced liver computed tomography (CT) at 3 months

after the first treatment, and no enrolled patient showed any

evidence of tumor recurrence. In each HCC patient, serum

samples were obtained twice: before the first locoregional therapy

(Before HCC treatment group), and at 3 months after the

treatment (After HCC treatment group) (Supplementary Table

S1). To reduce causal heterogeneity, HCC patients who had other

Table 1. Clinical characteristics of patient groups used in MRM analysis and Western blot analysis.

MRM analysis Western blot analysis

Before HCC treatment group
and corresponding after
HCC treatment group

Healthy
control group

Before HCC treatment group
and corresponding after
HCC treatment group

Healthy control
group

Total patient number 18 in each group 36 13 in each group 13

Gender (Male/Female) 13/5 18/18 10/3 8/5

Age (Mean, Range) 60.6 (47–81) 58.7 (50–69) 62.4 (48–79) 56.2 (52–67)

Etiology of liver disease HBV, 18 (100%) HBV, 13 (100%)

Locoregional modality

TACE 7 4

PEIT 11 9

AFP value
(Mean, Range)

1079.4 (14.1–6900) 245.2 (16–730)

,20 ng/mL 2 1

20–200 ng/mL 4 6

200–1000 ng/mL 7 6

.1000 ng/mL 5 0

PIVKA value
(Mean, Range)*

916 (5–10720) 117.6 (28–612)

,20 ng/mL 4 0

20–100 ng/mL 6 7

100–1000 ng/mL 3 6

.1000 ng/mL 3 0

*PIVKA values were provided for 16(M11/F5) among a total of 18 untreated HCC group.
AFP : Alpha-Fetoprotein.
PIVKA : Protein induced by vitamin K absence or antagonist.
TACE : Transcatheter arterial chemoembolization.
PEIT : Percutaneous ethanol injection therapy.
doi:10.1371/journal.pone.0063468.t001
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types of chronic liver disease, except chronic hepatitis B, such as

chronic hepatitis C and alcoholic hepatitis, were excluded.

All serum samples were collected by the Liver Research

Institute, Seoul National University College of Medicine. The

blood samples were centrifuged immediately at 3000 rpm for

10 min at 4uC to fractionate the serum. The resulting supernatant

was aliquoted (50 mL) and stored at 280uC until analysis.

Preparation of Serum Tryptic Digestions
Serum protein was quantified by bicinchoninic acid (BCA)

assay. Two hundred-microgram aliquots of the serum samples

were denatured with 6 M urea, 50 mM Tris, pH 8.0, and 30 mM

dithiothreitol (DTT) at 37uC for 60 min and alkylated with

50 mM iodoacetamide (IAA) at room temperature in the dark for

30 min. The urea was diluted 15-fold with 50 mM Tris, pH 8.0

prior to overnight digestion at 37uC with trypsin (Promega,

sequencing-grade modified) using a 1:50 (w/w) enzyme-to-serum

concentration ratio.

Tryptic digestion was stopped with formic acid at a final

concentration of 1% and desalted on Sep-pak tC18 cartridges

(Waters Corp., Milford, MA). The Sep-pak tC18 cartridges were

equilibrated sequentially with 1 mL methanol and 5 mL water

that contained 0.1% trifluoroacetic acid (TFA) prior to loading of

the tryptic digestion. The cartridges were washed with 3 mL 0.1%

trifluoroacetic acid (TFA) and eluted with 1 mL of 60% ACN,

0.1% TFA. The eluted samples were frozen and lyophilized on a

speed vacuum. Prior to MRM analysis, the samples were

reconstituted in 0.1% formic acid to 2 mg/mL.

Experimental MRM Design Using Skyline
For each target protein, we selected peptides and fragment ions

for MRM using Skyline (http://proteome.gs.washington.edu/

software/skyline), an open-source software application for devel-

oping MRM methods and analyzing MRM data [12]. In brief, the

full-length protein sequences were imported into Skyline in

FASTA format and designed into peptides, each with a list of

product ions for monitoring by MRM. In selecting transitions

through Skyline, the peptide filter condition was as follows:

maximum length of peptide of 20, including at least 8 amino acids.

Peptides with repeat arginines (Arg, R) or lysines (Lys, K) were

discarded. If methionine (Met, M) was included in the peptide, it

was discarded to avoid the risk of modification. If proline (Pro) lay

next to arginine (Arg, R) or lysine (Lys, K), the peptide was

discarded. If a peptide contained histidine (His, H), it was

discarded to avoid the risk of charge alteration. Peptides that

satisfied these conditions were used as Q1 transitions. Next, we

selected a maximum of 5 Q3 transitions from the fragmentation

ions that were derived from the Q1 transitions in descending

order.

Quantification by Multiple Reaction Monitoring
MRM was performed on a nano LC system, which was

connected to a hybrid triple quadrupole/ion trap mass spectrom-

eter (4000 QTRAP, AB SCIEX, Foster City, CA) that was

equipped with a nanoelectrospray interface. The 4000 QTRAP

was operated in positive ion MRM mode, in which Q1 and Q3

were set to transmit different precursor/product ion pairs.

The LC buffer system was as follows: mobile phase A, 2%

acetonitrile/0.1% formic acid and mobile phase B, 98% acetoni-

trile/0.1% formic acid. The peptides were separated and eluted at

a flow rate of 300 nL/min on a linear gradient of mobile phase B

from 2% to 40% B in 43 min. The gradient was ramped up to

70% B for 5 min and 2% B for 10 min to equilibrate the column

for the next run. The total LC run time was 60 min. The

analytical column was 75 mm, 15 cm, packed with Magic C18AQ

resin (5 mm, 100 Å, Michrom Bioresources).

Typical instrument settings were as follows: ion spray (IS)

voltage of 2.3 kV, an interface heater temperature of 200uC, a

GS1 (nebulizer gas) setting of 12, and curtain gas set to 15. MS

parameters for declustering potential (DP) and collision energy

(CE) were determined by linear regression of previously optimized

values in Skyline. MRM experiments were performed with a scan

time of 50 ms and scan width of 0.002 m/z, using a unit resolution

of 0.7 Da (FWHM) for Q1 and Q3. In the MRM runs, scan time

was maintained at 50 ms for each transition, and the pause

between transition scans was set to 3 ms [13].

Statistical Analysis for Verification of Biomarker
Candidates

Raw data files from the MRM analysis were processed using

Skyline. Because the peak intensity is sometimes low due to low

abundance in a normal versus cancer sample and vice versa, the

peak area integration was confirmed manually to correct the

wrong automatic assignments for each targeted peptide. The

Figure 1. Workflow of HCC biomarker discovery. First, we selected candidate HCC biomarkers, based on global data mining using preexisting
databases. In the first and second screening steps, preliminary MRM analysis of the target peptides/transitions was conducted using pooled serum
samples to examine whether the transitions were detectable in serum samples. In the first verification step, MRM analysis of individual serum samples
was performed using the predetermined retention time. In the second verification step, the data were analyzed and verified by Western blot. In the
multivariate analysis, logistic regression (LR) analysis was performed to construct a multimarker panel of potential markers that could differentiate
cancerous from noncancerous subjects.
doi:10.1371/journal.pone.0063468.g001
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default peak integration and Savitzky-Golay smoothing algorithm

were applied. Peptides with at least 3-fold signal-to-noise ratios

were considered detectable.

Two approaches were used to assess HCC candidate proteins.

First, we distinguished a disease group (Before HCC treatment)

from a nondisease group (healthy controls and after HCC

treatment). Comparisons between the before HCC treatment

(n = 18) versus healthy control groups (n = 36) and the before HCC

treatment (n = 18) versus after HCC treatment groups (n = 18)

were made using analysis of variance (ANOVA). Based on

ANOVA, we selected target peptides that had a significance level

below 0.05 in mean intensity level between groups.

Second, to evaluate the efficacy of serum biomarkers in

distinguishing the disease from nondisease group, we analyzed

receiver operator characteristic (ROC) curves and scatter plots.

We performed all statistical analyses and generated all scatter plots

and ROC curves with MedCalc (MedCalc, Mariakerke, Belgium,

version 12.2.1).

Western Blot Analysis
The clinical samples in the Western blot experiment comprised

13 individual samples from the healthy control, before HCC

treatment, and after HCC treatment groups (Table 1). Serum

sample concentrations were determined by BCA protein assay.

Equal amounts of protein (30 mg) were mixed with SDS loading

buffer (62 mM Tris-HCl, pH 6.8, 10% glycerol, 2% SDS, 2% ß-

mercaptoethanol, and bromophenol blue), boiled for 10 min, and

separated by SDS-PAGE on a 12% acrylamide gel. After

separation, serum samples were transferred to polyvinylidene

difluoride (PVDF) membranes (Bio-Rad, Cat. #162-0177), which

were blocked with 5% BSA (w/v) in TBS-T (25 mM Tris, pH 7.5,

150 mM NaCl, and 0.05% (w/v) Tween-20) for 2 hr at room

temperature.

Membranes were incubated overnight at 4uC with individual

primary antibodies (diluted 1:100 to 1:1000). Membranes were

washed 5 times with TBS-T and incubated for 2 hr with the

appropriate secondary peroxidase-conjugated antibody (1:5000,

Santa Cruz Biotechnology, USA). The membranes were then

washed 5 times with TBS-T, and target protein bands were

Figure 2. Response curve using ATP-dependent RNA helicase A (DHX9) peptide. MRM runs were performed using an internal standard
peptide (ELDALDANDELTPLGR) of ATP-dependent RNA helicase A (DHX9) at a Q1/Q3 transition of 876.4/1095.57 m/z, with which the standard curve
was drawn. Triplicate MRM analyses were performed at 8 concentrations of the peptide (0, 1, 5, 10, 50, 100, 250, 500 fmol). The curve showed a
linearity of R2= 0.9984.
doi:10.1371/journal.pone.0063468.g002
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visualized using the Chemiluminescent Substrate Kit (GenDE-

POT, W3651-012). Western blot band intensities were quantified

using Multi Gauge. (Fujifilm, ScienceLab 2005, version 3.0).

Pooled serum was used as a loading control (13 healthy control, 13

untreated HCC, and 13 treated HCC group samples) and in each

Western blot gel. All blots were normalized to the band intensity of

the pooled serum. Band intensities were analyzed by T-test to

identify meaningful differences between sample groups.

Statistical Analysis to Construct Multimarker Panel
In this study, we compared the nondisease with the disease

group using multimarker panel proteins. Logistic regression (LR)

analysis was performed to generate the multimarker panel,

consisting of several individual markers that differentiated

cancerous from noncancerous subjects. The discriminatory power

was examined in 3 situations: healthy control versus before HCC

treatment groups, before HCC treatment versus after HCC

treatment groups, and healthy control plus after HCC treatment

versus before HCC treatment groups. LR and ROC curves were

constructed using MedCalc, and the analysis was performed.

ROC curves were used to evaluate the efficacy of the

multimarker panel–in this case, a 2-marker panel. AUC values

for individual markers and the 2-marker panel were calculated to

examine the discriminatory power of various combinations of

HCC candidate markers. Multicolinearity of the panel was

checked using IBM SPSS Statistics (version 20, commuter license).

Leave-one-out crossvalidation (LOOCV) was performed to

avoid overfitting that might be caused by the small number of

samples, even if LOOCV is a suboptimal substitution of

independent validation; thus, the same sample set was used to

generate the training and test data. A single observation was

selected from the dataset as the test variable, and the remaining

samples were used as the training set to construct an LR model.

LOOCV was performed in the open-source Weka program

computing environment (version 3.6.0, Knighton Rd, Hamilton

3240 New Zealand).

Results

Candidate Biomarker Selection from Global Data Mining
The overall scheme for this study is shown in Figure 1. Our first

task was to obtain a list of biomarker candidate proteins. We

believed that if we could acquire candidate proteins from

established resources, the number of candidate screening exper-

iments could be reduced. To screen candidates, we performed

global data mining with regard to liver cancer in several

disciplines: proteomics, cDNA microarray, copy number variation,

epigenetics, and somatic mutation data.

The second task was to prioritize marker candidates from the

resulting list (Supplementary Table S2). The term ‘‘frequency’’

was used for each target protein. Frequency was defined as the

total number of occurrences in 5 biological fields. As a result of

data mining of these 5 areas, 4658 liver cancer-related proteins

were selected and filtered by prioritizing candidate proteins. The

top 50 high-frequency proteins were chosen and examined with

regard to whether they were secreted into plasma, and final

candidates were selected by confirmation with the Plasma

Proteome Database (http://www.plasmaproteomedatabase.org).

All 4658 proteins from the global data mining are listed in

Supplementary Table S2. Then, sequence files of the 50 selected

candidates were prepared in FASTA format and harvested using

the Uniprot website (http://www.uniprot.org). The 50 FASTA

files were input into Skyline to generate theoretical transitions for

the MRM analysis.

The list of potential biomarkers was filtered per the verification

steps, as summarized in the summary list file (Supplementary

Table S3).

Data Mining of Proteomic Research
Ten research papers, all published after 2004, were selected

with impact factors above 4.0 [14,15,16,17,18,19,20,21,22,23].

Two ICAT labeling, 4 ITRAQ labeling, and 4 SILAC labeling

reports were used for our proteomic data mining. The maximum

frequency of the target proteins in the 10 journals was 5. Based on

the frequency, the most commonly reported genes were vimentin

(VIM), catechol O-methyltransgerase (COMT), enoyl-CoA hy-

Table 2. List of proteins showing significant differences between different groups (P-values ,0.05) and their respective AUC
values.

Serial
No. Gene Symbol Protein Name Peptide Sequence Area Under ROC curve

Healthy control group
vs. Before HCC treatment
group

Before HCC treatment group
vs. After HCC treatment
group

1 ACADVL Very long-chain specific acyl-
CoA dehydrogenase, mitochondrial

ASNTAEVFFDGVR 0.701 0.691

2 AFP Alpha-fetoprotein GYQELLEK 0.756 0.735

3 ANLN Actin-binding protein anillin TQSLPVTEK 0.920 0.744

4 BASP1 Brain acid soluble protein 1 AEGAATEEEGTPK 0.951 0.719

5 C4A Complement C4-A VGDTLNLNLR 0.867 0.710

6 CAPN1 Calpain-1 catalytic subunit YLGQDYEQLR 0.946 0.586

7 FLNB Filamin-B APLNVQFNSPLPGDAVK 0.660 0.707

8 MTHFD1 C-1-tetrahydrofolate
synthase, cytoplasmic

GVPTGFILPIR 0.829 0.685

9 PABPC1 Polyadenylate-binding protein 1 EFSPFGTITSAK 0.949 0.608

doi:10.1371/journal.pone.0063468.t002
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dratase, mitochondrial (ECHS1), and transitional endoplasmic

reticulum ATPase (VCP), which were reported 5 times.

Data Mining of cDNA Microarray Research
cDNA microarray research papers that examined gene expres-

sion using liver cancer and control tissues were examined. Nine

such reports were selected (all published after 2003), with impact

factors above 6.7 [24,25,26,27,28,29,30,31,32]. The total number

of screened proteins was 3241, and the most cited gene was liver

carboxylesterase 1 (CES1), which was reported in 6 papers.

Data Mining of Copy Number Variation Research
Earlier publications on copy number variation (CNV) by

amplification or mutation of liver cancer [33,34,35] were

investigated, yielding 3 papers after 2004 with impact factors

above 4.4. OncoDB (http://oncodb.hcc.ibms.sinica.edu.tw/index.

htm) was also used to report copy number variation. In the 3

papers and OncoDB, CNVs in exostosin-1 (EXT1), transforming

growth factor beta-2 (TGFB2), RAC-gamma serine/threonine-

protein kinase (AKT3), and cathepsin B (CTSB) were reported

twice.

Data Mining of Epigenetic Research
On surveying epigenetic research papers, we selected 3 studies

from after 2005 with impact factors above 4.3 [28,36,37], all of

which reported cyclin-dependent kinase inhibitor 2A, isoform 4

(CDKN2A).

Data Mining of Somatic Mutation Research
Three databases on somatic mutations were searched: the

OncoDB (http://oncodb.hcc.ibms.sinica.edu.tw/index.htm), Ja-

pan Liver Cancer (NCC, Riken), and International Cancer

Genome Consortium (http://www.icgc.org/icgc/cgp/66/420/

824) databases. Using HCC as the query term, 102 proteins (54,

25, and 23 proteins in NCC, Riken, and Onco.DB.HCC,

respectively) were screened for somatic mutation data.

Examine the Linearity of the Internal Standard Peptide
The peak area of the internal standard peptide in each sample

was used to normalize that of each target peptide in each MRM

run. Thus, to assess the quantitative linearity of MRM, a response

curve of the standard peptide (sequence of ELDALDAN-

DELTPLGR, ATP-dependent RNA helicase A (DHX9)) in the

Figure 3. Verification of four proteins by Western blot. Comparison and relative quantification of AFP, ANLN, C4A, and FLNB expression in
serum samples from the nondisease group and disease group. Relative abundance, represented by the band intensity in Western blot, is summarized
in box plot.
doi:10.1371/journal.pone.0063468.g003
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Figure 4. ROC curves of AFP and 2-marker panel. ROC curves are based on prediction models using AFP alone or the 2-marker panel. Simple
ROC analysis was performed to compare AFP with the 2-marker panel. LR analysis models were prepared to determine false positive/negative rate in
the classifier tables, in which error rates are also shown. Three LR analysis models were prepared: (A) healthy control versus before HCC treatment
group, (B) before HCC treatment versus after HCC treatment group, and (C) healthy control plus after HCC treatment versus before HCC treatment
group.
doi:10.1371/journal.pone.0063468.g004
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presence of matrix peptides was generated. The internal standard

peptide was diluted serially to 1, 5, 10, 50, 100, 250, and 500 fmol

in 200 mg of serum peptide mixture, which is similar to the MRM

conditions for target peptides. Further, to verify the endogenous

signal of the target peptide, a blank sample that lacked the internal

standard peptide was run. Each MRM analysis was performed

three times repeatedly (Fig. 2).

The CV% of the experiment was below 20%, and the

correlation coefficient was 0.9984. The response curve of the

standard peptide with the serum peptide mixture as matrix

indicated that the quantitative linearity of serum MRM at the

given concentrations was sufficiently valid to obtain relative

quantities of target peptides.

Detectability of Target Candidates in Pooled Serum
Before conducting individual MRM analyses using the 72 serum

samples, a preliminary MRM analysis was performed on the target

peptides/transitions using pooled serum of all patients to obtain

transition information, such as the detectability in serum and the

suitability of the transition. The FASTA files of the 50 proteins

yielded 498 peptides and 2174 transitions on applying the

hierarchy data in Skyline software. After obtaining the resulting

MRM data, the final transition was selected using the following

criteria: at least 2 peptides were selected per protein, and at least 3

transitions per peptide were chosen as detectable transitions that

had a signal-to-noise (S/N) ratio above 3. Ultimately, 28 of 50

candidates met the criteria in the first screening step (Supplemen-

tary Table S3).

Selecting the Transitions with Technical Reproducibility
for MRM Analysis

The reproducibility of MRM analyses is critical in making

quantitative measurements [9]. In this study, the technical

reproducibility of MRM analysis was examined using pooled

serum. Serum from the 3 groups (36 healthy control, 18 before

and after HCC treatment each) was pooled with the same weight

according to each group; 333 transitions for 111 peptides,

corresponding to the 28 candidate proteins from the detectability

experiment (the first screening step, Supplementary Table S3),

were used to determine the technical reproducibility in MRM

analysis. Five repetitive scheduled MRM runs for the pooled

serum peptide mixture were performed using the retention time

from the detectability experiment, with a window size of 120

seconds.

The data from the 5 MRM runs were imported into Skyline,

and after normalization of the peak area using the internal

standard peptides, the averaged relative quantities of each

transition were compared. Peptides that showed a confident

difference in quantity (fold-change .1.5) and low variance (CV

,30%) between nondisease and disease groups were chosen as the

final quantifiable transitions. Consequently, 30 peptides, compris-

ing 90 transitions that corresponded to 19 proteins, were selected

(second screening step, Supplementary Table S3). The average

relative quantities and standard deviations from the 5 repeat

MRM analyses of the 30 peptides are summarized in Supple-

mentary Table S4, and the final transition list is shown in

Supplementary Table S5.

MRM Analysis Using Individual Serum Samples
Individual MRM analysis was performed using the 90

transitions, corresponding to 19 proteins; thus, MRM analysis

per run was conducted once for every sample. The peak areas of

each transition were extracted using Skyline and normalized using

the peak area of the spiked standard peptide.

Nine proteins had identical expression patterns in the analysis of

the pooled and individual samples (Supplementary Figure S1).

Specifically, very-long-chain-specific acyl-coA dehydrogenase

(ACADVL), actin-binding protein, anillin (ANLN), c-1-tetrahy-

drofolate synthase, cytoplasmic (MTHFD1), alpha-fetoprotein

(AFP), and filamin-B (FLNB) increased in the healthy control

versus before HCC treatment group and declined in the before

HCC treatment versus after HCC treatment group. Brain acid-

soluble protein 1 (BASP1), calpain-1 catalytic subunit (CAPN1),

complementary C4-A (C4A), and polyadenylate-binding protein 1

(PABPC1) fell in the healthy control versus the before HCC

treatment group and in the before HCC treatment versus after

HCC treatment group.

In the statistical analysis, these 9 proteins were differentially

expressed between the nondisease and disease groups, with P-

values ,0.05. The ROCs and interactive plots of the 9 candidates

are shown in Supplementary Figure S2. The AUC values of the 9

target proteins ranged from 0.586 to 0.951 (Table 2). The AUC

values of 6 proteins exceeded 0.8–those of ANLN, BASP1,

CAPN1 and PABPC1 were 0.920, 0.951, 0.946 and 0.949,

respectively, in the healthy control versus before HCC treatment

group, reflecting excellent specificity and sensitivity.

Correlation of MRM Analysis with Western Blot
To validate the MRM results, 9 proteins were analyzed by

western blot: ACADVL, AFP, ANLN, BASP1, C4A, CAPN1,

FLNB, MTHFD1, and PABPC1.

For the Western blot, 13 of 36 healthy control serum samples

from the individual MRM analysis were selected randomly, and

the before/after HCC treatment group, the 13 serum samples

differed from what was used in the individual MRM analysis.

To limit the variability between SDS-PAGE gels, serum from

the 13 healthy control, 13 before HCC treatment, and 13 after

HCC treatment cases were pooled and loaded onto the first lane of

all SDS-PAGE gels (12%), and its intensity on each gel was used to

normalize the intensities of individual samples. As a result, the

bands that were generated by ACADVL and PABPC1 were

inadequate to calculate intensities; thus, 7 of the 9 candidate

proteins were verified by western blot. Subsequently, the

correlation between the protein quantification by MRM and

western blot was determined.

AFP, ANLN, C4A, and FLNB had the same patterns of

expression by MRM analysis (Figure 3). In the nondisease group,

AFP, ANLN, and FLNB expression decreased compared with

disease group. AFP is an established serum biomarker for HCC

[38] and was verified to have consistent expression by MRM and

Western blot. C4A declined in the healthy control versus before

HCC treatment group and in the before HCC treatment versus

after HCC treatment group. In the comparison between MRM-

and antibody-based verification, the relative quantities of 4

proteins (AFP, ANLN, FLNB, and C4A) were similar. In contrast,

by western blot, BASP1, MTHFD1, and CAPN1 had disparate

expression patterns compared with MRM analysis (data not

shown).

Multivariate Analysis of the Multimarker Panel
A goal of this study was to discover potential HCC biomarkers

by comprehensive global data mining and MRM and construct a

multiprotein panel has improved discriminatory power over single

markers. Four proteins that were validated by MRM analysis and

western blot were used to generate the multimarker panel. In the

first 4-marker panel that we attempted, AFP and C4A showed
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collinearity, with a variance inflation factor (VIF) above 10; thus,

these proteins were excluded in the final multimarker model

(Supplementary Table S6). The ultimate model comprised ANLN

and FLNB, for which AFP was the control model as a single

marker. Three types of comparisons were made (Figure 4).

When AFP was used as the lone classifier, 8 of 18 before HCC

treatment cases and 29 of 36 healthy control cases were classified

correctly, demonstrating an AUC of 0.756 and 31% error rate. In

contrast, the 2-marker panel correctly classified 17 of 18 before

HCC treatment patients and all 36 healthy controls, with an AUC

of 0.981 and 2% error rate, indicating that the 2-marker panel had

improved discriminatory power compared with the AFP model.

The AFP-only model classified 12 of 18 before HCC treatment

patients and 9 of 18 after HCC treatment patients correctly

(AUC = 0.735, error rate = 42%), whereas the 2-marker panel

separated 15 of 18 before HCC treatment and 11 of 18 after HCC

treatment patients successfully (AUC = 0.895, error rate = 28%).

Thus, in identifying patients in the before HCC treatment versus

after HCC treatment groups, the discriminatory power of the 2-

marker panel was outstanding compared with AFP alone.

The AFP-only model classified 4 of 18 in the disease group

(before HCC treatment) and 50 of 54 in the nondisease group

(healthy control and after HCC treatment groups), with an AUC

of 0.749 and error rate of 25%. The 2-marker panel identified 15

of 18 in the disease group and 50 of 54 in the nondisease group

(AUC = 0.953, error rate = 10%). These results demonstrate that

in all comparisons, the 2-marker panel has greater discriminatory

power compared with the traditional single marker AFP.

Supplementary Table S7 also shows the LOOCV results for

AFP and the 2-protein panel. LOOCV, in which each member of

the training set, using a model that was built with the other n–1

members, one tries to predict the class of the remaining member–

was also performed. The results indicate that the most accurate

candidate biomarker in the respective groups was the 2-protein

panel.

Discussion

It is important to obtain a wide range of candidate proteins in

the biomarker discovery stage, because most candidates fail to be

verified in a large number of clinical samples. Global data mining

can reduce the time and cost in identifying candidates for clinical

verification. The 5 data mining categories enabled us to screen

frequently reported candidate genes and proteins.

In our study, 50 of 4658 candidate proteins, obtained from the

5-category data mining, were selected, based on frequency.

Consequently, 28 of 50 candidates were detected in pooled serum,

19 of which were differentially expressed between the 3 groups.

After individual serum MRM analysis using 36 healthy control, 18

before HCC treatment, and 18 after HCC treatment samples, 9

candidates had identical expression patterns by MRM analysis

using serum that was pooled from the 3 groups, and 4 proteins

were verified by western blot. By LR analysis, a 2-marker panel

(ANLN and FLNB) was constructed, showing enhanced discrim-

inatory power compared with AFP, with an AUC of 0.981 (healthy

control versus before HCC treatment). Notably, 2 genes–ANLN

and FLNB–were detected in the microarray data [25,27] Thus,

global data mining-based MRM verification, combined with

multivariate analysis, is a robust method of developing HCC

multimarkers.

AFP is the most useful tumor marker for HCC and is produced

by immature cells of the fetus. Newborns have AFP levels of up to

3 g/L until age 18 months, when AFP levels begin to drop below

10 mg/L, which are maintained in adulthood. AFP levels in

normal adults are approximately 5–10 mg/L, which liver cancer

patients usually exceed. Levels of AFP exceed 50 mg/L in 40% to

60% of HCC patients [39], and the false negative rate for HCC

diagnosis solely with AFP is 20% to 30%. When AFP levels exceed

500 mg/L, it would be detectable for changes in body.

Conversely, because AFP levels in blood are high in only

approximately 60% of liver cancer patients and other benign

diseases (hepatitis, liver cirrhosis), there is a limitation in using AFP

alone as an HCC marker in blood [40,41,42,43,44,45,46,47,48].

In particular, in our western blot analysis, AFP levels differed

significantly between the healthy control and before HCC

treatment groups but not between the before HCC treatment

and after HCC treatment groups.

The reproducibility with regard to experimental and analytical

variation is a major goal of MRM analysis. To minimize the

variation in MRM analysis, we generated 3 pooled samples,

corresponding to the 3 groups (36 healthy control, 18 untreated

HCC, and 18 treated HCC samples), and the 333 transitions that

corresponded to 111 detectable peptides were monitored using

MRM 5 times, in which the CV of all transition peak areas in the 3

groups was calculated. The transitions that had a CV% below

30% in all 3 groups were chosen as the final target transitions.

Next, for individual MRM analysis, we selected only transitions

that had a CV below 30%, as described in Supplementary Figure

S1.

We have demonstrated the value of our scheme in selecting

candidate proteins by 5-cartegory global data mining and

verification of the candidate proteins by clinical MRM to develop

HCC markers in blood. Further, our multimarker panel has

improved discriminatory power compared with single protein

markers, such as AFP. Our 2-marker panel, comprising ANLN

and FNAB, distinguishes healthy controls from before HCC

treatment patients better than AFP. Thus, we propose that this

strategy–combining global data mining to screen candidates and

verification by clinical MRM–is a robust, effective pipeline for

HCC marker development than can be applied to markers of

other diseases.

Supporting Information

Figure S1 Scatter plots of MRM quantitation data using
pooling serum and individual serum from healthy
control group, before HCC treatment group, and after
HCC treatment group. Left panel represents pooled serum

from healthy control group, before HCC treatment group, and

after HCC treatment group. Error bars represent the standard

deviations from 5 technical replicates. Horizontal bars indicate the

average serum level of the protein; P-values were calculated by

ANOVA. Right panels indicate individual samples. See also

Supplementary Table S4 and Supplementary Figure S2.

(PPTX)

Figure S2 Interactive plots and AUC values for nine
verified candidate biomarkers. The normalized peak areas

of transitions were compared between the healthy control group

and before HCC treatment group and between the before HCC

treatment group and after HCC treatment group. The interactive

plots and ROC curves are represented by the transition peak areas

of the 9 proteins. Interactive plots of each target peptide were

extrapolated versus the standard peptide with regard to relative

concentration, sensitivity, and specificity. See also Table 2.

(PPTX)

Table S1 Clinical specimen information on liver cancer
patients after the treatment.
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(XLSX)

Table S2 Lists of candidate proteins obtained from
global data mining. G obal data mining covers proteomics,

cDNA microarray, copy number variation, and somatic mutation.

Each number such as 0 and 1 in the cell represents hit count of

candidate protein.

(XLSX)

Table S3 The list of potential biomarkers was filtered
step by step per the verification steps.
(XLSX)

Table S4 Results of technical reproducibility was
examined using pooled serum. Also see Figure S1.

(XLSX)

Table S5 List of peptides and fragment ions for the
analyzed proteins.

(XLSX)

Table S6 Tolerances and Variance inflation factors
(VIFs) of collinearity analysis for 2 models.

(XLSX)

Table S7 Classification tables from logistic regression
models (Cross validated, Leave-one out).

(XLSX)
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