Table 4.
Model 1 | Model 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||||
eGFRCr | eGFRCr-CysC | eGFRCysC | eGFRCr | eGFRCr-CysC | eGFRCysC | |||||||
| ||||||||||||
Risk Factor | Beta (%) | P-value | Beta (%) | P-value | Beta (%) | P-Value | Beta (%) | P-value | Beta (%) | P-value | Beta (%) | P-Value |
Body mass index per SD | −0.3 | 0.60 | −3.3 | <.001 | −5.5 | <.001 | −1.3 | 0.004 | −4.5 | <.0001 | −6.8 | <.001 |
24-h urine albumin per SD | 0.5 | 0.31 | −1.8 | 0.13 | −2.1 | <.001 | −1.0 | 0.04 | −2.2 | <.0001 | −3.2 | <.001 |
24-h urine creatinine per SD | −4.2 | <.001 | −3.3 | <.001 | 0.3 | 0.63 | −3.9 | <.001 | −2.4 | 0.002 | −0.5 | 0.59 |
Log urine albumin to creatinine | 0.1 | 0.86 | −2.3 | <.001 | −4.2 | <.001 | −1.9 | <.001 | −3.7 | <.0001 | −5.0 | <.001 |
ratio (UACR) per SD | ||||||||||||
UACR ≥ 30 mg/g | −1.1 | 0.65 | −7.1 | <.001 | −11.9 | <.001 | −5.1 | 0.003 | −10.3 | <.0001 | −14.3 | <.001 |
Hypertension | 1.4 | 0.27 | −3.2 | 0.009 | −6.8 | <.001 | −2.7 | 0.007 | −5.9 | <.0001 | −8.5 | <.001 |
Diabetes | −1.0 | 0.62 | −4.8 | 0.01 | −7.4 | 0.002 | −7.9 | <.001 | −10.4 | <.0001 | −12.1 | <.001 |
Smoker | −1.0 | 0.69 | −1.5 | 0.53 | −2.0 | 0.45 | 0.1 | 0.97 | −2.0 | 0.32 | −3.8 | 0.14 |
High-density lipoprotein | 0.5 | 0.47 | 2.1 | <.001 | 3.0 | <.001 | 2.2 | <.001 | 4.2 | <.0001 | 5.7 | <.001 |
cholesterol per SD | ||||||||||||
Log Triglyceride per SD | 0.5 | 0.43 | −1.4 | 0.01 | −2.6 | <.001 | −1.8 | <.001 | −3.4 | <.0001 | −4.5 | <.001 |
Log C-reactive protein per SD | 0.1 | 0.82 | −2.0 | <.001 | −3.7 | <.001 | −0.8 | 0.07 | −3.0 | <.0001 | −4.7 | <.001 |
Uric Acid per SD | 1.4 | 0.05 | −1.0 | 0.11 | −2.2 | 0.004 | −4.7 | <.001 | −6.9 | <.0001 | −8.2 | <.001 |
Model 1 uses generalized estimating equations with eGFR and mGFR as a stacked dependent variables regressed on each CKD risk factor to compare the difference in eGFR and mGFR regression coefficients. Statistical significance determined by the statistical interaction between each CKD risk factor with eGFR relative to mGFR.
Model 2 uses standard linear regression to regress eGFR on each CKD risk factor with mGFR as a covariate. To the extent mGFR is imprecise, residual associations will be will be biased compared to Model 1.