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MINIMIZING THE MAXIMUM EXPECTED SAMPLE SIZE
IN TWO-STAGE PHASE Il CLINICAL TRIALS WITH
CONTINUOUS OUTCOMES

James M. S. Wason and Adrian P. Mander
MRC Biostatistics Unit Hub for Trials Methodology Research,
Cambridge, United Kingdom

Two-stage designs are commonly used for Phase II trials. Optimal two-stage designs
have the lowest expected sample size for a specific treatment effect, for example, the
null value, but can perform poorly if the true treatment effect differs. Here we introduce
a design for continuous treatment responses that minimizes the maximum expected
sample size across all possible treatment effects. The proposed design performs well for
a wider range of treatment effects and so is useful for Phase Il trials. We compare the
design to a previously used optimal design and show it has superior expected sample
size properties.
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1. INTRODUCTION

A randomized controlled Phase II clinical trial is used to assess whether an
intervention has a significant treatment effect compared to a control treatment.
For a single-stage design, a group of patients is recruited and randomized between
arms, with the overall treatment effect assessed. There are ethical and statistical
advantages to using a two-stage design. Such designs allow stopping the trial
early for lack of treatment effect (futility), or for sufficient evidence of treatment
effect (efficacy). Stopping early for futility means fewer patients are exposed to an
intervention that is probably ineffective and may have side effects. Stopping for
efficacy means that a potentially useful intervention progresses through the drug
development progress more quickly. Lee and Feng (2005) reviewed recent study
designs in oncology trials and found that 45% used two-stage designs, although
many did not allow stopping for efficacy.

Much work has been done on group sequential methods, where a trial has
several interim analyses, and the trial can stop for futility and/or efficacy after any
stage. Although these designs reduce the expected number of patients required to
detect a significant treatment effect, there are a couple of disadvantages. First, it may
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not be convenient to stop a study multiple times for interim analyses, especially in
trials where the endpoint takes a long time to measure. Second, we may be interested
in choosing the sample sizes per group and thresholds at which the trial stops to
minimize the expected sample size. An optimal design is one that has the lowest
expected sample size for a specific treatment effect, subject to it having the correct
type I error and power under a prespecified clinically relevant difference (CRD).
Trials with several stages have many possible parameters, and thus are difficult to
optimize.

A compromise is a two-stage design that has fewer parameters to optimize
over, thus reducing the computational burden, and provides many of the benefits
of a multi-stage design. A two-stage design also requires just one interim analysis.
Optimal two-stage designs have been considered for binary outcomes by Simon
(1989), and for continuous outcomes by Whitehead et al. (2009). Designs in each of
these papers were designed to be optimal under a specific treatment effect.

We aim to show in this paper that these designs, especially ones optimal under
the null of no treatment advantage, can have very poor properties when the true
treatment effect differs from that which the design is optimized for. When the trial
allows stopping for either futility or efficacy, each design has a treatment effect
that gives the highest expected sample size. We call this the “worst-case scenario”
treatment effect, and propose a new type of design that has the lowest expected
sample size under the worst-case scenario treatment effect. We call this design the
J-minimax design, to avoid confusion with the minimax design that minimizes the
total sample size.

We first discuss how to find the worst-case scenario treatment effect, and some
issues involved in finding the optimal design. We then show null-optimal, CRD-
optimal, and J-minimax designs for a variety of design parameters, and compare
their performance for a range of possible treatment effects. Lastly, we compare the
J-minimax design to an optimal two-stage design from Whitehead et al. (2009). The
J-minimax design has a 5% lower maximum expected sample size, an 8% lower
expected sample size under the null treatment effect, and a 3% lower expected
sample size under the CRD.

2. TWO-STAGE DESIGNS FOR BINARY AND CONTINUOUS
TREATMENT RESPONSES

A lot of work on optimal two-stage designs has been done in the context of
binary responses. Often there will be a latent continuous treatment response, which
is dichotomized to give the binary response. An example is the RECIST criteria used
in classifying a cancer patient’s response to treatment, which is a function of the
change in tumor size (Eisenhauer et al., 2009). Reclassifying a continuous response
to a binary response loses information (Farewell et al., 2004; Karrison et al., 2007),
but is still commonly done.

The Simon two-stage design (Simon, 1989) is commonly used for binary
responses. Simon proposed the optimal design as the one with lowest expected
sample size under the null hypothesis. Also proposed was the minimax design, which
has the lowest combined first- and second-stage sample size. Simon’s design has
been the basis of many subsequent designs. It has been adapted to stop for efficacy,
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for example, by Jones and Holmgren (2007). The optimal and minimax designs are
special cases of admissible designs, discussed by Jung et al. (2004).

A design based around the continuous treatment response is described by
Whitehead et al. (2009). Again, n, and n, are the sample sizes in the first and
second stages, respectively. The response is assumed to be normally distributed,
and a normalizing transformation of the p-value from a one-sided #-test is used as
the test statistic after the first stage. If the test statistic is below a threshold, f, the
trial is stopped for futility, and if it is above e, it is stopped for efficacy. If the
trial continues, the null hypothesis is rejected if the test statistic for the combined
n, + n, patients is above e,. The design also can be adapted to allow n, to change,
conditional on the estimated standard deviation of treatment effect in the first stage.

Several other two-stage designs (Li et al., 2002; Proscan and Hunsberger,
1995; Posch and Bauer, 1999) have an adaptive second-stage sample size conditional
on the first-stage test statistic. Although this allows considerable flexibility in
carrying out a trial, it may be desirable for trial organizers, participants, and grant
committees to know the second stage sample size in advance, even if it results in a
slight increase in expected sample size.

3. OPTIMAL TWO-STAGE DESIGNS FOR CONTINUOUS
TREATMENT RESPONSES

In this paper we assume that an individual’s response to treatment (possibly
after correcting for other covariates, e.g., in a linear regression) is distributed as
N(J¢, o%) for the control treatment, and N(d;, 62) for the tested treatment, where
o% and ¢% are unknown. We assume that o; = 0. = 0. If d = §; — . is the true
difference in treatment effect, we assume that the null and alternative hypotheses
being tested are:

Hy:0<0
H :0>0

Generally a design will be sought that has type I error «, and type II error of
B when 6 = 6*, and ¢ = ¢*, where 0* is a clinically relevant difference that would
be desirable to detect, and ¢* is the value of the standard deviation used to design
the trial which may be the estimated treatment response standard deviation from
previous trials or a pilot study. A continuous two-stage design can be parameterized
by (ny, n,, f, ¢, €5, R), where:

1. n, is the number of patients recruited to the control arm in the first stage.

2. n, is the number of patients recruited to the control arm in the second stage, if
the second stage occurs.

3. R is the allocation ratio, the ratio of number of patients in the case arm to the
number in the control arm. We assume for the rest of the paper that R =1,
that is, the trial is balanced.

4. f is the lower threshold for the first-stage test statistic, below which the trial stops
for futility.
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5. e, is the upper threshold for the first-stage test statistic, above which the trial
stops for efficacy and the null is rejected.

6. e, is the threshold for the joint first- and second-stage test statistic, above which
the null hypothesis is rejected.

The two-stage trial that we use consists of testing the treatment responses of
the first-stage patients with a two-sample 7-test, giving a statistic 7;. If 7| is less than
f, the trial is stopped for futility; if it is greater than e,, the trial stops for efficacy,
and H, is rejected; otherwise the trial continues to the second stage. The treatment
responses of patients recruited to the second stage are tested using a two-sample
t-test, giving statistic 7. If %jﬂz is above e,, the null hypothesis is rejected.
This form of the test statistic used at the second stage results in easier computation
of the distribution conditional on the first-stage test statistic than one that uses the
pooled T-test. For large sample sizes, both forms should give a similar result. For
details on how to calculate the overall probability of rejecting H,, see, for example,
Jennison and Turnbull (2000).

The trial will be designed such that the probability of rejecting the null
hypothesis under the null is less than or equal to «, and the probability of rejecting
the null hypothesis for 6 > §* is greater than or equal to 1 — f5. If a two-stage design
meets the constraints on (a, f§), we refer to it as a feasible design.

Given a feasible two-stage design parameterized by (n,, n,, f, e;, €;), two
quantities of interest are the probability of early termination (PET(J)), and the
expected sample size, [E(N | 0). PET(0) is the probability of the trial being stopped
after the first stage, due to either futility or efficacy, and is equal to:

P(T,(0) = f) + IP(T,(0) > ¢) (1
and [E(N | 9) depends on n,, n,, PET(0) as follows:
[E(N|0) =n, + (1 — PET(5))n, ()

Note that PET depends on the true value of §. To calculate IE(N | §) under
different values of d, one can calculate PET(J) from equation (1), using that 7| is
distributed as a noncentral ¢ random variable with noncentrality parameter @
and degrees of freedom 2n, — 2. IE(N|J) can then be found from PET(d) using
equation (2). To simplify the notation, we refer to PET(6) and E(N | J) as PET and
[E(N) henceforth.

As the true o increases, the trial is more likely to stop for efficacy, but less
likely to stop for futility. This leads to PET decreasing to a minimum point, and
then increasing as J increases. IE(N) has the reverse relationship, since a lower PET
results in a higher E(N).

For each design, (n,, n,, f, ¢, e,), there exists a ¢ that minimizes PET, and
thus maximizes I[E(N). We call this value the worst-case scenario treatment effect,
and label it 6. Minimizing PET is equivalent to maximizing:

/ “ (s, 3)
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with respect to 9, where f7, is the pdf of the non central 7 distribution. This can
be found through a simple interval bisection technique. Although this adds some
computation to finding the J-minimax design, it is not much extra since it involves
evaluating the CDF of the one-dimensional ¢ distribution. Most of the computation
time in finding two-stage designs is taken up in finding the overall type I error and
power, which involves two-dimensional integrals.

The null-optimal design is the feasible design that minimizes [E(N | 6 = 0), the
CRD-optimal design is the one that minimizes E(N | = ¢*), and the J-minimax
design is the one that minimizes IE(N | 5). The latter is slightly misleading notation,
since 0 depends on the design parameters, whereas the other two quantities do not
depend on the design. To be more precise, if F is the set of all feasible designs, with
d; an individual feasible design, the é-minimax design is the design d such that

E(N|5(d)) = min E(N | 3(dy)) 4)

In this way the only assumptions we make about § are those we must do to
power the trial. If we choose a design that optimizes the expected sample size
under a specific value of ¢ (as the null and CRD optimal designs do), then if the
true ¢ is different, the design we choose will have a large expected sample size.
The J-minimax design minimizes the impact of deviations from the assumptions
necessary to design the trial.

4. TECHNICAL CONSIDERATIONS FOR FINDING OPTIMAL DESIGNS

With five design parameters to search over, and nonlinear constraints on type
I error and power to meet, finding an optimal design is a complicated optimization
problem. One approach is to minimize IE(N |J) subject to constraints. Finding
an analytical expression for the derivatives of IE(N|J) with respect to each of
the parameters is difficult, but a numerical estimate can be used instead. Two
complications are that the final n, and n, parameters must be integers, and the type
I and II error constraints must be met. In addition, the space of possible designs
contains many local minima (with respect to IE(N |d)). These problems seem to
imply that a deterministic minimization method is not feasible to use.

Instead we used a straightforward grid search to look for the optimal designs.
This examines each combination of (n,, n,, f, e;, ¢,), and keeps a record of the
design with lowest expected sample size (under the relevant o) that meets the type
I and II error constraints. A few constraints can be used to reduce the number of
designs searched over:

l. e, must be greater than or equal to the 1 — « quantile of the first-stage test
statistic under 6 = 0, otherwise the type I error probability of the two-stage
design is greater than o.

2. f must be less than or equal to the i quantile of the first-stage test statistic under
0 = ¢*, otherwise the type II error probability of the two-stage design is greater
than p.

3. e, is assumed to be less than or equal to 5. Allowing values greater than 5 has a
minimal effect on the properties of the designs found, but means the grid search
takes longer.
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4. f is assumed to be greater than or equal to —1, for a similar reason to the
preceding one.

5. From empirical data, n, appears to be greater than or equal to one quarter of the
required sample size for a feasible one-stage design, so this is used as a constraint.

6. n, must be less than the lowest [E(N | d) found so far, since [E(N | 0) is always at
least n;.

The process of finding the optimal designs works by increasing n, and cycling
through feasible values of f, e, in increments of 0.1. For each combination of
(ny, f, e,), the second-stage parameters (n,, ¢,) are found such that the design is
feasible, and n, is the minimum of all feasible designs with first-stage parameters
(ny, f, e;) (thus reducing [E(N | §)). After the optimal design from the coarse grid
given earlier is found, the grid is tightened, and the area near to the current optimal
design is searched.

For cases where ;- is large, and thus the required sample size is large, this
process will be extremely time-consuming. For the rest of this paper, we have limited
the preceding ratio to be less than or equal to 10. For Phase II trials, the assumed
ratio would generally be lower than this.

5. RESULTS
5.1. Optimal Designs and Their Relative Performance

For this first section we assume the true o is equal to the ¢* used to design the
study, but explore how deviations from this assumption affect the expected sample
size and power later on.

We found the null-optimal, CRD-optimal, and J-minimax designs for
three standard ombinations of type I and II error probabilities: (o, f) €
{(0.05,0.1), (0.1, 0.1), (0.05, 0.2)}. These combinations, which had previously been
studied by Simon (1989), allow us to compare the relative performance of the
designs as the type I error probability is increased, and as the type Il error
probability is increased. For each design, ¢6* was taken to be 1, with ¢* €
{1, 2, 5, 10}. These values are arbitrary, but reflect a range of possible trial sizes.
o = 10 results in a trial much larger than any that would be done at Phase II, but
we feel that it is instructive to examine how the designs perform for large sample
sizes. Note that the designs depend only on the ratio j—i, so the optimal designs for
different values of d* can easily be found from the following results.

Table 1 gives the design parameters of the different designs for («, ff) =
(0.05, 0.1). For comparative purposes, it also gives the sample size per arm required
for the single stage design. Figure 1 is a line graph showing the expected total sample
size of the different designs for ¢ € [0, 20*].

Table 1 shows some general features of each design. The null-optimal design
has the lowest first-stage sample size, together with a positive value of f, and a large
value of e,. This is because decreasing ¢, does not reduce IE(N |6 = 0) as much as
increasing f does. Although this results in a smaller IE(N) when ¢ = 0, it drastically
affects the expected sample size when ¢ is larger.

The CRD-optimal design has a smaller value of ¢, which results in a lower
[E(N |0 = 0%). On the other hand, the design tends to have a smaller f. This smaller
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Table 1 Optimal designs and their expected sample sizes when d = 0, §*, or & for (a, f) = (0.05,0.1)

[E(N) under

Design n n, f e e B H, CRD 5
g=1

Null-optimal design 8 13 05 3.51 1.62 095 12.04 18.68 18.70
CRD-optimal design 10 11 036 198 195 0.52 13.65 14.01 16.22
J-minimax design 12 8§ 08 210 176 0.60 13.44 14.42 15.60
Single-stage design 18 - - 1.69 - - 18 18 18
g=2

Null-optimal design 31 52 0.5 382 1.55 1.08 47.13 77.17 71.37
CRD-optimal design 37 43 022 191 1.88 0.49 53.48 53.14 62.65
J-minimax design 45 35 081 195 1.74 0.58 51.44 54.72 60.02
Single-stage design 70 - - 1.66 - - 70 70 70
og=>5

Null-optimal design 189 315 045 440 155 1.10 291.88 480.30 488.29
CRD-optimal design 226 267 0.13 1.88 1.87 048 337.60 327.37 390.93

J-minimax design 277 209 075 195 173 057 319.031 337.35 371.23
Single-stage design 429 - - 1.65 - - 429 429 429
=10

Null-optimal design 762 1238 045 4.5 1.55 127  1166.10 1910.73  1946.46
CRD-optimal design 918 1057  0.18 1.87 1.87 048 133845 1306.71  1554.02
J-minimax design 1101 846 075 195 1.72 057 1271.09 1346.95  1482.85
Single-stage design 1714 - - 1.65 - - 1714 1714 1714

f means that I[E(N) is somewhat higher than the null-optimal design when ¢ is near
to 0.

The J-minimax design generally has a larger f than the null-optimal design,
and a value of ¢, close to that of the CRD-optimal design. In order to control the
increased type II error probability that the higher f causes, a larger n, is needed.
Thus, although f, and therefore PET, under the null is higher, the 6-minimax design
still has a larger I[E(N) under the null than the null-optimal design due to the larger
sample size in the first stage. 5

Also given in Table 1 are the values of J, the treatment effect that gives the
highest expected sample size, for the different designs. As Fig. 1 shows, o is highest
for the null-optimal designs, smaller for the d-minimax designs, and smallest in the
CRD-optimal designs. As the trial size increases, 6 increases in the null-optimal
designs, and decreases in the CRD-optimal and J-minimax designs.

Figure 1 shows that for low values of ¢, the CRD-optimal design is almost
identical to the ¢-minimax design. As the ratio increases, the two designs become
more separated, with maximum expected sample size being noticeably lower under
the d-minimax design. Graphs 1(c) and 1(d) appear to be roughly the same shape,
but with different y-axis scales. This would indicate that as ¢ increases, the relative
shapes of the designs converge, and only the scale increases.

Figure 1 also shows that the null-optimal design is clearly best for low values
of d, but very poor for values of ¢ close to the CRD. As ¢ increases, the probability
of stopping for efficacy will converge toward 1. Thus, IE(N) for the null-optimal
design will be superior for very large values of ¢ also. The point at which the
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Figure 1 Plot of expected sample sizes of each optimal design against true mean treatment response,
o, for (o, f) = (0.05,0.1). (Color figure available online.)

null-optimal design stops being optimal appears to decrease as ¢ increases due to
the decrease in PET. In Fig. 1(a) it is 0.275, but in Fig. 1(d), it has reduced to 0.242.

Figure 1 shows that the relative performance of IE(N) of each optimal design
appears to converge as ¢ increases. This implies that the ratios of the maximum
expected sample size under the CRD-optimal and null-optimal design respective to
the maximum under the J-minimax design will also converge. Table 2 shows both of
these ratios as 3 increases. The maximum expected sample size ratio of the CRD-
optimal and d-minimax design increases to just over 1.05, and then falls slightly
for ¢ = 10. This could mean that the designs in Table 1 are close to being the
optimal designs, but not quite exactly. For the true globally optimal design, one
would expect the ratio to increase with g, and converge. The null-optimal design

Table 2 Ratio of maximum E(N) under CRD-optimal and
null-optimal designs to maximum E(N) under J-minimax design

Ratio of E(N |d) from Ratio of E(N |d) from

a CRD-optimal and null-optimal and
5 J-minimax designs J-minimax designs
1.039 1.199

1

2 1.044 1.289
5 1.053 1.315
0 1.048 1.313
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performs worse, with the maximum expected sample size larger. The ratio increases
with g, with a slight fall for ¢ = 10, due to the same reasons as previously. The ratio
converges to a value just above 1.31.

Table 1 also includes the (unique) single-stage design that gives the required
type I and II error probabilities. The table shows that the expected sample size of the
CRD-optimal and é-minimax designs are always lower than the single-stage design
(but not for the null-optimal design for 6 near to the CRD). On the other hand,
n, + n, is always higher than the sample size required for the single-stage design.
This was not the case for Simon two-stage designs, which occasionally produced
designs where n; + n, was lower than the single-stage sample size (Simon, 1989).
This is likely to be a feature of the discrete nature of the Simon design, which does
not translate to the continuous designs we examine here.

Due to the correspondence between IE(N) and PET, examining how PET
varies with 6 may be instructive. Figure 2 shows two different graphs. The first
shows the probability of stopping for futility and efficacy separately for each design.
The second shows the overall PET for each design. As expected, the J-minimax
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Figure 2 Plots comparing probability of stopping after first stage for different values of ¢ for null-
optimal (blue), CRD-optimal (red), and J-minimax (black) designs. (o, f) = (0.05,0.1), ¢ =10. (a)
Probability of stopping for efficacy (dashed) and futility (solid) after stage 1 for three optimal designs.
(b) Total probability of early termination.
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Table 3 Optimal designs and their expected sample sizes for («, f) = (0.05,0.2)

[E(N) under
Design n; n, f e e B H, CRD B
o=1
Null-optimal design 5 11 0.47 325 1.66 1.10 8.58 13.37 13.42
CRD-optimal design 8 0.65 211 1.86 0.68 9.69 11.07 11.58
d-minimax design 9 6 099 212 176 0.72 9.90 11.13 11.45
Single-stage design 14 - - 1.71 - - 14 14 14
og=2
Null-optimal design 20 41 0.5 3.84 154 133 32.76 54.46 56.37
CRD-optimal design 30 28 0.63 195 1.80 0.66 36.69 41.40 43.61
d-minimax design 32 25 083 205 1.69 0.72 36.60 41.88 43.33
Single-stage design 51 - - 1.66 - - 51 51 51
g=>5
Null-optimal design 125 249 049 385 1.52 136 202.79 336.58 350.19
CRD-optimal design 186 170 0.61 192 178 0.65 227.38 254.34 268.69
d-minimax design 197 157 0.8 1.98 1.70 0.70 226.53 256.51 266.65
Single-stage design 310 - - 1.65 - - 310 310 310
=10
Null-optimal design 505 987 0.5 441 1.52 1.54 809.63 1353.28 1441.46
CRD-optimal design 738 688 0.6 191 1.78 0.65 907.37 1014.75 1073.29
J-minimax design 771 641 0.78 197 1.70 0.69 900.91 1022.27 1064.15
Single-stage design 1238 - - 1.65 - - 1238 1238 1238

actually has a larger probability of stopping for futility than the null-optimal design
when ¢ is near the null. Interestingly, it also has a larger probability of stopping for
efficacy, in comparison to the CRD-optimal design, when ¢ is close to the CRD.
Figure 2(b) shows that the J-minimax design has the largest PET for every value of
o considered. These factors are all desirable for a two-stage design, even if a larger
first-stage sample size is needed for them to be true.

Tables 3 and 4, together with Figs. 3 and 4, give the corresponding results
using different type I and type II error probabilities. Table 3 and Fig. 3 give results
for (o, f) = (0.05,0.2), with the other two giving results for («, f) = (0.1,0.1).
These plots allow comparison of the relative performance of the designs if (1) the
permitted type Il error probability is increased and (2) the permitted type I error
probability is increased.

If the type II error probability is increased to 0.2, there appears to be a much
smaller difference between the CRD-optimal design and the d-minimax design. This
is because it allows f to be increased in the CRD-optimal design. On the other hand,
f for the o-minimax design was already high, so increasing the type II error does
not increase it much further. Thus, it seems for o« = 0.05 and f = 0.2, there is little
advantage in using the J-minimax design over that from using the CRD-optimal
design. However, both are significantly better than the null-optimal design when ¢
is near to the CRD. As ¢ increases, the  at which the é-minimax design has a lower
expected sample size than the null-optimal design decreases from 0.38 to 0.32.

For (a,f)=(0.1,0.1), the pattern looks different. First, the CRD-
optimal design and J-minimax design are more distinct than they were for
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Table 4 Optimal designs and their expected sample sizes for (o, ) = (0.1, 0.1)

E(N) under

Design n; n, f e e 5 H, CRD 5
g=1

Null-optimal design 6 10 0.2 319 126 091 10.20 14.09 14.13
CRD-optimal design 7 10 0 1.60 1.65 0.42 11.32 10.54 12.54
J-minimax design 9 7 0.58 1.68 140 0.53 10.63 10.85 11.83
Single-stage design 14 - - 1.31 - - 14 14 14
g=2

Null-optimal design 25 35 0.2 372 1.21  1.08 39.75 56.73 56.84
CRD-optimal design 28 35 —-0.07 154 1.55 0.39 44.19 39.97 48.08
J-minimax design 34 26 043 1.64 137 050 41.35 41.44 45.78
Single-stage design 53 - - 1.29 - - 53 53 53
g=>5

Null-optimal design 156 222 023 393 119 117 246.83 360.59 363.38
CRD-optimal design 165 222 —0.2 1.53  1.54 037 279.59 246.40 301.14

d-minimax design 207 172 043 1.61 137 050 255.18 255.58 283.63
Single-stage design 329 - - 1.28 - - 329 329 329
g=10

Null-optimal design 651 840 026 449 1.19 131 984.87  1436.39  1471.76
CRD-optimal design 663 880 —021 1.53 1.54 036 1120.61 983.70  1204.63
J-minimax design 837 681 045 1.6 1.37  0.50 1021.90  1022.64  1132.95
Single-stage design 1315 - - 1.28 - - 1315 1315 1315

(a, f) = (0.05,0.2). Under the null, IE(N) of the J-minimax design is very close to
the null-optimal design, whereas when 6 = ¢*, IE(N) of the J-minimax design is
slightly further away from the [E(N) of the CRD-optimal design. This implies that
compared to (a, f) = (0.05, 0.1), increasing the type I error causes the J-minimax
design to be slightly closer in performance under the null to the null-optimal design,
whereas increasing the type Il error causes it to be closer to the CRD-optimal
design across a wider variety of treatment responses.

5.2. Comparison to Whitehead’s Optimal Continuous Design

Earlier we discussed the paper by Whitehead et al. (2009) in which a two-stage
trial was designed for a Phase II trial of placebo against a novel compound for the
control of diabetic neuropathic pain. Although we have used different test statistics
in this paper, the overall procedure is very similar.

Whitehead et al. simplified the computation by fixing the total number of
patients in the first stage to be 90 (i.e., n; = 45 when the allocation ratio is 1), and
f to be 0. This reduces the dimension of the search space to three, which does speed
up the searching significantly. Six designs were found that covered a range of (o, f§)
combinations and different allocation ratios. 6* was set to be 1, with ¢* = 2.3. We
compare design 1 in Table 1 of the Whitehead paper to two d-minimax designs we
found. For that design, («, ) = (0.025, 0.2), the allocation ratio is equal to 1, and
the design was optimized under the null of 6 = 0. The first -minimax design we
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Figure 3 Plot of expected sample sizes against true treatment effect, (o, f) = (0.05,0.2). (Color figure
available online.)

found constrained n, to be equal to 45, to make it more comparable to Whitehead’s
design; the second did not have a constraint on n,.

Table 5 shows the design parameters for each of the three designs, and the
resulting IE(N) under 6 = 0,0 = 0.5, and 6 = 1 (values that were given in Table 1
of Whitehead et al.).

Both §-minimax designs perform better than Whitehead’s design for each of
the three values of 6 examined. Under the null, the expected number of patients
when 6 =0 is around 20 less using the constrained J-minimax, and 10 less using
the unconstrained one. This shows how important the f parameter is for the null
optimal design, with f = 0 providing a 50% chance of early termination under the
null, but as shown earlier, the null-optimal design has a PET under the null that
converges to around 70% as ‘;—* tends to oo.

Whitehead et al. do not provide a plot summarizing the expected sample size
at each ¢ point, so we used the design parameters from Table 5 and applied them
using the two-stage design procedure discussed in this paper. This appears to result
in slightly lower than specified expected sample sizes. For example, under 6 = 0, the
expected sample size of Whitehead’s design was 128.7 instead of 128.75 given in the
paper. This difference is extremely small, so we feel comfortable in comparing the
designs in this way. Figure 5 shows the expected sample size of each of the three
designs for every o value between 0 and 20*.
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Figure 4 Plot of expected sample sizes against true treatment effect, (o, f) = (0.1, 0.1). (Color figure
available online.)

From the plot in Fig. 5, both J-minimax designs perform better in terms of
[E(N) for ¢ values between 6 =0 and 6 = 0*. The constrained J-minimax design
appears to be the best one, with a substantial drop in IE(N) for values of ¢ near the
null or greater than &*; it does slightly worse at values of 6 near o.

Whitehead’s design performs better than the unconstrained é-minimax design
when ¢ is greater than around 1.56*. This is because of its lower first-stage sample
size, which the expected sample size converges to as ¢ increases. Although this is

Table 5 Comparison of design parameters and resulting expected sample sizes between (1) the first
design in Table 1 in Whitehead et al. (2009), (2) the J-minimax design with n; constrained to be 45,
and (3) the J-minimax design with n; unconstrained

Whitehead’s J-minimax n; =45 d-minimax n; unconstrained

n, per arm 45 45 54

f 0 0.850 1.110

e 2.730 2.367 2.303

n, per arm 39 52 42

e, 1.977 2.023 2.018
E(N|o=0) 128.75 109.75 118.45
E(N|o=0.5) 152.71 139.73 140.38

E(N|o=1) 146.79 142.28 140.71
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Figure 5 Comparison of expected sample sizes, as the true J varies, between the three designs in
Table 5. (Color figure available online.)

a disadvantage of the unconstrained J-minimax design, it does mean that a more
precise estimate of 0 is given, which allows a subsequent Phase III trial to be
designed more efficiently.

All of the designs just described control the type I error, but not the power,
when the true value of ¢ differs from 2.3. Table 6 shows the power as ¢ varies. There
is not a great deal of difference between the three designs, with all suffering a loss
of power as ¢ increases. The loss of power is slightly higher for Whitehead’s design
when ¢ > 2.3. On the other hand, for ¢ values smaller than 2.3, the power gain
is slightly higher with Whitehead’s design. This indicates that the two J-minimax
designs are very slightly more robust to deviations of ¢ from ¢*.

Table 6 Power of Whitehead’s design, constrained J-minimax design, and unconstrained J-minimax
design for values of ¢ different from the assumed value of 2.3

Power
g Whitehead’s J-minimax n; = 45 J-minimax n; unconstrained
1.4 0.995 0.992 0.994
1.8 0.945 0.942 0.944
2.4 0.761 0.767 0.766
2.8 0.628 0.637 0.636

32 0.517 0.525 0.524




850 WASON AND MANDER

6. DISCUSSION

In this paper we have introduced the é-minimax design to controlled two-stage
Phase II trials with continuous outcomes. The J-minimax design minimizes the
maximum possible expected sample size under all possible treatment effects. A paper
by Shuster (2002) uses this criterion on uncontrolled binary trials, although there
it was named “minimax”. To avoid confusion with the design that minimizes the
maximum sample size, we name the criterion -minimax. This is the first paper to
apply such a criterion to controlled trials with continuous treatment responses and
to compare it to other optimal designs for a full range of possible treatment effects.
Previous work has tended to define optimality as optimal under the null hypothesis,
for example, in Simon (1989). This appears to be a poor choice unless:

1. The null hypothesis is highly likely to be true, in which case why is the trial being
performed?

2. There is a strong clinical reason to use it, for example, an expensive or toxic drug
that should be stopped early if it is having no effect.

The d-minimax design can be seen as minimizing the impact of the “worse-
case scenario” occurring. Not only does it have this advantage, but it appears to
perform well for a range of other values of ¢ too. The only situation when it has the
highest expected sample size is when ¢ is much higher than the clinically relevant
difference, 0*. Generally 0* is somewhat optimistic, so this will seldom be the case.
The design is no more difficult to find than other optimal designs. We implemented
the grid-search technique using C, with code available on request.

If the type II error probability, /5, is allowed to be higher, the differences
between the d-minimax design and the CRD-optimal design are far less pronounced.
For f# = 0.2, there was very little to choose between them. Both still appear to be a
more suitable choice than the null-optimal design.

In the results section, we showed that the probability of early termination
is always higher using the J-minimax design than using the other two optimal
designs. For values of ¢ close to the null, it had a higher probability of stopping
for futility than the null-optimal design, and for values close to the CRD, it had
a higher probability of stopping for efficacy than the CRD-optimal design. It still
loses out slightly in terms of IE(N) in both cases because of the higher first-stage
sample size.

Although the expected sample size is higher than that of the CRD-optimal
design when 0 is near to the CRD, this may be not be a completely bad thing. Since
the treatment is shown to be effective, a larger Phase III trial would probably be
planned, and the extra information from the larger first-stage sample may come in
handy to plan it.

The J-minimax designs have larger first-stage and maximum sample sizes than
the other optimal designs. This larger sample size allows PET to be higher for all
treatment effects. In section 5.2 we showed that limiting the first-stage sample size
reduces the maximum sample size without losing too much in terms of maximum
expected sample size. Designs that balance the maximum expected sample size and
maximum sample size may be desirable and worth further research.

Designs here have all been based on a controlled Phase II trial. The theoretical
distributions underlying them can easily be extended to the case of an uncontrolled
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trial, a type commonly used for cancer trials. The relative performance of the designs
is the same for the uncontrolled, but each design needs roughly a quarter of the
total sample size.

The idea of optimal two-stage designs can be extended to more than two
stages. This would have the advantage of giving lower expected sample sizes.
Methods from group sequential trials have considered optimality under the null,
but do not tend to optimize the design under all possible parameters (i.e., sample
size per stage, futility and efficacy parameters for each stage). For a design with
many stages, it is a considerable computational challenge to find the optimal design,
with the grid search becoming infeasible to use. Stochastic search methods such as
simulated annealing could be used, and may provide faster searches.

Overall, the J-minimax design has desirable properties, and may be a better
choice for designing two-stage Phase II trials than ones that assume a specific
treatment effect to optimize under.
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