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Abstract

The case-based time-series design is a viable methodology for treatment outcome research.
However, the literature has not fully addressed the problem of missing observations with such
autocorrelated data streams. Mainly, to what extent do missing observations compromise inference
when observations are not independent? Do the available missing data replacement procedures
preserve inferential integrity? Does the extent of autocorrelation matter? We use Monte Carlo
simulation modeling of a single-subject intervention study to address these questions. We find
power sensitivity to be within acceptable limits across four proportions of missing observations
(10%, 20%, 30%, and 40%) when missing data are replaced using the Expectation-Maximization
Algorithm, more commonly known as the EM Procedure (Dempster, Laird, & Rubin, 1977).This
applies to data streams with lag-1 autocorrelation estimates under 0.80. As autocorrelation
estimates approach 0.80, the replacement procedure yields an unacceptable power profile. The
implications of these findings and directions for future research are discussed.
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Experts have concluded that maximum likelihood methods are the preferred missing data
management approach in group multivariate designs (e.g., Horton & Kleinman, 2007;
Ibrahim, Chen, Lipsitz, & Herring, 2005; Ragunathan, 2004). Velicer and Colby (2005a,
2005b) extended this finding to time-series designs by establishing the superiority of
maximum likelihood methods to other ad hoc procedures in the estimation of various critical
time-series parameters. Velicer and Colby (2005a) applied Monte Carlo simulation to data
streams with 100 observations per phase and autoregressive integrated moving averages
analysis (ARIMA; Box & Jenkins, 1970) to test the accuracy of parameter estimates. They
found the Expectation-Maximization Algorithm (more commonly known as the EM
Procedure; Dempster, Laird, & Rubin, 1977) approach to be a good solution with minimal
distortion. The EM Procedure is an algorithm derived from maximum likelihood estimation

© 2011 Association for Behavioral and Cognitive Therapies. Published by Elsevier Ltd. All rights reserved.

Address correspondence to Justin D. Smith, Child and Family Center, University of Oregon, 195 West 12th Avenue, Eugene, OR
97401-3408; jsmith6@uoregon.edu.
Justin D. Smith is now affiliated with the Child and Family Center at the University of Oregon.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Smith et al.

Page 2

techniques that is available in many common statistical software packages used in the social
sciences. However, single-case time-series designs in intervention research rarely satisfy the
minimum requirements for autoregressive integrated moving averages analysis used by
Velicer and Colby (~ 30— 50 observations per phase; e.g., Borckardt et al., 2008; Box &
Jenkins, 1970). Thus, examination of the relevance of their conclusions in the context of
more typical intervention research is warranted.

The time-series design is a longitudinal methodology that requires repeated observations
over time (from a single unit or person) across conditions or phases. Among the social
sciences, the time-series design occurs most naturally in the fields of physiological
psychology, econometrics, and finance where each phase-of-interest has hundreds or
thousands of observations that are tightly packed across time (e.g., electroencephalography
actuarial data, financial market indices). However, time-series designs are now becoming
more common in intervention research conducted in the clinical setting (e.g., Borckardt et
al., 2008; Green, Rafaeli, Bolger, Shrout, & Reis, 2006; Kazdin, 2008; Smith, 2011).

Unlike the rich data streams generated by other disciplines, the typical clinical intervention
data stream is much shorter, with baseline observation periods most commonly in the range
of 8 to 12 measurement points (Center, Skiba, & Casey, 1986; Jones, Vaught, & Weinrott,
1977; Sharpley, 1987; Smith, 2011). Center et al. (1986) suggested 5 as the minimum
number of baseline measurements in order to accurately estimate autocorrelation. However,
this suggested benchmark doesn't always satisfy the requirements of time-series analytic
methods, such as ARIMA. Longer baseline periods also increase the validity of an
intervention effect and also reduce the biasing effects of autocorrelation (Huitema &
McKean, 1994). Behavioral interventions targeting specific, and often singular, dependent
variables are often much shorter, as evidenced by the findings of Huitema's (1985) review of
881 experiments published in the Journal of Applied Behavior Analysis, which resulted in a
modal number of 3 to 4 baseline points. A number of recent time-series simulation studies
have modeled their data after these very brief interventions (e.g., Manolov & Solanas, 2008;
Manolov, Solanas, Sierra, & Evans, 2011; Solanas, Manolov, & Onghena, 2010). However,
a recently completed systematic review of 409 recently published single-case experiments
by Smith (2011) suggests that baseline periods have increased since the Huitema review of
1985: The Smith review found a mean number of 10.22 observations in the baseline phase.
The present study addresses the limitations of these previous simulation studies in which
modeling of time-series data streams occurred with either very short or very long baseline
periods. This simulation study uses a 10 data-point baseline length, which is more likely to
occur in applied clinical intervention research.

There are two real-world implications of conducting intervention research using a time-
series design: Longitudinal designs of all types are inherently susceptible to missing
observations (Laird, 1988), due in part to the fact that most research designs require
observations to occur outside the controlled confines of a laboratory and across an extended
period of time (weeks or months compared to seconds or minutes). Since time-series
analysis techniques assume complete data, it is imperative that researchers identify a reliable
method of substitution that maximizes the precision of our inferences regarding an
intervention effect. Second, when we want to test intervention effects in short time-series
data streams with single subjects, the paucity of observations compromises our ability to
estimate effect above and beyond autocorrelation with few exceptions.

As time-series designs become more common in intervention research, it will be imperative
to understand the way in which autocorrelation and missing values affect statistical
inferences drawn from this type of data. Numerous statistical methods have been proposed
in recent years to analyze single-subject research that accounts for autocorrelation (e.g.,
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Borckardt et al., 2008; Manolov & Solanas, 2009; McKnight, McKean, & Huitema, 2000;
Parker & Brossart, 2003; Parker & Vannest, 2009; Parker, Vannest, Davis, & Sauber, 2011;
Solanas et al., 2010); yet, there appears to be no consensus regarding the best available
method (e.g., Campbell, 2004; Kratochwill et al., 2010;Manolov et al., 2011; Parker &
Brossart).

This Monte Carlo simulation study examines the impact of employing the EM Procedure for
missing observations on time-series data streams typical of the case-based designs
encountered in the clinical outcome literature (e.g., Borckardt et al., 2008; Kazdin, 1992;
Lambert & Ogles, 2004; Smith, 2011). In contrast to the studies conducted by Velicer and
Colby (2005a, 2005b), Manolov and Solanas (2008), Ferron and Sentovich (2002), and
others, we are not necessarily concerned with the accuracy of maximum likelihood
estimations (e.g., the EM Procedure) for missing observations in the context of model
parameter fit. Instead, we focused on the precision of inferred significance based on time-
series level-change (phase-effect) analyses when missing observations have been replaced
using the EM Procedure. As the Velicer and Colby (2005a) study demonstrated, the EM
Procedure results in relatively accurate estimations of the phase-effect statistics compared to
other methods. However, to our knowledge there has yet to be an examination of the way in
which these estimates are related to inferential precision. Based on conventional wisdom and
previous research findings, we hypothesized that as the proportion of missing data increased,
power sensitivity would deteriorate. Similarly, we hypothesized that power sensitivity would
deteriorate as autocorrelation increased: Previous single-case time-series simulation studies
have established the relationship between higher autocorrelation estimates and distorted
effect-size estimations using various analytic techniques (e.g.,Manolov & Solanas, 2008,
2009; Manolov et al., 2011), suggesting that autocorrelation will have an effect on
inferential precision as well.

Outline of Study Procedures

1. Monte Carlo simulation was used to create 5,000 time-series data streams modeled
after a typical 8-week study of psychotherapy effectiveness: 10 baseline and 56
intervention data points. Equal proportions of 5 levels of autocorrelation were
programmed and were stable across both phases (0.0, 0.2, 0.4, 0.6, 0.8.)

2. Data points were removed completely at random from the data streams in four
proportions: 10%, 20%, 30%, and 40%.

Missing observations were then replaced using the EM Procedure.
4. A simple effect of phase was calculated for each data stream using Glass's A.

Power sensitivity was determined across each proportion of missing data and level
of autocorrelation.

The Monte Carlo Simulation of Data Streams—In order to mimic the basic A-B
design commonly used in treatment outcome research, our simulated data streams are
comprised of a 10-day baseline phase and a 56-day (8-week) intervention period, with a
daily measurement frequency (i.e., 1 day = 1 measurement). The majority of psychotherapy
research is conducted on treatments offered once a week for not more than 14 weeks
(Lambert, Bergin, & Garfield, 2003). We chose this simulated intervention period length in
order to better simulate a typical psychotherapy treatment and also address the limitations in
the literature of modeling simulation studies after very brief behavioral interventions (e.g.,
Manolov & Solanas, 2008; Manolov et al., 2011; Solanas et al., 2010). The longer data
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streams also allowed for more accurate estimates of autocorrelation, particularly during the
baseline period.

This study used a Monte Carlo simulation to create the time-series data. The simulations
were conducted using custom-developed software written using RealBasic (RealSoftware
Inc., 2011) by the second author. 1 The formula used for the simulations is presented as
Equation 1.

yi=a X S(ny)i+ei (1)

Where:

e  pgi-1t§

p  autocorrelation

a  stepsize

e; indicates each is independently identically standard normally distributed: M0,1)
m  Baseline phase length

n  data stream length

i time
Sis a step function being 0 at times /=1, 2, 3.../m and 1 at times /=m+1, m+2, m+3...n.

Manolov and Solanas (2008) determined that calculated effect sizes were linearly related to
the autocorrelation of the data stream. Thus, 5,000 data streams were created with equal
proportions of five different levels of programmed lag-1 autocorrelation that was stable
across the two phases (0.0, 0.2, 0.4, 0.6, and 0.8), and a distribution of a mean effect size of
2 (Glass's A; [Mean of Phase B — Mean of Phase A] / Standard Deviation of Phase A),
programmed to contain a set of random normal deviates with a standard deviation of 1
across each level of autocorrelation. The starting value of the step and the intercept was set
to 0. The next 9 values were calculated using Equation 1, with 0 as a constant intercept
before the step (i.e., the shift between the baseline and intervention phases). Since the
simulated data streams contain a set of random normal deviates, the step size represents the
effect size in question, which is the number of standard deviation for each series of
simulations. The programmed autocorrelation values are not altered around the step and
remain constant between both phases in the data stream. The described characteristics of the
5,000 data streams are prior to the removal of observations and subsequent substitution of
missing values described in the remainder of this article.

Removal of Observations—One assumption of maximum likelihood estimation
techniques, such as the EM Procedure, is that the data are either missing at random (MAR)
or are missing completely at random (MCAR). Ibrahim et al. (2005) discussed these
different classifications of missing data.2 A third classification of missing values is those
that are nonignorable or systematically missing from the data (e.g., the observation that is
missing is a function of the value that is not being reported). For example, a suicidal patient
may not report the severity of suicidal ideation on days in which these values would be very
high. The current study removed data completely at random, satisfying the MCAR
assumption. From the original data set of 5,000 data streams, four proportions of
observations were randomly removed (10%, 20%, 30%, and 40%). These proportions are

1The algorithm used for the Monte Carlo simulation is available from the authors upon request.
It should be noted that the standard definitions of MAR and MCAR pertain to the measurement of independent observations and not
autocorrelated data.
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identical to those of the Velicer and Colby (2005a) study, which was based on the findings
of Rankin and Marsh's (1985) study of the effects of missing data on model fit.

Replacing Missing Observations—In a similar Monte Carlo simulation study, Velicer
and Colby (2005a) demonstrated that maximum likelihood methods, such as the EM
Procedure, yielded accurate estimates of time-series model parameters, but with
significantly longer data streams than this and other time-series simulation studies. Horton
and Kleinman (2007) report that for each missing observation, “multiple entries are created
in an augmented dataset for each possible value of the missing covariates, and a probability
of observing that value is estimated given the observed data and current parameter
estimates” (p. 82). Rubin (1976) provides the justification that this is the correct likelihood
to be maximized when data are MAR or MCAR. Furthermore, Shumway and Stoffer (1982)
discussed the underlying processes of the EM Procedure when applied to time-series data
streams. The EM Procedure was applied to all data streams in the data set using PASW
Statistics for Windows and Mac. (2010) (Version 18.0.0). Chicago: SPSS Inc.

Calculating an Effect of Phase—Empirical studies (e.g., Ferron, Foster-Johnson, &
Kromney, 2003; Ferron & Ware, 1995) suggest that Type Il error is the main problem in
single-case time-series data streams, since Type | error can usually be controlled using
randomization elements in the research design of the study (for examples, see Ferron &
Ware; Kratochwill & Levin, 2010). Therefore, power sensitivity is an appropriate statistic
for determining precision because it is complementary to Type Il error rates. Manolov and
Solanas (2008) found that autocorrelation least affected effect sizes using standardized mean
differences, such as Glass's A, Cohen's @, and Hedge's g, and percentage of nonoverlapping
data indices. Similarly, Solanas et al. (2010) concluded that level change effect sizes,
calculated using a standardized mean differences approach, were “not affected by the
presence of the degree of autocorrelation tested, as the values of its estimators do not change
regardless of the values of ¢1 for AR(1) processes and 81 for MA(1) processes” (p. 536).
Thus, following the lead of Ferron and Sentovich (2002), Manolov and Solanas (2008),
Solanas et al., and others, we calculated an effect of phase using Glass's A. 3 Using a
standard critical values table, we determined the effect size needed to infer significance
(two-tailed) with our data streams, using an alpha (a)) of 0.05, was a Glass'sAof 1.023, based
on 17 degrees of freedom (i.e., 16 estimatable lags of autocorrelation+the intercept; see Box
& Jenkins, 1970).

Determining Power Sensitivity—Power sensitivity is the ability to detect an effect, if
the effect actually exists (See Equation 2; Cohen). The acceptable rate of power sensitivity
has been set traditionally at 0.80 (Cohen, 1988). Power sensitivity is influenced by the
statistic used (e.g., Glass's A, r, d), the NV, a, and the size of the effect. In this study, the NVis
relatively large with 66 observations in each data stream. We chose a = 0.05 because of its
commonality, and we chose Glass's A based on previous research.

number of True Positives

Power Sensitivity= (2

number of True Positives+number of False Negatives

3we chose this method for a number of reasons even though there are many other potential methods for analyzing single-case time-
series data: A mean differences approach does not account for autocorrelation in the data stream, and thus the relationship between
autocorrelation and other parameters under investigation is not due to the way in which the analytic method used manages
autocorrelation. Examining the inferential precision of different statistical analysis methods under the conditions of the data in this
study is certainly an area for future research given the prevalence of available methods and the ongoing debate regarding their
accuracy and utility. We certainly are not advocating the use of one statistical method over another. Researchers need to select the
appropriate analytical method for their research design and the topic under investigation.
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After Glass's A was calculated for each individual data stream across all proportions of
missing values, we used a dummy coding scheme to code significant or insignificant effects
in the original data streams with no missing observations and those data streams where
missing observations were replaced using the EM Procedure. This was done as a means of
categorizing results in order to determine the power sensitivity across proportions of missing
values and levels of lag 1 autocorrelation.

In order to address our first hypothesis, we calculated the power sensitivity for each
proportion of missing observations, regardless of autocorrelation. The power sensitivity at
each proportion of missing data was: 10%=.914, 20%=.913, 30%=.912, 40%=.910. These
results indicate relative consistency across the four proportions of missing values and they
are above 0.80, suggesting acceptable power sensitivity. To address our second hypothesis,
we calculated the power sensitivity of each level of autocorrelation and proportion of
missing observations. Figure 1 illustrates that the pattern of power sensitivity is similar
across the four proportions of missing observations and deteriorates as autocorrelation
increases, falling just below the acceptable level when autocorrelation reached 0.80.

Conclusions

This study provides further support for the accuracy of the EM Procedure on the level-
change parameter and also extends these findings to inform decision-making in research
employing time-series designs. Our results suggest that the proportion of missing
observations is not as significant a factor in inferential precision as the level of
autocorrelation in the data stream: The EM Procedure seems to be an effective means of
replacing missing observations and maintaining power sensitivity, even when 40% of the
data stream is missing completely at random. However, when autocorrelation is in the
vicinity of 0.80, regardless of the proportion of missing data, power sensitivity falls below
the acceptable 0.80 level. Yet, overall power sensitivity remained quite high in our
simulated sample, indicating that the EM Procedure is well-suited to managing missing
observations in time-series data-streams. It is imperative to appreciate that these results only
apply to missing data that is MCAR. Data that is MAR or systematically missing may not
perform similarly. Additional research in this area is needed.

Limitations and Future Directions for Research

The findings of this study occurred under nearly optimal conditions, unlike real-world
applied research in which the assumption of MCAR is rarely satisfied, and the researcher
doesn't have the privilege of “knowing the real effect size” without missing observations. A
replication of these studies with naturally occurring data streams is the next logical step in
determining the interaction between, and effects of, different time-series parameters on the
conclusions drawn from time-series research. Alternatively, employing missing data
algorithms with systematically missing observations, which are more likely to occur in
applied research, would be useful for researchers conducting single-case time-series studies,
as would comparing the accuracy of other available missing-data-estimation techniques,
such as multiple imputation and Bayesian.

Second, this study was modeled after an 8-week treatment outcome study with a 10-day
pretreatment baseline, which limits generalizability to longer or shorter time periods.
Manolov and Solanas (2008) did not find differences due to the length of the data stream,
but their streams were rather short compared to the single-subject psychotherapy outcome
experiment after which our study was modeled. Given the results of previous simulation
studies (e.g., Manolov & Solanas, 2008; Velicer & Colby, 2005a), we believe that our
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primary findings will hold true in studies of longer and shorter data streams, but this is an
area of inquiry that still requires controlled investigation. Future studies with various data
stream lengths that might be encountered in applied research settings would improve
generalizability.

Last, this study only employed one statistical approach for detecting an effect of phase.
However, there are many available options for the analysis of single-case time-series
experiments, many of which would arguably be more appropriate in applied research with
autocorrelated data. The available statistical methods designed for time-series analysis
account for the autocorrelation of the data stream differently, and calculate effect sizes
differently as well, which has resulted in a great deal of debate in the field (e.g., Campbell,
2004; Cohen, 1994; Ferron & Sentovich, 2002; Ferron & Ware, 1995; Kirk, 1996; Manolov
& Solanas, 2008; Olive & Smith, 2005; Parker & Brossart, 2003; Robey, Schultz, Crawford,
& Sinner, 1999; Velicer & Fava, 2003). Future simulation studies might consider comparing
inferential precision of multiple statistical analysis methods, preferably those found to be
superior in previous research (e.g., Campbell, 2004; Manolov et al., 2011; Parker &
Brossart, 2003).
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FIGURE 1.

Power Sensitivity Across Proportions of Missing Observations at Each Level of
Programmed Lag 1 Autocorrelation. Note. The bold horizontal line indicates Cohen's (1988)
benchmark for power sensitivity (0.80).
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