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Abstract

DNA methylation, histone modifications, and chromatin configuration are crucially important in the regulation
of gene expression. Among these epigenetic mechanisms, silencing the expression of certain genes depending on
developmental stage and tissue specificity is a key repressive system in genome programming. Polycomb (Pc)
proteins play roles in gene silencing through different mechanisms. These proteins act in complexes and govern
the histone methylation profiles of a large number of genes that regulate various cellular pathways. This review
focuses on two main Pc complexes, Pc repressive complexes 1 and 2, and their phylogenetic relationship,
structures, and function. The dynamic roles of these complexes in silencing will be discussed herein, with a focus
on the recruitment of Pc complexes to target genes and the key factors involved in their recruitment.

Introduction

Several epigenetic factors are associated with gene
regulatory mechanisms. Polycomb (Pc) proteins, a mem-

ber of the Polycomb group (PcG) of proteins, are among the
most important of these factors and are important in silencing.
PcG proteins are able to silence gene expression globally,
particularly during development and differentiation. During
the development of an organism, particularly during mitotic
cycles, several epigenetic regulatory actions occur through
which genes are temporarily or permanently activated or si-
lenced. These regulatory mechanisms, the study of which is
known as epigenomics, are also maintained and reestablished
during gametogenesis. The PcG proteins are biologically es-
sential throughout development from embryogenesis to
adulthood, particularly in the regulation of imprinted genes
(Golbabapour et al., 2011). In this review, we refer to the as-
sembly of PcG proteins on chromatin as a Pc complex.

Polycomb Complexes and their Biological Roles

PcG proteins form conserved regulatory structures that can
suppress genes through a variety of physiological roles and
types of epigenetic patterning in higher organisms (Pirrotta,
2006). Their functions mostly emerge in particular spatial
patterns. Margueron and Reinberg (2011) defined the Pc
complexes as a set of genes that, when mutated, cause in-
correct body segmentation, similar to the initial Polycomb

mutant phenotype that has been described in Drosophila. For
instance, improper reactivation of pluripotent genes such as
the Hox (homeobox) genes initiates carcinogenesis (for a re-
view, see Ringrose and Paro, 2004). In Drosophila, Hox genes
are active during early embryogenesis and are maintained
during adult life via epigenetic mechanisms. Clustered on
chromosomes (Garcia-Fernandez, 2005), the Hox gene family
is important for the proper positioning of segmented struc-
tures along the body axes (Deschamps and van Nes, 2005).
Crosstalk between PcG (Bantignies et al., 2011; Cao et al.,
2005) and the trithorax (Petruk et al., 2001; Salvaing et al.,
2006) genes was first discovered in Drosophila melanogaster.
Hox genes are critical developmental regulators and are ex-
pressed in distinct regions of the anterior–posterior axis
(Alexander et al., 2009). Mutations in the Hox genes have been
associated with various developmental disorders, such as
limb malformations (Kmita et al., 2005; Zakany and Duboule,
2007) and neural crest defects (McNulty et al., 2005). The Hox
genes are also specifically expressed in the allantois of pla-
cental mammals (Scotti and Kmita, 2012; Shaut et al., 2008).
Several studies have provided evidence for the roles of
Hox genes in oncogenesis (for a review, see Shah and Suku-
mar, 2010). For instance, overexpression of certain Hox
genes has been linked to oral cancer (De Souza Setubal Destro
et al., 2010) and breast cancer (Hayashida et al., 2010). How-
ever, a full account of the interplay between PcG proteins
and trithorax group proteins during development and
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carcinogenesis is beyond the scope of this article. For a better
understanding of histone modifications and chromatin, a
number of excellent reviews (Grimaud et al., 2006; Ringrose
and Paro, 2004; Schuettengruber et al., 2007) focus on these
subjects. Moreover, Pc complexes contribute crucially during
embryogenesis, tissue differentiation (Pietersen and van Lo-
huizen, 2008; Sparmann and van Lohuizen, 2006) and tu-
morigenesis (Schlesinger et al., 2007; Widschwendter et al.,
2007) through X-chromosome inactivation (Casanova et al.,
2011; Splinter et al., 2011) and regulation of imprinted genes
( Jullien et al., 2006; Makarevich et al., 2006; Schubert et al.,
2006). Pc complexes are also associated with nuclear repro-
gramming and chromatin remodeling (for a review, see Gol-
babapour et al., 2011).

Polycomb Complexes in Action

Histone modifications and chromatin remodeling are two
main epigenetic mechanisms in the regulation of gene ex-
pression. The nucleosome, the basic unit of chromatin, con-
sists of a histone octamer, which contains a pair of each of the
core histone proteins (H2A, H2B, H3, and H4) (Luger et al.,
1997). Nucleosomes consist of 147 bp of DNA wrapped
around the core histone and are attached to one another by
DNA strands and the histone protein H1 (Luger et al., 1997).
Histone modifications consist of any post-translational alter-
ations, such as histone methylation and histone acetylation,
imposed on histone proteins. These modifications, in turn,
define the configuration of chromatin and its accessibility to
transcriptional machinery (for a review, see Golbabapour
et al., 2011). Methylation of H3K9 is important in constitutive
heterochromatin, while that of H3K27 is a key repressive
factor for the regulation of developmental genes (for a review,
see Alabert and Groth, 2012).

Studies addressing the mammalian PcG family (for a re-
view, see Jones et al., 2000) suggest a variety of tasks for Pc
complexes, such as tasks related to proliferative defects in
lymphoid cells (Core et al., 1997; Jacobs et al., 1999) and sex
determination (Katoh-Fukui et al., 1998). These complexes
contribute to silencing through histone modification. Differ-
ences in the expression of each component of Pc repressive
complexes (PRCs) suggest that the composition of Pc com-
plexes is specific to cell type and/or developmental stage
(Gunster et al., 2001), which could be referred to as dynamic
regulation of Pc complexes (for a review, see Lange et al.,
2011). PcG proteins also contribute to the covalent post-
translational modification of histones. Pc complexes repress
gene expression through methylation of histone H3 (H3K27
and H3K9) (Cao and Zhang, 2004a; Lindroth et al., 2004) and
ubiquitination of histone H2A (Wang et al., 2004).

Components of Polycomb Complexes

In 1985, the first Pc protein was reported by Jurgens (1985).
Since then, attention has been focused on understanding its role
and characteristics. Pc complexes primarily proposed as a si-
lencing mechanism for regulating homeotic genes in Droso-
phila (Chan et al., 1994). Initial studies of Pc complexes showed
that these complexes could limit the accessibility of homeotic
genes to the transcriptional machinery through spatial modifi-
cation (for a review, see Cunliffe, 2003). PcG proteins bind nu-
cleosomes and alter the intrinsic structure of chromatin to
initiate epigenetic modifications and maintain these modifica-
tions during development (for a review, see McBryant et al.,
2006). These multi-protein complexes modify chromatin struc-
ture to form flexible, repressive chromatin configurations that
include numerous targeted genes and maintain silencing (for a
review, see Morey and Helin, 2010, and Papp and Plath, 2011).
Pc response elements (PREs) are regulatory elements with
which PcG complexes interact (Chan et al., 1994; Pirrotta, 1998).

Mammalian PcG proteins have been shown to exist in
several types of complexes with different components and
structural configurations (Satijn et al., 1997). These complexes
are composed of different nonperiodic repetitive units.
Complexes of PcG proteins are mainly combinations of multi-
protein structures. PRC1 consists of four core proteins: Pc
[also known as Chromobox (Cbx) in mammals], poly-
homeotic (Ph), posterior sex combs (Psc), and sex combs extra
(Ring) (Francis et al., 2001; Saurin et al., 2001; Shao et al., 1999).
PRC2 is comprised of three main, strongly conserved sub-
complexes: Esc and Enhancer of Zeste [E(z)]; Suppressor of
Zeste 12 (Suz12); and RbAp48/Nurf-55 (Cao et al., 2002;
Kuzmichev et al., 2002; Muller et al., 2002). There is some
evidence that PRC2 is composed of more than just these four
components (Cao and Zhang, 2004b; Kim et al., 2009; Li et al.,
2010a; Pasini et al., 2010). Ring proteins consist of various
domains such as dRing plus two additional conserved cores:
Ring1A and Ring1B. Ring1 mediates the ubiquitylation of
histone H2A (de Napoles et al., 2004) (for a review, see Mar-
tinez and Cavalli, 2006). PRC1 recognizes H3K27me3 to in-
hibit transcriptional elongation through H2A ubiquitylation
(Zhou et al., 2008) and to compact the chromatin structure
(Eskeland et al., 2010). PRC2 methylates H3K27 (a key chro-
matin mark), a main feature of chromatin silencing mediated
by PcG proteins. In mammals, yin and yang 1 (Yy1) (Thomas
and Seto, 1999), homologues of Drosophila Pho, contribute to
histone methylation by recruiting Ez homolog 2 (Ezh2) to
H3K27 (Brown et al., 1998). A schematic representation of the
components of PRC1 and PRC2 is illustrated in Figure 1. The
main components of PRC1 and PRC2 in Drosophila, mouse
and human are summarized in Table 1. Several Pc complexes,

FIG. 1. General constituents of Polycomb repression complexes (PRC1 and PRC2). PRC1 consists of Cbx, BMI1, Ring, Ph,
and Pc proteins. PRC2 consists of Ezh2, Eed, Suz12, SET, and RBBP4.
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such as PRC1 and PRC2 (for a review, see Lund and
van Lohuizen, 2004), pleiohomeotic repressive complex
(PhoRC), and Pc repressive deubiquitinase, are defined as
PcG proteins. PcG proteins accumulate widely along chro-
mosomes (Decamillis et al., 1992; Zink and Paro, 1989) and
are recruited to PREs in association with transcription fac-
tors (for a review, see Ringrose and Paro, 2007) and DNA
binding proteins such as Pho (Oktaba et al., 2008). In mam-
mals, several transcription factors are involved in the re-
cruitment of PcG proteins (Bracken and Helin, 2009), which
has led to conflicting findings about PRE motifs, protein
interaction sites that bring together different proteins in
multi-protein complexes and locate them within hetero-
chromatin (Brasher et al., 2000).

Chromodomains, conserved protein motifs, are shared re-
gions of homology between two chromatin regulators, the Pc
proteins and heterochromatin protein 1 (HP1) (Paro and
Hogness, 1991). Bracken and Helin (2009) proposed that so-
called ‘‘cell fate transcription factors’’ are crucial to the re-
cruitment of PcG proteins and targeting genes. Moreover,
noncoding RNAs (ncRNAs) might mediate the recruitment of
PcG members through cell fate transcription factors.

Evolution of Polycomb Complexes

During the past decade, PcG proteins have been shown to
participate in a multitude of biological tasks, from stem cell
regulation to differentiation, with conserved mechanisms of
regulation (Muller et al., 1995). An evolutionary perspective
of PcG proteins provides useful insight into their function. As
highly conserved biological structures, these proteins are
found in various organisms and have conserved biological
activities. Figure 2 illustrates the phylogenetic tree of selected
organisms (Drosophila, mouse, rat and human) and their
PRC1, PRC2, and Cbx homologs (see Supplementary Fig. S1
and Supplementary Table S1 at www.liebertonline.com/
omi). The mechanism underlying gene silencing by Pc com-
plexes is conferred by their roles in the structural modification
of chromatin and the post-translational modification of his-
tones (for a review, see Margueron and Reinberg, 2011).

Polycomb Complexes during Embryogenesis
and Development

Developmental studies have shown that PcG proteins bind
to and interact with Pc domains in more than 200 PcG target

FIG. 2. (A) Phylogenetic distribution of the PRC1 and PRC2 in Drosophila (40), mouse (19), rat (7), and human (22). (B)
Phylogenetic distribution of the Cbx in Drosophila (11), mouse (8), rat (1), and human (8). Phylogenetic evolutionary analysis
was conducted for PRC1, PRC2, and Cbx (reviewed entries in UniProtKB) using MEGA version 4 (Tamura et al., 2007).
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genes (Schwartz et al., 2006) and dynamically regulate their
expression (Oktaba et al., 2008). For biological activity, PcG
proteins need to be part of complexes consisting of core
components and associated components. During develop-
ment, the responses of differentiated cells to environmental
signals change due to the epigenetic regulatory effects of PcG
members (Paro and Hogness, 1991). As reviewed by Cunliffe
(2003), Pc complexes act via a cellular memory mechanism
through which cell behavior can be controlled. During the
very early steps following fertilization in Drosophila, activa-
tion of homeotic genes occurs in certain segments, whereas
homeotic genes are repressed in the remainder of the seg-
ments (Chan et al., 1994). The suppression of homeotic genes
is maintained by a PcG-mediated mechanism that contributes
to regulation in the cis-regulatory region (Felsenfeld and
Groudine, 2003). During development in female mammals
(presence of two X chromosomes), one X chromosome is in-
activated to equalize the expression of genes to a level that is
equivalent to that of males, who have only one X chromosome
(for a review, see Tie et al., 2003). A small ncRNA within Xist
(a gene that is generally expressed from and accumulates on
the inactive X chromosome) targets PRC2 and contributes to

determining chromatin configuration (Brown et al., 1992;
Lucchesi et al., 2005; Zhao et al., 2008).

Polycomb Complexes in Cancer

In a variety of cancers, such as lymphoma (McCabe et al.,
2012; Tonini et al., 2008), bladder cancer (Hinz et al., 2007),
breast cancer and prostate cancer (Ren et al., 2012), PcG pro-
teins repress tumor suppressor genes (Dietrich et al., 2007; Gil
and Peters, 2006) through the accumulation of DNA methyl-
ation in the promoter regions of their targets, thus altering
their methylation profiles (Ohm et al., 2007; Schlesinger et al.,
2007). DNA methylation, the addition of a methyl group to a
cytosine to form 5-methylcytosine, is a hallmark for recruiting
epigenetic factors to suppress gene expression and will be
discussed later in this review. Studies on abnormal silencing
patterns (Ben-Porath et al., 2008; Bracken and Helin, 2009;
Schlesinger et al., 2007; Widschwendter et al., 2007) in both
pro- and anti-proliferative genes indicate potential coopera-
tion between PcG proteins and DNA methylation enzymes in
silencing the expression of genes (Bracken and Helin, 2009).
Abnormal functions of Pc complexes appear to be the main

FIG. 2. (Continued).
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factor involved in a variety of different types of cancerous
proliferation and may be due to abnormal expression of the
PcG genes themselves (mostly upregulation) (Sparmann and
van Lohuizen, 2006), resulting in aberrant DNA methyl-
transferase silencing (Bracken and Helin, 2009). Cancers may
be caused by the inactivation of tumor suppressor genes and/
or reprogramming of the nucleus to pluripotent stages due to
an imbalance in the dynamic chromatin configuration (Gol-
babapour et al., 2011; Mills, 2010). Alterations in the expres-
sion of the components of Pc complexes, along with
modification of their marks, contribute to the development of
a variety of cancers. For instance, during the development of
cancers such as prostate cancer (Hoffmann et al, 2007; Sar-
amaki et al., 2006), breast cancer (Yoo and Hennighausen,
2012), lymphoma (Visser et al., 2001), lung cancer (Breuer
et al., 2004), and liver cancer (Cheng et al., 2011), expression of
Ezh2 is increased compared with their normal counterparts.
In fact, the higher the level of Ezh2 is, the poorer the cancer
prognosis (for reviews, see Chang and Hung, 2012, and Simon
and Lange, 2008).

Silencing Mechanisms of Polycomb Complexes

The silencing mechanism of the PcG proteins involves
clonal transmission through molecular similarity between the
PcG proteins and heterochromatin proteins (Paro, 1990). PcG
proteins can bind to the promoter regions of genes and repress
their functions (Fig. 3). However, a complete understanding
of their functions in silencing genes remains to be deciphered.

In addition to other dynamics involved in their recruit-
ment, Pc complexes bind to their targeted genes through their
Pc domains and silence their expression (Bracken et al., 2006;
Whitehead Institute for Biomedical Research, 2006). Several
models have been proposed to describe the dynamic behavior
of Pc complex binding (Beisel and Paro, 2011; Bracken and
Helin, 2009; Hansen et al., 2008; Lanzuolo et al., 2011).

Packaging of DNA into chromatin structures is the main
determinant of gene accessibility to the transcriptional ma-
chinery and is a regulatory mechanism of gene expression.
Chromatin configuration regulates the expression of certain
genes depending on cell type, which is necessary for cell dif-

ferentiation and development (Golbabapour et al., 2011). In
addition to the primary DNA sequence, epigenetic factors are
fundamental in regulating gene expression. As such, chro-
matin remodeling, an epigenetic mechanism, has been con-
sidered to represent a crucial mechanism, particularly during
development. This interaction between nucleic acids and
proteins affects the accessibility of the DNA strand to the
transcriptional machinery and, consequently, the regulation
of gene expression. DNA methylation, particularly on CpG
islands, defines targets for regulatory mechanisms (for a re-
view, see Golbabapour et al., 2011). However, in different
molecular physiological processes in cells, DNA methyla-
tion has been the subject of some controversy (Gilbert et al.,
2007).

Chemical modifications of nucleosomal histones define the
positions of nucleosomes (chromatin structure) and their ac-
cessibility to the transcriptional machinery. Different versions
of PRC1 and PRC2 have been reported, and these diversities
come with distinct functions (Vandamme et al., 2011). Gen-
ome-wide profiling has been widely exploited to understand
PREs. A study on PRC1 and PRC2 revealed chromatin bind-
ing sites during PcG-mediated silencing (Tolhuis et al., 2006).
PREs contain multiple Pc binding sites; however, no complete
molecular profile of PREs has been described. This lack of
understanding is due to the size of the complexes and the
existence of various homologs and subunits (for a review, see
Simon and Kingston, 2009). PREs contain motifs to which
DNA binding proteins such as Pho (Klymenko et al., 2006),
Zeste (Chen et al., 1992), and GAGA (Berger and Dubreucq,
2012) bind. Zinc-finger proteins, including Pho and Pho-like
proteins, must bind to PRE to perform their biological func-
tions (Brown et al., 2003; Fritsch et al., 1999; Mohd-Sarip et al.,
2002). Upon binding to a PRE, Pho interacts with a posterior
sex comb protein, SFMBT, and forms PhoRC (Klymenko et al.,
2006) (for a review, see Schuettengruber and Cavalli, 2009). As
mentioned previously, PcG proteins have numerous homo-
logs and a variety of isoforms; consequently, these proteins
engage in various binding patterns that, in turn, provide a
diversity of complexes. Furthermore, Pc-like proteins can
bind to PRC2 and alter its features and properties (O’Connell
et al., 2001; Tie et al., 2003; Walker et al., 2010).

FIG. 3. A schematic representation of recruitment of Pc complexes. Polycomb repression complexes (PRC1 and PRC2)
recruit on Polycomb response elements (PRE), in association with ncRNA and other DNA-binding proteins (not drawn in the
figure). PRC2 imposes high levels of H3K27me3 (as a repressive mark for chromodomains of PRC1).
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Studies addressing the PcG silencing mechanism have
provided evidence for the dynamic control of gene expression
(Kia et al., 2008; Kwong et al., 2008; Oktaba et al., 2008).
Generally, long-term regulation of gene expression is con-
trolled by Pc complexes and, antagonistically, by the trithorax
group, through the modulation of chromatin structures and
histone modifications. To exert their biochemical activities,
PcG proteins must be assembled on PREs. Three main com-
ponents are involved in the PcG-mediated silencing pathway:
PcG proteins (Lund and van Lohuizen, 2004), DNA methyl-
ation systems (Bird, 2002), and Ezh2 (a PcG histone-lysine
methyltransferase) (Vire et al., 2006). Ezh2 interacts with the
other components and provides a recruitment platform for de
novo methylation (Fuks et al., 2001). Generally, PRC2 inhibits
transcription initiation, and PRC1 maintains the repressed
status. PRC1 is able to ubiquitinate H2AK119 (Cao et al.,
2005), and PRC2 can trimethylate H3K27 (Cao and Zhang,
2004a). Moreover, PRC2 exhibits catalytic activity that is in-
volved in the methylation of H1K26 (Kuzmichev et al., 2004).
Mediated by Ezh2, the addition of methyl groups to Lys27 of
histone H3 by PRC2 results in silencing (Hansen et al., 2008)
and is essential for the bioactivity of PRC1 (Cao et al., 2005).
PcG complexes can also induce significant methylation of
H3K27 (for a review, see Mueller and Verrijzer, 2009). The
idea that PRC2 functions upstream of PRC1 is consistent with
the fact that the Pc protein, a subcomplex, binds specifically to
methylated H3K27; however, this premise remains to be
proven (Margueron and Reinberg, 2011). PRC2 catalyzes the
methylation of H3K27; the methylation of H3K27, particularly
trimethylation, is the main hallmark of PcG-mediated silenc-
ing (Levine et al., 2004; Ringrose et al., 2003), which occurs
through enzymatic activity (in association with PRC1). In
addition to the nonenzymatic chromatin-compacting regula-
tory effect of PRC1 (Eskeland et al., 2010), this Pc complex is
able to ubiquitylate histone H2A through Ring1A and Ring1B
(for reviews, see Eckert et al., 2011; Richly et al., 2011; Vidal,
2009).

Furthermore, Ezh1 and Ezh2 are PRC2 subcomplexes that
are able to methylate histone H3 by adding methyl groups to
lysine 27 (Schuettengruber and Cavalli, 2009; Simon and
Kingston, 2009). A recent review on the evolution of PRC2
discussed evidence that the primary silencing function of this
multi-protein complex is accomplished through the methyl-
ation of H3K9. Specific cell lineages are needed to determine
the specific functions of PRC2 (for a review, see Margueron
and Reinberg, 2011). The maximum holoenzymatic activity of
PRC2 is reportedly attributed to the additive contribution of
each component of PRC2 (Margueron and Reinberg, 2011).
Although PRC1 and PRC2 are two distinct complexes with
different structures and functions (Bracken et al., 2006), they
exhibit interdependence in regulating gene expression ( Jor-
gensen et al., 2006). Methylation of H3K9 is associated with
chromatin configuration and transcriptional regulation. Me-
thylation of H3K9 is a repressive mark and a site for binding
by HP1, which recognizes the methyl group and forms a
protein dimer to perform its biological functions (Kwon
and Workman, 2008), for example, the repression of im-
printed genes (Monk et al., 2008). However, methylated H3K9
appears in the coding regions of some active genes (hetero-
chromatin) during transcription elongation through mam-
malian chromatin (Vakoc et al., 2005). The specific function of
H3K9 is dependent on its location in chromatin and its

binding to different effector proteins (Kokura et al., 2010). The
biochemical activities of the Pc complexes in Drosophila are
exerted through the binding of these complexes genome-wide
(Schwartz et al., 2006) and to PhoRC (Brown and Kassis, 2010;
Klymenko et al., 2006). These complexes ubiquitylate histone
H2A and suppress gene expression (Buchwald et al., 2006;
Mueller and Verrijzer, 2009; Wang et al., 2004).

Another potential silencing mechanism is enabled by the
ability of Pc complexes to bind to chromatin structures. PcG
proteins are important in chromatin compaction (for a review,
see Mueller and Verrijzer, 2009). To maintain their suppres-
sive role during cell division, PcG proteins remain bound to
chromatin and DNA during DNA replication (Francis et al.,
2009). Bantignies and Cavalli (2011) argued that PcG proteins
dynamically target chromatin in association with RNA poly-
merase II in a PcG-dependent manner. However, PRC1 has
the ability to affect chromatin configuration independently of
histone modification (Bantignies and Cavalli, 2011). In addi-
tion to post-transcriptional modifications (Berger, 2007), the
dynamic structure of chromatin is mediated by two main
features: chromatin remodeling and histone modifications
such as acetylation, methylation, phosphorylation, ubiquity-
lation, deamination, ADP ribosylation, sumoylation, and
proline isomerization (for a review, see Kouzarides, 2007). In
addition to their interactions with DNA, chromatin modifi-
cations can affect each other. Histone modifications therefore
provide spatially and temporally dependent profiles (known
as the ‘‘histone code’’) to mediate gene regulation and acces-
sibility to the transcriptional machinery (Guil and Esteller,
2009; Turner, 2002). Certain types of DNA sequences, such as
CpG islands, promoters, and repetitive elements, along with
epigenetic factors, are the main features in determining
chromatin configuration.

Recruitment of Polycomb Complexes

PcG proteins cannot specifically bind to DNA sequences.
Studies on the associations of the transcriptional factors that
recruit these proteins have revealed that multiple transcrip-
tional factors are involved in specific binding to target genes
(Bracken and Helin, 2009). During development in Droso-
phila, a number of transcription factors recruit PcG proteins to
PREs (Ringrose and Paro, 2007), which are a combination of
several binding sites (elements) (Bracken and Helin, 2009).
Promoters in mammals mainly contain either low or high GC
dinucleotides, which are classified as low- and high-CpG
content promoters, respectively. These classes exhibit differ-
ent patterns of histone modification and roles in regulation
(Broad Institute of Harvard and MIT, 2007; Weber et al., 2007).
CG-rich regions are important in PRC2 recruitment, and CpG
islands are required for initial localization (Mendenhall et al.,
2010) (for a review, see Margueron and Reinberg, 2011). PRC1
and PRC2 mostly target high-CpG content promoters (Boyer
et al., 2006; Ku et al., 2008) (for a review, see Zhou et al., 2011).
DNA-binding factors and CpG islands are two main features
involved in the recruitment of Pc complexes to chromatin,
particularly on PREs (Gal-Yam et al., 2008; Meissner et al.,
2008; Mendenhall et al., 2010). Nucleosomal array analyses
have shown that Pc components are able to remodel chro-
matin structure and compact chromatin independently of
histone modifications (Eskeland et al., 2010; Francis et al.,
2004; Margueron et al., 2008). PRC1 inhibits transcription at
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the promoter region of the targeted gene through chromatin
remodeling (Lavigne et al., 2004), although this conclusion is
controversial (Eskeland et al., 2010). A genome-wide study
comparing active and inactive PcG-targeted regions revealed
different levels of PRC1 recruitment. Coincidently, active re-
gions lacking E(z) and Pc exhibit significant trimethylation at
H3K9 and H3K27 (Breiling et al., 2004). Trimethylation usu-
ally occurs around the promoter regions of active genes,
suppressing their expression (Bernstein et al., 2005; Kim et al.,
2005). Studies of histone methylation in humans have dem-
onstrated that monomethylation is a hallmark of transcrip-
tional activation, while trimethylation is a hallmark of gene
repression (Barski et al., 2007).

Polycomb Complexes and ncRNAs

ncRNAs are involved in the repressive function of silencing
complexes and their interactions with nucleosomes. Many
ncRNAs have been identified that interact directly with Pc
complexes (Kanhere et al., 2010). For instance, HOTAIR and
Xist RepA, two ncRNAs, interact with PRC2 to impose a si-
lencing status on their respective genes (Rinn et al., 2007; Zhao
et al., 2008). A microarray study of immunoprecipitated PcG
proteins demonstrated that ncRNAs associate with PRC2
(Khalil et al., 2009). The SET domain is a sequence motif that
catalyzes lysine methylation on histones. PcG proteins gen-
erally contain SET domains and Cbx, are mainly present in
histone methyltransferases, such as Ezh2, and are involved in
protein–genome interactions (Krajewski et al., 2005).

Studies have revealed a link between ncRNAs (which act as
recruiters of PcG proteins) and Pc components such as PRC2
(Khalil et al., 2009). ncRNAs are important in the recruitment
of PRC1 complexes and interact with Cbx (Yap et al., 2010).
Critical in the recruitment of PcG proteins and targeting
genes, long ncRNAs are able to recruit PRC1 and PRC2
complexes (for a review, see Bracken and Helin, 2009). Long
ncRNAs (such as HOTAIR, KCNq1OT1, and REPA) recruit
PcG proteins to chromatin (Bracken and Helin, 2009; Khalil
et al., 2009; Zhao et al., 2008).

In addition to the transcriptional roles of long ncRNAs, the
mechanism underlying their recruitment is based on their
ability to bind specifically to the promoter regions of target
genes (Fig. 3) and SET domains/Cbx (for a review, see
Bracken and Helin, 2009). Long ncRNAs, such as HOTAIR
(Rinn et al., 2007; Tsai et al., 2010), KCNq1OT1 (Kotake et al.,
2011; Mohammad et al., 2010) and REPA (Zhao et al., 2008),
mediate the methylation of H3K27 by PRC2. In humans,
many long ncRNAs interact with PRC2 complexes and are
implicated in regulatory functions in PcG-mediated silencing
in trans (Khalil et al., 2009). Most ncRNAs exert their activity in
cis (such as KCNq1OT1), although some act in trans (such as
HOTAIR5). In a proposed model, long ncRNAs bind specifi-
cally to the promoters of their target genomic sequences and
recruit Pc complexes (SET domains/Cbx) (Mercer et al., 2009;
O’Meara and Simon, 2012; Yang et al., 2011).

ncRNAs mediate the relocation of target genes based on the
interaction between nuclear subcompartments and nonhis-
tone protein methylation to regulate gene expression (Yang
et al., 2011). Yang et al. (2011) concluded that dimethylation of
PRC2 on specific residues localized the targeted gene tran-
scriptional machinery through NEAT2, an ncRNA related to
interchromatin granules.

Argonaute proteins are approximately 100 kDa (Ender and
Meister, 2010) and consist of two principal domains: a Piwi-
Argonaute-Zwille domain and a Piwi domain (for reviews,
see Ender and Meister, 2010; Parker and Barford, 2006 ). These
proteins act as the molecular scaffolds in RNA silencing
mechanisms and are necessary for the complementary bind-
ing of small ncRNAs to their targets (Parker and Barford,
2006). The silencing mechanism of Argonaute proteins is en-
abled by small ncRNAs that guide these proteins to their
target sites (Takeda et al., 2008).

To exert their biological activity, particularly for guiding
small RNAs in gene silencing activity, small ncRNAs are in-
corporated into Argonaute protein-containing complexes
(Ender and Meister, 2010). These complexes contain specific
domains that bind to small ncRNAs. Based on phylogenetic
analyses, Argonaute proteins are classified into the Ago
subfamily, which mostly associates with miRNAs and siR-
NAs, and the Piwi subfamily, which mainly associates with
the germline and piRNAs (Ender and Meister, 2010). The
biogenesis and germline functions of the Piwi subfamily are
generally enabled by piRNAs (Girard et al., 2006; Houwing
et al., 2007). Interactions between the Argonaute proteins and
guide molecules are mainly mediated through interactions
between the sugar–phosphate backbone of the nucleic acids
and these proteins (Wang et al., 2008). The complementary
levels of small ncRNAs and their RNA targets represent the
main regulatory feature involved in Ago-mediated silencing
mechanisms. Gene silencing by small ncRNAs that contain
mismatches in their midregion occurs at the level of transla-
tion, particularly during its early steps (Ender and Meister,
2010). However, the expression levels and roles of the
ncRNAs during development are different. Argonaute pro-
teins exert their silencing role in the cytoplasm at the trans-
lational level and in the nucleus at the transcriptional level (for
a review, see Guang et al., 2008). Despite recent progress in
understanding and modeling the biological functions of
ncRNAs in PcG-mediated silencing pathways (for a review,
see Beisel and Paro, 2011), our understanding of epigenet-
ics is still in its infancy, and further studies are required to
thoroughly understand and grasp epigenetic silencing
mechanisms.

Conclusions

Throughout the course of this review, we have discussed
the structure and recruitment mechanisms of Pc complexes
and their connection to ncRNAs. The phylogenetic distribu-
tions of PRC1, PRC2, and Cbx in Drosophila, mouse, rat, and
human were also briefly presented. PcG proteins and their
regulatory roles in epigenetics, particularly during develop-
ment, were discussed. Multiple epigenetic pathways govern
cell fates and developmental states. Thus, homeostasis, or
cellular balance, is the outcome of epigenetic regulation with
proper timing. Cancer generally results from an imbalance
among epigenetic mechanisms, such as those mediated by
PcG proteins and trithorax group proteins that maintain ho-
meostasis in the activity of certain genes. For instance, im-
proper reactivation of pluripotent genes such as the Hox
genes initiates carcinogenesis (for a review, see Ringrose and
Paro, 2004). In Drosophila, Hox genes are active during early
embryogenesis and maintained during adult life by epigenetic
mechanisms.
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In the last decade, several researchers have focused on
understanding the epigenetic mechanisms involved in mod-
ifying chromatin. Among these factors, Pc complexes impact
the structural modification of chromatin and maintain the
silenced state with respect to the expression of certain genes.
In fact, PcG proteins cooperate with specific domains of
chromatin to silence the expression of genes. Polycomb
proteins form at least two distinct complexes, PRC1 and
PRC2. The components of Pc complexes, which are known to
regulate homeotic genes, vary in different stages of develop-
ment to control hundreds of other genes in mammals and
insects. These complexes are also important in a variety of
different cancers. The dynamic nature of Pc complexes in-
creases their flexibility and permits their accurate interaction
with environmental signals to regulate the expression of
genes as global epigenetic repressors. In cancerous diseases,
epigenetic studies have shown that these complexes have
roles in transcriptional misregulation, particularly of tumor
suppressor genes, leading to unscheduled activation or
repression of undesired pathways and thereby enhancing
cancerous proliferation. Pc complexes govern the methylation
marks on histone H3 through their chromodomains, estab-
lishing the chromatin configuration and the spatial distribu-
tion of genes within the nucleus. Consequently, Pc complexes
control the level of expression of a gene. Numerous studies
have emphasized the importance of ncRNAs in epigenetic
regulation mediated by PcG proteins. However, our knowl-
edge of Pc complexes and their roles and mechanisms does
not provide insight into epigenetic networks, nuclear repro-
gramming or diseases.
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