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Abstract
Ewing family tumors (EFTs) and prostate carcinomas (PCa) are characterized by rearrangement of
ETS genes, most commonly FLI1 (EFTs) and ERG (PCa). Previously, we characterized an
antibody against ERG (EPR3864) for detecting ERG-rearranged PCa. EPR3864 also cross reacts
with FLI1, thus, here we evaluated the utility of EPR3864 for discriminating EFTs from other
small round blue cell tumors (SRBCTs) by immunohistochemistry. Of 57 evaluable EFTs, 47
(82%) demonstrated at least moderate, diffuse, nuclear ERG/FLI1 staining (including 89% and
100% of cases with confirmed EWSR1:FLI1 and EWSR1:ERG fusions, respectively), of which 1,
3 and 43 showed negative, cytoplasmic or membranous CD99 staining, respectively. Amongst
other SRBCTs (n=61 cases, 6 types), at least moderate, diffuse, nuclear EPR3864 staining was
seen in all precursor-B-lymphoblastic lymphomas/leukemias and subsets of Burkitt’s lymphomas
(10%) and synovial sarcomas (45%). In summary, EPR3864 may have utility for detecting
EWSR1:FLI1 and EWSR1:ERG rearranged EFTs, in addition to PCa.
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Introduction
Ewing family tumors (EFTs), which encompass Ewing sarcomas/peripheral
nueroectodermal tumors, are characterized by chromosomal rearrangements fusing EWSR1
to members of the ETS transcription factor family. Although most commonly fused to the
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ETS gene FLI1 (~90%) through t(11;22)(q24;q12), EWSR1 can also fuse to ERG (~5–10%)
and rarely ETV1, FEV, ETV4 and ETV51–4. EFTs and other small round blue cell tumors,
including neuroblastomas, rhabdomyosarcomas, synovial sarcomas (poorly differentiated
and monophasic variants), lymphoblastic lymphomas/leukemias, desmoplastic small round
cell tumors and nephroblastomas (Wilm’s tumors), can be morphologically indistinguishable
and definitive diagnosis commonly involves immunohistochemistry, typically against CD99
and FLI1, and molecular tests2,5–15.

CD99, also known as MIC2, encodes an integral membrane glycoprotein and shows diffuse
membranous staining in >90% EFTs by immunohistochemistry using a variety of
monoclonal antibodies (including 12E7, HBA71 and O13)13,16–19. Additionally, less
specific cytoplasmic staining can also be observed. However, CD99 is not specific for EFTs,
as it also stains lymphoblastic lymphomas/leukemias19,20, anaplastic large cell
lymphomas21, synovial sarcomas22,23, some rhabdomyosarcomas24,25, as well as a variety
of other tumors26–30.

The EWSR1:FLI1 gene fusions results in the fusion of the N-terminus of EWSR1 to the C-
terminus of FLI1, which preserves the ETS DNA binding domain, and transforms NIH 3T3
cells31,32. FLI1 is normally expressed in endothelial and hematopoietic cells5, and consistent
with its role as a transcription factor, both FLI1 and the EWSR1:FLI1 product show nuclear
localization5,33. Both polyclonal and monoclonal antibodies against FLI1 have been shown
to have diagnostic utility in EFTs, with staining of 63–89% (median 81%)5,6,9,10,34–36 and
75–100% (median 91%)7–9,37,38 of EFTs, respectively. In addition to EFTs, both
monoclonal and polyclonal antibodies against FLI1 have been reported to also stain vascular
tumors, lymphoblastic lymphomas and Merkel cell carcinomas, as well as a fraction of other
small round blue cell tumors including poorly differentiated synovial sarcomas, and other
non-Hodgkin lymphomas5–7,9,20,35,37,39. Polyclonal antibodies against FLI1 have also been
reported to stain at least some olfactory neuroblastomas, desmoplastic small round cell
tumors, and a variety of carcinomas (but not prostate carcinomas)6,35. Similarly, monoclonal
antibodies against FLI1 have been reported to stain haemangiopericytomas, neuroendocrine
carcinomas, melanomas, lung adenocarcinoma, and a variety of normal tissues, including
prostate, breast, and colon epithelium7,9. In the only head to head comparison we are aware
of, Mhawech-Fauceglia et al. reported that monoclonal antibodies against FLI1 were more
sensitive for EFTs, while polyclonal antibodies were more specific, consistent with other
published studies (summarized above)9.

Like EFTs, prostate carcinoma is characterized by chromosomal rearrangements involving
ETS transcription factor family members, which are fused to the 5′ untranslated regions of
androgen regulated genes and occur in approximately half of prostate carcinomas40–42.
Fusions involving ERG (most commonly TMPRSS2:ERG) represent approximately 90% of
all ETS fusions in prostate carcinoma, with less frequent fusions involving ETV1, ETV4,
ETV5 and one reported case involving FLI140–44. Recently we and others have
demonstrated the utility of a novel rabbit monoclonal antibody raised against the c-terminus
of ERG (clone EPR3864), which demonstrates high sensitivity and specificity (>95%) for
the detection of ERG rearranged prostate carcinoma45–53. As Mohamed et al. recently
demonstrated that EPR3864 also reacts with exogenous FLI1 by Western blotting54, we
hypothesized that EPR3864 may also have utility in the discrimination of EFTs from other
small round blue cell tumors. Thus, here we characterized EPR3864 staining of ERG/FLI1
by immunohistochemistry in the discrimination of EFTs.
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Methods
EFTs and SRBCTs tissues

A tissue microarray was constructed using formalin-fixed paraffin-embedded blocks from
105 EFT cases (each case represented by triplicate cores) from 85 patients, which includes a
mixture of primary diagnostic specimens, primary samples post chemotherapy, recurrences
and metastases (Table 1), and includes multiple cases from 16 patients (range 2–4 cases).
Single sections from one EFT case each from two additional patients, who did not have
samples on the tissue microarray, were also evaluated and are included in the results. The
tissue microarray also contained cores representing normal ovary, spleen, lung, spinal cord,
colon, kidney, tonsil, liver and testes.

Single formalin-fixed paraffin-embedded sections from 61 other SRBCTs, which include 11
nephroblastomas (Wilm’s tumors), 11 neuroblastomas, 7 rhabdomyosarcomas (4 alveolar, 2
embryonal, and 1 indeterminate, favor alveolar), 10 Burkitt’s lymphomas, 4 desmoplastic
small round cell tumors, 11 monophasic synovial sarcomas and 7 precursor-B-lymphoblastic
lymphomas/leukemias, were also evaluated for ERG/FLI staining.

EFTs and small round blue cell tumors included a mixture of primary diagnostic specimens,
primary samples post chemotherapy, recurrences and metastases. All cases were diagnosed
at the University of Michigan Health Systems, with EFTs diagnosed based on characteristic
morphology and immunohistochemistry staining, with some cases undergoing molecular
confirmation (cytogenetics, fluorescence in situ hybridization and/or reverse transcription-
PCR) as part of the diagnostic workup. Cases were also assessed for EWSR1 breakapart by
fluorescence in situ hybridization and reverse transcription PCR for EWSR1:FLI1 and
EWSR1:ERG if not performed as part of the diagnostic workup. Cases were considered
molecularly confirmed (for EWSR1:FLI1 or EWSR1:ERG) if two of the three tests
(cytogenetics, fluorescence in situ hybridization and reverse transcription-PCR) were
concordant. All tissues were obtained with prior Institutional Review Board approval.

Immunohistochemistry for ERG/FLI1 on the tissue microarray and single sections of EFTs
and other SRBCTs was performed as described, using a ready-to-use, pre-diluted
monoclonal antibody raised against ERG, clone EPR3864 (Ventana Medical Systems,
Tucson, AZ)45,53,55. Staining of vessels was used as a positive control and cores or sections
without staining of vessels were excluded from further analysis. Nuclear ERG/FLI1 staining
intensity was scored as 0 (absent), 1+ (weak), 2+ (moderate) or 3+ (strong). Unless
otherwise indicated, staining was diffuse (>80% of tumor). Immunohistochemistry for CD99
was performed on the tissue microarray using the rabbit monoclonal antibody EPR3097
(BioCare Medical, catalog #CME392), at 1:200 dilution for 30 min with Envision+
horseradish peroxidase detection. Epitope retrieval was performed using 10mM citrate
buffer (pH 6) in a microwave for 10 min. Immunohistochemistry for CD99 was performed
previously on the single sections of EFTs during the diagnostic workup and were re-
reviewed. Staining for CD99 was scored as negative, cytoplasmic, or membranous. Unless
otherwise indicated, staining was diffuse. EFT presence and viability, and ERG/FLI1 and
CD99 staining, were evaluated by S.A.T, J.N.S. and L.P.K., with discrepancies resolved by
D.R.L.

Analysis
EFT cases where no viable tumor was present in any of the three cores were excluded from
further analysis. In cases where variable expression in two or more cores was observed, the
greatest staining in any core was reported as the overall score and the variable expression
was noted. Association between ERG/FLI1 and CD99 staining was evaluated using a two-
tailed Fisher’s exact test using GraphPad Prism v. 5 (GraphPad Software).
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Results
55 EFT cases from 47 patients had at least one core with viable tumor and were evaluable
for FLI1/ERG and CD99 staining (from a tissue microarray with 105 cases from 85
patients). Single formalin-fixed paraffin-embedded sections from 2 additional EFTs (from
patients not represented on the tissue microarray) were evaluable for ERG/FLI1 staining as
well as CD99 staining performed at diagnosis. Thus, in total, our final evaluable cohort
consisted of 57 EFT cases from 49 patients, as summarized in Table 1. ERG/FLI1 staining
was scored as strong (3+), moderate (2+), weak (1+) or negative (0), while CD99 staining
was scored as membranous or cytoplasmic (both positive) or negative. Examples of ERG/
FLI1 and CD99 staining are shown in Figure 1. Amongst control cores of normal tissue on
the tissue microarray, normal spleen and tonsil showed 3+ ERG/FLI1 staining, while normal
ovary, lung, spinal cord, colon, kidney, liver and testes were negative (0+).

Of the 55 evaluable cases on the tissue microarray, 54 (98%) showed homogenous ERG/
FLI1 staining between evaluable cores, and thus all cases were scored based on the highest
staining intensity. The primary case from patient #8 showed 2 cores with 3+ ERG/FLI1
staining, and one core with 1+ staining, while a metastatic lesion from this patient showed 3
cores with 3+ ERG/FLI1 staining (Figure 2). Of 6 additional patients with more than one
evaluable case on the tissue microarray, 2 showed different ERG/FLI1 staining intensity
between cases. Patient #3 had three evaluable metastatic cases, with two showing 3+ERG/
FLI staining in all three cores each, while one showed 2+ ERG/FLI1 staining in all three
cores. The primary case from patient #28 showed negative ERG/FLI1 staining in all three
cores, while a recurrence showed 2+ staining in all three cores (Figure 2).

All evaluable cases on the tissue microarray showed homogenous CD99 staining within
evaluable cores, and one patient had two cases with discordant CD99 staining. Patient #6
had one case (a lung metastasis) showing membranous CD99 expression in one evaluable
core, while a separate case (a femur metastasis) showed negative CD99 staining (Figure 2).

Of the 57 total evaluable EFT cases, 6 (11%) demonstrated negative (0) ERG/FLI1 staining,
4 (7%) demonstrated weak (1+) staining, 13 (23%) demonstrated moderate (2+) staining,
and 34 (60%) demonstrated strong (3+) staining (Figure 2). All EFTs with positive ERG/
FLI1 staining showed diffuse nuclear ERG/FLI1 expression. Of the 47 (82%) EFTs with at
least moderate (2+) ERG/FLI1 staining, 1 (2%) showed negative CD99 staining, 3 (6%)
showed cytoplasmic staining, and 43 (91%) showed membranous staining. Of the remaining
10 (18%) EFTs with negative to weak (0–1+) ERG/FLI1 staining, 3 (30%) showed negative
CD99 staining, 2 (20%) showed cytoplasmic staining, and 5 (50%) showed membranous
staining (Figure 2). Overall, at least moderate (2+) ERG/FLI1 staining and membranous
CD99 staining were significantly associated, (43 of 57 evaluable cases, p=0.005, Fisher’s
exact test), and 52 of 57 (91%) of cases showed either at least moderate (2+) ERG/FLI1
staining or membranous CD99 staining.

Of the 57 cases, 45 (79%) had evaluable molecular data (See Methods). Of evaluable cases,
35 (78%) harbored EWSR1:FLI1 fusions, 4 (9%) harbored EWSR1:ERG fusions, and 6
(13%) lacked evidence of EWSR1 rearrangements. Amongst the 35 cases with
EWSR1:FLI1 fusions, 31 (89%) showed at least moderate ERG/FLI1 staining, and 30 (86%)
showed membranous CD99 staining. All 4 cases with EWSR1:ERG fusions showed at least
moderate ERG/FLI staining and membranous CD99 staining. Lastly, amongst the 6 cases
without evidence of EWSR1 rearrangement, 2 (33%) showed at least moderate ERG/FLI1
staining and 4 (67%) showed membranous CD99 staining. Importantly, these results confirm
the ability of EPR3864 to detect the products of both EWSR1:FLI1 and EWSR1:ERG gene
fusions.
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In addition to EFTs, we also evaluated ERG/FLI1 staining using single sections from 61
other SRBCTs (Figure 3). Amongst other SRBCTs, at least 2+ focal nuclear staining was
observed in 0 of 11 (0%) nephroblastomas (Wilm’s tumors), 0 of 11 (0%) neuroblastomas, 0
of 7 (0%) alveolar/embryonal rhabdomyosarcomas, 0 of 4 (0%) desmoplastic small round
cell tumors, 4 of 10 (40%) Burkitt’s lymphomas, 9 of 11 (82%) synovial sarcomas (10
monophasic, 1 poorly differentiated), and 7 of 7 (100%) precursor-B-lymphoblastic
lymphomas/leukemias. Of all non EFTs stained for ERG/FLI1, at least 2+ diffuse nuclear
staining was seen in 1 of 10 (10%) Burkitt’s lymphomas, 5 of 11 synovial sarcomas (45%)
and 7 of 7 (100%) of precursor-B-lymphoblastic lymphomas/leukemias. A heat map of
ERG/FLI1 staining in all small round blue cell tumors is shown in Figure 3.

Discussion
The diagnosis of EFTs from other small round blue cell tumors often requires
immunohistochemistry, in addition to morphology, cytogenetics and/or molecular
techniques. CD99 shows high sensitivity for EFTs, although it is not entirely specific. A
combination of CD99, FLI1, HNK1 and CAV1, show high specificity and sensitivity for
EFTs and has been proposed as an immunohistochemistry panel for the differential
diagnosis of SRBCTs10. Both polyclonal and monoclonal antibodies against FLI1 have been
employed, each with described limitations.

Previously we identified EPR3864, a monoclonal antibody raised against ERG, as showing
utility for the detection of gene fusions involving ERG in prostate cancer53 (most commonly
TMPRSS2:ERG), which occur in approximately half of all prostate cancers identified by
prostate specific antigen screening40–42. More recently, Mohamed et al. showed that
EPR3864 also detects FLI154, while another recently developed monoclonal antibody
against ERG does not react with FLI154 and stains only 7% of EFTs56. FLI1 cross-reactivity
of EPR3864 does not appear to be relevant in prostate cancer, given the >95% sensitivity
and specificity of EPR3864 for detecting ERG-rearranged prostate cancer and the >99.99%
reported specificity for cancer45–48,50–53,55,57. However, we hypothesized that this antibody
may show utility for the discrimination of EFTs, which harbor both FLI1 and ERG
rearrangements.

By immunohistochemistry with EPR3864, we show that 82% (47 of 57) of EFTs (including
89% of cases with confirmed EWSR1:FLI1 fusions and 100% of cases with confirmed
EWSR1:ERG fusions) show at least moderate nuclear staining of ERG/FLI1, which was
always diffuse. This rate is comparable to those reported using other polyclonal and
monoclonal antibodies against FLI15–10,34–38. Additionally, at least moderate ERG/FLI1
staining and membranous CD99 staining were significantly associated in our study, with
91% of cases showed either at least moderate ERG/FLI1 staining or membranous CD99
staining.

Amongst 61 other SRBCTs, no Wilm’s tumors, neuroblastomas, rhabdomyosarcomas or
desmoplastic small round cell tumors showed at least focal moderate (2+) ERG/FLI1
staining. However, we observed at least focal, moderate ERG/FLI1 staining in 40% of
Burkitt’s lymphomas, 82% of monophasic synovial sarcomas and 100% of precursor-B-
lymphoblastic lymphomas. Unlike EFTs, which always showed diffuse ERG/FLI1,
heterogeneous absent-weak (0–1+), or weak-moderate (1–2+) staining was observed in 25%
of desmoplastic small round cell tumors, 9% of Wilm’s tumors and 30% of Burkitt’s
lymphomas, suggesting that only diffuse moderate-strong staining supports the diagnosis of
EFT. In our study, the majority of monophasic synovial sarcomas and precursor-B-
lymphoblastic lymphomas showed at least moderate nuclear ERG/FLI1 staining. Previous
studies have reported occasional reactivity of FLI1 monoclonal and polyclonal antibodies
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with poorly differentiated synovial sarcomas (more relevant to the differential diagnosis of
EFTs). In our cohort, only one synovial sarcoma was poorly differentiated (which showed
focal CD99 staining), while of the remaining 10 monophasic sarcomas, all 6 cases evaluated
for CD99 staining were strongly positive. As we did not have available additional poorly
differentiated synovial sarcomas for evaluation, additional studies will be required to
characterize EPR3864 staining in that entity. Similarly, CD99 and FLI1 staining in
precursor-B-lymphoblastic lymphomas/leukemias is well characterized and represents an
important differential diagnostic consideration in EFT evaluation58,59. Differentiating EFTs
from these entities, which may show cross-reactivity with all FLI1 antibodies, will likely
continue to require a combination of morphology, immunohistochemistry and molecular
studies.

While this study was in preparation, Minner et al. evaluated EPR3864 staining in 11,483
tumors and 72 normal tissue types and reported strong staining nearly exclusively in prostate
carcinoma and vascular tumors, however they reported no staining in 17 evaluable PNETs60.
Wang et al. also recently evaluated EPR3864 staining in 32 EFTs, including 22 with
EWSR1:FLI1, 8 with EWSR1:ERG and 2 with EWSR1-NFATC2. They observed
predominantly diffuse, moderate to strong staining in 7 of 8 ERG rearranged cases, but only
3 of 24 non ERG rearranged cases showed staining with EPR3864 (all very weak)61.
Importantly, Minner et al. and Wang et al. used substantially different antibody dilutions
(1:400 and 1:2000) compared to our current study which used ready-to-use, pre-diluted
EPR3864 antibody (1:50–1:100). Our study also used the same pretreatment conditions and
automated staining and detection instrumentation as we recently validated in prostate cancer
biopsies45 and use clinically at our institution.

Although the availability of molecular techniques has reduced the need for additional
immunohistochemistry markers to identify EFTs, EPR3864 shows similar sensitivity to
other polyclonal and monoclonal antibodies against FLI1, and has the advantage of being
well characterized (in the context of prostate cancer) in its ability to detect ERG, with
minimal background staining. Similarly, like other FLI1/ERG antibodies5,9,56, EPR3864 is a
highly sensitive vascular marker53,60,62, supporting an additional area of diagnostic utility
(S.A.T., D.R.L. and L.P.K., unpublished observations).

Additional studies will be needed to directly compare EPR3864 with other FLI1 antibodies,
and we are not aware of whether studies have investigated whether other currently used
antibodies against FLI1 also cross-react with ERG, however we hypothesize that this is
unlikely given the lack of reported utility for detection of prostate cancer.

In summary, we demonstrate that EPR3864 shows utility for detecting EFTs harboring both
EWSR1:FLI1 and EWSR1:ERG gene fusions. By immunohistochemistry, EPR3864
detection of ERG/FLI1 shows high sensitivity for EFTs (>80% with diffuse moderate-strong
nuclear staining) and complements CD99 staining. EPR3864 also stains a substantial
proportion of Burkitt’s lymphomas, monophasic synovial sarcomas and precursor-B-
lymphoblastic lymphomas/leukemias, and in cases where these entities remain in the
differential diagnosis based on morphology, molecular confirmation of EFTs will likely be
required. Our results suggest that EPR3864, which has demonstrated utility in the diagnosis
and molecular subtyping of prostate cancer (which also harbor ETS gene fusions), may also
have utility in the diagnosis of EFTs from other SRBCTs.
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Figure 1. ERG/FLI1 staining in Ewing family tumors (EFTs)
EFTs were evaluated for ERG/FLI1 and CD99 staining by immunohistochemistry. ERG/
FLI1 staining (diffuse nuclear) was scored as negative (0), weak (1+), moderate (2+), or
strong (3+), and CD99 staining was scored as negative, cytoplasmic or membranous.
Representative hematoxylin and eosin (H&E left panels), ERG/FLI1 (middle panel) and
CD99 (right panel) staining from cases showing (A) 3+, (B) 2+, (C) 1+ and (D) 0 ERG/FLI1
staining and membranous CD99 staining are shown. All images are 10x original
magnification with 20x insets.
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Figure 2. ERG/FLI1 and CD99 staining in Ewing family tumors (EFTs)
A. Heat map of molecular status and ERG/FLI1 and CD99 staining for 57 evaluable EFT
cases. Cases with confirmed EWSR1:FLI1 (black) or EWSR1:ERG (purple) rearrangements
are indicated, along with cases without evidence of an EWSR1 rearrangement (white) or
those not assessed (gray). ERG/FLI1 staining (diffuse nuclear) and CD99 staining were
scored as in Figure 1 (indicated in the legend). Cases shown in Figure 1 are indicated by
yellow names. B–D. Representative hematoxylin and eosin (H&E left panels), ERG/FLI1
(middle panel) and CD99 (right panel) cores from cases showing 3+ ERG/FLI1 expression
and (B&C) cytoplasmic or negative (D) CD99 staining are shown. Cases shown are
indicated by white names in A. All images are 10x original magnification with 20x insets.
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Figure 3. ERG/FLI1 staining in small round blue cell tumor (SRBCT) mimickers of Ewing
family tumors (EFTs)
Heat map of ERG/FLI1 staining (nuclear) in 61 non-EFT SRBCTs., ERG/FLI1 staining was
scored as in Figures 1 & 2. In cases with heterogeneous staining, the variable intensity is
indicated by multiple colors in the heat map cell. Cases shown are indicated by yellow
names. B–H. Hematoxylin and eosin (H&E, top panels) and ERG/FLI1 (bottom panels)
staining for representative cases are shown (20x original magnification).
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Table 1

Demographics of patients (and cases) with EFTs evaluable for ERG and CD99 staining

Parameter1 Total number (n) Median (IQR)

Age at diagnosis: 49 18 (13–30)

 Parameter1 Total number (n) Number of patients (%)

Sex: 49

 Male 29 (59%)

 Female 20 (41%)

Stage: 57

 Primary 37 (65%)

 Primary; s/p chemo 4 (7%)

 Recurrence 6 (11%)

 Metastasis 10 (18%)

Location: 57

 Osseous; axial 18 (32%)

 Osseous; extra-axial 19 (33%)

 Extra-osseous; axial 18 (32%)

 Extra-osseous; extra-axial 2 (4%)

Molecular Confirmation2: 49

 EWSR1:FLI1 29 (59%)

 EWSR1:ERG 3 (6%)

 No EWSR1 rearrangement 6 (12%)

 NA 11 (22%)

1
Total number of patients with at least one evaluable core used for age at diagnosis and sex. Total number of cases with at least one evaluable core

used for stage and location.

2
Patients who had at least one case confirmed by two of three molecular tests (FISH for EWSR1 breakapart, cytogenetics [t(11;22) or t(21;22)] and

RT-PCR for EWSR1:FLI1 or EWSR1:ERG). Those without available molecular data (NA) are indicated.
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