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Abstract

Dystrophic epidermolysis bullosa, a severely disabling hereditary skin fragility disorder, is caused by mutations in the gene
coding for collagen VII, a specialized adhesion component of the dermal-epidermal junction zone. Both recessive and
dominant forms are known; the latter account for about 40% of cases. Patients with dominant dystrophic epidermolysis
bullosa exhibit a spectrum of symptoms ranging from mild localized to generalized skin manifestations. Individuals with the
same mutation can display substantial phenotypic variance, emphasizing the role of modifying genes in this disorder. The
etiology of dystrophic epidermolysis bullosa has been known for around two decades; however, important pathogenetic
questions such as involvement of modifier genes remain unanswered and a causative therapy has yet to be developed.
Much of the failure to make progress in these areas is due to the lack of suitable animal models that capture all aspects of
this complex monogenetic disorder. Here, we report the first rat model of dominant dystrophic epidermolysis bullosa.
Affected rats carry a spontaneous glycine to aspartic acid substitution, p.G1867D, within the main structural domain of
collagen VII. This confers dominant-negative interference of protein folding and decreases the stability of mutant collagen
VII molecules and their polymers, the anchoring fibrils. The phenotype comprises fragile and blister-prone skin, scarring and
nail dystrophy. The model recapitulates all signs of the human disease with complete penetrance. Homozygous carriers of
the mutation are more severely affected than heterozygous ones, demonstrating for the first time a gene-dosage effect of
mutated alleles in dystrophic epidermolysis bullosa. This novel viable and workable animal model for dominant dystrophic
epidermolysis bullosa will be valuable for addressing molecular disease mechanisms, effects of modifying genes, and
development of novel molecular therapies for patients with dominantly transmitted skin disease.
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Introduction

Epidermolysis bullosa (EB) comprises a heterogeneous group of

hereditary skin fragility disorders. So far, mutations in 18 genes are

known to give rise to different forms of EB [1–3]. Based on the

ultrastructural level of skin blistering, EB can be divided into four

major types: EB simplex, junctional EB, dystrophic EB (DEB) and

Kindler syndrome [4]; these main categories are further divided

into subtypes. In addition to painful skin blisters and wounds,

severely affected patients can have mucosal involvement, causing

malnutrition. A common denominator for genes linked with EB is

that they code for proteins, which, at least partially bear non-

redundant structural functions vital for skin integrity.

One such protein is collagen VII (C7), a specialized component

of the dermal-epidermal junction zone and major constituent of

the anchoring fibrils that attach the epidermis to the dermis [3].

C7 is an atypical collagen with a large N-terminal globular non-

collagenous domain (NC1), a central collagenous domain and

another globular non-collagenous domain at the C-terminal end

(NC2) [5]. Individual C7 monomers, composed of three identical

a-chains, form antiparallel dimers, which aggregate into anchoring

fibril suprastructures [5,6]. Anchoring fibrils support skin stability

by interacting with components of the dermal-epidermal basement

membrane while wrapping around fibrillar collagens in the dermal

extracellular matrix, thus anchoring the overlying basement

membrane to the underlying dermis [7]. Mutations in the gene

coding for C7, COL7A1, cause DEB [7], which accounts for

approximately 25% of all EB cases worldwide (www.debra-

international.org).
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DEB manifests with fragile skin, blistering of the mouth,

esophagus, and rectum, healing with excessive scarring, and nail

dystrophy [8]. Depending on the mutation, DEB can be inherited

in a dominant (DDEB) or recessive (RDEB) mode [8]. DDEB is

generally regarded as less severe, whereas patients with severe

generalized RDEB have the highest morbidity. DDEB accounts

for about 40% of all diagnosed DEB cases [9] and has a disease

spectrum that ranges from mild localized to generalized skin

manifestations. One particularly intriguing aspect of DDEB is that

the same mutation can give rise to variable phenotypes in different

patients [8,10], suggesting that environmental factors and modifier

genes are of importance in the pathogenesis. However, lack of

suitable models has hampered the study of such effects.

Several animal models of RDEB have been described, both

engineered [11–14] and spontaneous [14–22]. Many of the

spontaneous models are severe and lethal shortly after birth. In

some cases, the large size of some animals renders them difficult to

work with. As yet, no model exists for DDEB. Although an Akita

dog was suggested to have DDEB [19], the mode of inheritance

could not be conclusively determined.

In this study, we report a novel rat model of DDEB. Affected

rats carry a glycine to aspartic acid substitution within the major

structural (collagenous) domain of C7. The substitution decreases

the stability of C7 monomers carrying one or more mutated a-

chains, thus conferring dominant-negative interference. The rats

have fragile and blister-prone skin as a consequence of fewer and

thinner anchoring fibrils. The model recapitulates all signs of

human DDEB with complete penetrance, but as in patients, the

animals exhibit individual variance of the disease manifestations.

Importantly, homozygous carriers of the mutation are more

severely affected than heterozygous carriers, suggesting a gene-

dosage effect of the mutation. This novel small animal model will

be of value for addressing specific questions relating to molecular

disease mechanisms in DDEB and development of novel

molecular therapies.

Results

Clinical phenotype
Spontaneous skin blistering and erosions were observed in pups

from inbred Sprague Dawley rats. Shortly after birth, affected

pups developed blood-filled blisters on the extremities, the back

and the head (Figure 1A). Over the next few days the phenotype

grew progressively worse, with blistering expanding on the limbs

and occurring on the chest and belly. Loss of large areas of skin

was also regularly observed. Malnutrition was obvious in some rats

(Figure 1A), suggesting mucosal blistering. In the most severe

cases, the rats died in the second or third week of life.

With the beginning of fur growth – which leads to skin

stabilization – blistering ceased, leaving some scarring (Figure 1B).

Healing of affected paws varied greatly; some paws healed without

visible signs of the previous blistering, whereas other paws

remained ulcerated. This led to malformation and in the most

severe cases mutilating deformities (Figure 1A). Adult rats with a

history of postnatal blistering and subsequent healing exhibited

dystrophy or loss of toes (Figure 1C).

The phenotype suggested a generalized form of EB with high

severity. Histopathological analyses of skin biopsy specimens from

affected rats revealed complete detachment of the epidermis from

the dermis (Figure 1D) and immunomapping of the dermal-

epidermal junction (DEJZ) demonstrated that blisters arose in the

uppermost dermis. C7 staining remained at the blister roof

(Figure 1D), indicating that the rats were affected with DEB.

Electron microscopy
C7 is the major component of anchoring fibrils, which attach

the epidermis to the underlying dermis. By electron microscopy,

the anchoring fibrils were clearly visible as cross-banded fibrils at

the DEJZ in the skin of age-matched wild-type rats (Figure 2A). In

contrast, the fibrils appeared sparser and thinner in the skin of the

mutant rats. Blistering occurred below the lamina densa level, and

loose collapsed fibrils remained attached to the blister roof

(Figure 2A). Quantification of images of randomly selected areas

in electron micrographs confirmed the above notion, with

anchoring fibrils in affected rats being both thinner and less

abundant (Figure 2B).

Mutation analysis
The above evidence suggested that C7 was abnormal in the

affected rats. Therefore, we performed mutation analysis of the

Col7a1 genomic DNA. Sequencing revealed a G to A substitution

in base 5600 in exon 69 (ENSRNOT00000027994; GenBank

accession number KC834559) (Figure 3A), which leads to

substitution of a glycine residue with aspartic acid at position

1867; p.G1867D (Figure 3B). Exon 69 codes for a stretch of the

collagenous domain close to the so-called ‘‘hinge region’’ of C7

[23] (Figure 3C). The collagenous domain is highly conserved

between species (Figure 3D), suggesting that this glycine substitu-

tion could also cause human DEB. However, the corresponding

mutation has not yet been reported in DEB patients (HGMD

database: http://www.biobase-international.com/product/hgmd)

and [9].

Mode of inheritance
Human studies have shown that glycine to aspartic acid

substitutions within the C7 collagenous domain can give rise to

DEB of both dominant and recessive mode of inheritance [9,10].

In the present rat colony, a spontaneous founder mutation has

occurred. In order to firmly establish the mode of inheritance,

wild-type rats were crossed with homozygous carriers of the

mutation. For fast genotyping a restriction enzyme digestion

strategy utilizing the fact that the c.G5600A mutation abolishes a

Hpy8I restriction site was used (Figure S1).

Breeding wild-type with homozygous p.G1867D rats resulted in

heterozygous pups that displayed a skin blistering phenotype.

However, the phenotype was much milder than in the homozy-

gous carriers (Figure 4A). This determined a dominant mode of

inheritance, and therefore, the rats represent a model of DDEB.

Additionally, there is a gene-dosage effect with homozygous rats

being more strongly affected, a phenomenon which can also be

observed in families with other subtypes of EB [24].

Morphological analysis of the skin of the homozygous pups

showed spontaneous, extensive blistering (Figure 4B). Semiquan-

titative immunofluorescence staining demonstrated reduction of

C7 content at the DEJZ; this was stronger than in heterozygous

animals (Figure 4B and C), thus supporting a gene-dosage effect.

Interestingly, the homozygous pups exhibited a variable

phenotype (Figure 4A), suggesting involvement of disease modifier

genes. Environmental factors seem to play a lesser role in this

specific setting, since rats were inbred and kept under similar

conditions.

C7 expression and stability
The electron microscopy and the immunofluorescence data

pointed to poor structure of anchoring fibrils and a slight reduction

of C7 in the skin of affected animals. In order to determine the

causes, we analyzed C7 expression and biochemical stability in

Rat Model of Dystrophic Epidermolysis Bullosa
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Figure 1. Clinical presentation of the spontaneous skin blistering phenotype in DEB rats. A, Progression of skin blistering from birth to
adulthood. At birth, blistering is mainly restricted to the footpads. With time, it spreads to the belly and the chest, and large erosions occur on the
limbs. With the beginning of fur growth – which leads to skin stabilization – blistering decreases. Poorly healing paws lead to mutilating deformities.
B, Soon after birth (4–10 days), small blisters develop on the back skin; these heal with scarring (arrows). C, In adult rats the phenotype is mainly
restricted to the paws; note the dystrophic claws or toes with lost claws (yellow circle). E, Histological analysis of the skin from newborn mutant rats
shows separation of the epidermis from the dermis. These findings are compatible with DEB. Left panel: H&E staining. Right panel: C7 antibody
staining reveals a signal at the blister roof. Scale bar = 100 mm.
doi:10.1371/journal.pone.0064243.g001

Rat Model of Dystrophic Epidermolysis Bullosa
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cultured keratinocytes and fibroblasts. C7 expression at the

mRNA or protein level was not changed in mutant rat skin

(Figure 5A and data not shown).

Glycine substitutions in the C7 collagenous domain are known

to impact triple helix folding and to decrease the stability of the

molecule [25,26]. Therefore, we investigated the C7 stability by

limited trypsin digestion. Correctly folded collagenous domains

show resistance to limited trypsin digestion, whereas misfolding

increases sensitivity. When exposed to a temperature gradient

followed by short trypsin digestion, C7 with the p.G1867D

substitution became degraded at lower temperature than wild-type

C7 (Figure 5B and C). This indicates improper folding of the

collagenous domain, reduced stability and increased susceptibility

to tissue proteinases, which is the underlying cause of reduced C7

and anchoring fibril content at the DEJZ in mutant rats. These

findings also support a gene-dosage effect of the mutation, as

homozygous C7 molecules containing only mutated C7 a-chains

were less stable than C7 molecules composed of wild-type and

mutant a-chains (Figure 5C).

Discussion

Here we characterize a novel rat model of DDEB. In

comparison to mice, rats’ larger body and litter size, and feeble

temper, make them more attractive to work with. Consequently,

rats are the model of choice in many aspects of drug development,

including studies of drug safety and metabolism [27–29]. The

DDEB rat model disclosed here will be valuable for future therapy

development, but also for studies on disease mechanisms in DEB

and on C7 biology.

The mutation inherited in a dominant manner, yet there is also

a clear gene-dosage effect of the mutated C7, a phenomenon

which has also been described in families affected by other EB

subtypes [24]. At lower dosages (in heterozygotes) the mutated C7

resulted in a milder phenotype, whereas at higher dosages (in

homozygotes) the phenotype was more severe. Interestingly, also

the homozygous DDEB rats displayed variable phenotypes. This

replicates well the situation of DDEB patients, where the same

mutation can give rise to a wide spectrum of clinical presentations

[8]. These observations emphasize the probable role of modifier

genes in DDEB pathogenesis, as the inbred rats were held under

Figure 2. Electron microscopy demonstrates anchoring fibril abnormalities in mutant rat skin. A, Transmission electron microscopy
images of the skin from four-day-old wild-type and mutant rats. Electron dense anchoring fibrils (arrowheads) are clearly visible under the lamina
densa in wild-type rats, whereas mutant rat skin contains fewer and thinner anchoring fibrils (arrowheads). In blistered skin abnormal and collapsed
anchoring fibrils are attached to the blister roof (arrowheads). Scale bar = 250 nm B, Quantification of the electron micrographs confirm the notion of
fewer and thinner anchoring fibrils in mutant rat skin.
doi:10.1371/journal.pone.0064243.g002

Rat Model of Dystrophic Epidermolysis Bullosa
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similar environmental conditions. Given that very little is known

about modifier genes in DEB [10,30], this rat model offers a

valuable tool for future studies on genes that regulate disease

severity. Identification of such genes will be important for design of

biologically valid therapeutic strategies.

The rat model presented here is the first viable small animal

model of DDEB, and also the first rat model of DEB. The

phenotype is caused by a glycine substitution mutation, which is of

importance, as 25% of all C7 mutations reported are glycine

substitutions (HGMD database: http://www.biobase-

international.com/product/hgmd). All previous DEB mouse

models are transgenic, with either the entire Col7a1 gene deleted,

reduced expression of C7, or the combination of Col7a1 deletion

and forced expression of mutated human C7 [11–13]. Since the

DDEB rat has a spontaneous mutation, it more closely resembles

DEB patients. Furthermore the DDEB rat shows a gene-dosage

effect and phenotype variability, which could assist in the

delineation of disease modifying genes. This model will be a

useful tool for studying novel therapeutic strategies in dominantly

transmitted DEB, such as gene silencing, chemically-induced exon

read-through [31] or splice modulation [32].

Materials and Methods

Animals
The rats on a Sprague Dawley background were originally

housed at the Max Delbrück Center for Molecular Medicine,

Berlin, where the phenotype, which had developed spontaneously,

was first observed. Later breeding pairs of affected rats were

transferred to the Center for Experimental Models and Transgenic

Services at the University of Freiburg. All animal work was

performed in strict compliance with the German federal animal

welfare law (‘‘Tierschutzgesetz’’, Paragraph 4) and after approval

through the official animal welfare officer (‘‘Tierschutzbeauftrag-

ter’’) of the CEMT, University Freiburg (IACUC). The rats were

given food and water ad libitum. After birth, affected litters were

monitored and photographed every day for two weeks and then

once every week. Wild-type Sprague Dawley rats used to generate

heterozygotes were purchased from Charles River (Sulzfeld,

Germany).

Light microscopy
Skin specimens were fixed in 10% formalin for H&E staining or

snap-frozen in optimal cutting temperature compound on dry-ice

for analysis of C7 expression. The fixed skin was embedded in

paraffin, sectioned, deparaffinized, rehydrated and H&E stained

using standard procedures. Snap frozen material was cut on a

cryotome. Before staining, the optimal cutting temperature

compound was washed off from the slides in PBS and slides fixed

in ice-cold acetone. The slides were blocked in 3% BSA-PBS-T,

after which they were stained with a rabbit polyclonal antibody to

human placental C7 (Calbiochem Merck, Darmstadt, Germany).

After washing and incubation with Alexa 488 conjugated

secondary antibodies, the slides were counterstained with DAPI

to visualize nuclei, washed and mounted. Images of H&E and C7

stainings were acquired with a Zeiss Axiocam mounted in a Zeis

Axiovision microscope (Carl Zeiss, Jena, Germany). Images were

further processed using the Zen2010 software (Carl Zeiss) and

quantified with the Image J software (NIH, Bethesda, MD).

Electron microscopy
For transmission electron microscopy, skin of 4-day-old rats was

fixed in 4% paraformaldehyde and 2% glutaraldehyde. After

fixation it was washed twice in 0.1 M cacodylate buffer, and

incubated for 1 h in 1% osmium tetroxide solution. Following

dehydration in ethanol and propylene oxide, samples were

embedded in an epoxide resin. Sections of 70 nm thickness were

mounted on microscopy grids and stained with 5% uranyl acetate

and Reynold’s solution. Quantification of randomly selected areas

was performed using the Image J software (NIH).

Cell culture
Keratinocytes and fibroblasts were isolated and cultured as

previously described [12]. Shortly, 1- to 3-day-old rat pups were

killed by decapitation. The skin cleaned with ethanol, removed

and placed in 10% antibiotic-antimycotic in PBS (Gibco

Invitrogen, Darmstadt, Germany). Under a sterile hood the skin

was placed in a 6-well plate containing 0.25 mg/ml dispase diluted

in DMEM:F12 (Stemcell, Grenoble, France) and incubated for 3 h

at 37uC until the epidermis was readily separable from the dermis.

The epidermis was then stripped from dermis with forceps and

used for cell isolation. For keratinocyte isolation the epidermis was

cut into small pieces and incubated with 0.5% trypsin for 10 min,

trypsin was inactivated with serum, cells pelleted, washed in PBS

and plated in CnT57 medium with supplements (CELLnTEC,

Bern, Switzerland). Keratinocytes were passaged using TrypLETM

Figure 3. The mutant rats carry a Col7a1 missense mutation
resulting in substitution of a glycine by aspartic acid. A, DNA
sequencing chromatograms of exon 69 in Col7a1 of wild-type (left
panel) and homozygous mutant (right panel) rats. The arrows indicate
the G to A mutation (c.G5600A). B, The mutation leads to a codon
change resulting in a glycine to aspartic acid substitution (p.G1867D). C,
The mutated exon 69 codes for a stretch of the collagenous domain, N-
terminally from the non-collagenous hinge region of C7. D, Both the
mutated base and the amino acid are conserved in humans
(ENST00000328333), suggesting that a similar mutation could result in
human DEB.
doi:10.1371/journal.pone.0064243.g003

Rat Model of Dystrophic Epidermolysis Bullosa
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(Gibco Invitrogen). For fibroblast isolation, the dermal part was

incubated with 500 units/ml collagenase type 1 (Worthington

Biochemical Corporation, Lakewood, NJ) at 37uC for 1 h, passed

through a 60 mm cell strainer. The cells were pelleted, washed in

DMEM:F12 containing 10% FCS (Gibco Invitrogen) and plated

in the same medium.

DNA sequencing and PCR analysis
Genomic DNA was isolated by shortly boiling fibroblasts in

50 mM NaOH, neutralized with 0.1 volume 1 M Tris-HCl

pH 7.4, cleaned by isopropanol precipitation and dissolved in

double distilled water. Sequencing primers used for the Col7a1

coding region of exons 68–70 and flanking introns were: forward

Figure 4. Dominant inheritance and gene-dosage effect of the mutation. A, Two-day-old rat pups, wild-type, heterozygous or homozygous
carriers of the p.G1867D mutation. The heterozygous pups were generated from breeding wild-type males with homozygous females. Heterozygous
rats display blistering of paws and back skin (arrows); the phenotype is milder than that of the homozygous pups (gene-dosage effect). B, H&E and
immunofluorescence staining of the skin of newborn wild-type, heterozygous or homozygous rats. Note the limited dermal-epidermal separation in
heterozygous skin, but extensive separation in homozygous skin. The mutation leads to a reduction in the C7 content at the DEJZ, as seen by C7
immunostaining. The reduction is more pronounced in homozygous animals. Scale bar = 100 mm. C, Semiquantification of C7 staining in B.
doi:10.1371/journal.pone.0064243.g004

Rat Model of Dystrophic Epidermolysis Bullosa
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59 GAAAAGGGAGATTCGGGTGT and reverse 59 AATGG-

CACTTCAGGAAGCAT. PCR products were directly sequenced

in an ABI 3100 genetic analyzer (ABI, Darmstadt, Germany). The

mutation was deposited in GenBank, accession number

KC834559.

The above primers were also used for genotyping using Hyp8I

digestion. PCR products were directly digested with Hyp8I

(Fermentas Thermo Fisher Scientific Inc., Waltham, MA) after

amplification and analyzed on 1.5% agarose TBE gels.

For quantitative real-time PCR, mRNA from keratinocytes and

fibroblasts was isolated using a RNA isolation kit (Macherey-

Nagel, Dueren, Germany) following the manufacturer’s instruc-

tions. The RNA was transcribed to cDNA (Fermentas Thermo

Fisher Scientific Inc). Quantitative real-time PCR using SYBR

Green labeling was run on a CFX-96TM Real-Time system

(Biorad, Carlsbad, CA). Primers used were: Col7a1 forward

59GTGGCCATTGAAGAGCTAGG and reverse 59TTCCCT-

TCAGGTCCAGACAC; Gapdh forward 59 TTGATGGCAA-

CAATCTCCAC and reverse 59 CGTCCCGTAGACAAAA-

TGGT.

Western blotting and limited trypsin digestion assay
Cells were extracted with NP-40 lysis buffer [12]. Lysates were

boiled in sample buffer containing 8 M urea, separated on 7%

SDS-Polyacrylamide gels and electrotransferred onto nitrocellu-

lose membranes. The membranes were blocked in 5% milk in

TBS-T, incubated with primary antibodies (either rabbit poly-

clonal antibody to human placental C7, Calbiochem) or mouse

monoclonal glyceralaldehyde-3-phosphate dehydrogenase

(GAPDH) antibody (Billerica, MA, USA) in blocking buffer,

washed and probed with HRP-conjugated secondary antibodies.

The blots were developed with ECL (Fermentas Thermo Fisher

Scientific Inc.) and detected using a chemiluminiscence detection

system (Peqlab, Erlangen, Germany).

For the limited trypsin digestion assay to assess C7 stability

[33,34], rat keratinocytes were grown to confluence. Then 50 mg/

ml ascorbic acid was freshly added every day, for 5 days. The cell

layer and extracellular matrix were extracted in NP-40 buffer.

Lysate aliquots were heated for 1 min, allowed to cool down to

room temperature for 10 seconds and trypsin (Serva, Heidelberg,

Germany) to a total volume of 0.1% v/v trypsin was added to the

protein lysates and the lysates were incubated for 30 seconds

before the reaction was stopped. The samples were then analyzed

by Western blotting. The C7 collagenous domain was detected

Figure 5. The p.G1867D mutation impacts protein stability. A, C7 expression in cultured fibroblasts from wild-type and p.G1867D
homozygous rats. qPCR analysis (left panel) and Western blot (right panel) demonstrate no notable change in mRNA or protein expression. B, Limited
trypsin digestion reveals greatly reduced thermal stability of mutant C7, as shown by Western blot detecting the intact collagenous domain of C7.
Mutant C7 containing the p.G1867D substitution was degraded at lower temperature than wild-type C7, indicating a reduction in thermal stability
due to faulty triple helix folding of the collagenous domain. WT = wild-type; Ho = homozygous for p.G1867D. C, Limited trypsin digestion of C7
extracted from wild-type, heterozygous and homozygous keratinocytes. The lysates were heated to 30uC and allowed to cool down to room
temperature before limited trypsin digestion. Western blot detecting the intact collagenous domain of C7 (left panel) shows reduced stability of
heterozygous molecules and loss of stability of homozygous molecules. The right panel shows densitometric quantification of the collagenous
domain of C7 and normalization to collagen XVII, which was used as a loading control. The value of wild-type C7 was set to 100% and the percent
stability, as indicated by resistance to trypsin digestion, of heterozygous and homozygous C7 was calculated in relation to this value. WT = wild-type;
Het = heterozygous for p.G1867D; Ho = homozygous for p.G1867D.
doi:10.1371/journal.pone.0064243.g005

Rat Model of Dystrophic Epidermolysis Bullosa
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using the rabbit polyclonal antibody H-120 (Santa Cruz Biotech-

nology Inc., Santa Cruz, CA) and collagen XVII with rabbit anti-

human collagen XVII [35].

Supporting Information

Figure S1 Restriction enzyme-mediated genotyping.
Exons 68–70 of the Col7a1 gene were amplified by PCR, and

the PCR product digested with the restriction enzyme Hyp8I. The

c.G5600A substitution abolishes a Hyp8I cleavage site in exon 69.

Thus, digestion of the wild-type Col7a1 DNA results in two

cleavage products of similar size, whereas DNA carrying the

c.G5600A substitution is not digested by Hyp8I. + = digestion with

Hyp8I, 2 = control without digestion enzyme.

(TIF)
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Performed the experiments: AN JB TS IH. Analyzed the data: AN JB MB
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10. Kern JS, Grüninger G, Imsak R, Müller ML, Schumann H, et al. (2009) Forty-

two novel COL7A1 mutations and the role of a frequent single nucleotide

polymorphism in the MMP1 promoter in modulation of disease severity in a
large European dystrophic epidermolysis bullosa cohort. Br J Dermatol 161:

1089–1097.
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