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Abstract
MicroRNAs, a key class of gene expression regulators, 
have emerged as crucial players in various biological 
processes such as cellular proliferation and differentia-
tion, development and apoptosis. In addition, microR-
NAs are coming to light as crucial regulators of innate 
and adaptive immune responses, and their abnormal 
expression and/or function in the immune system 
have been linked to multiple human diseases including 
inflammatory disorders, such as inflammatory bowel 
disease, and cancers. In this review, we discuss our 
current understanding of microRNAs with a focus on 
their role and mode of action in regulating the immune 
system during inflammation and carcinogenesis. 
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Core tip: MicroRNAs (miRNAs), a key class of gene ex-
pression regulators, have emerged as crucial players in 
various biological processes such as cellular prolifera-
tion and differentiation, development and apoptosis. A 
better understanding of the function of miRNAs is pro-
viding new insights into the molecular basis of human 
pathologies, and new biomarkers for disease diagnosis 
and therapy. 
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INTRODUCTION
MicroRNAs (miRNAs, miR) are small (approximately 
20-22 nucleotides), non-coding RNAs that post-
transcriptionally regulate gene expression by binding to 
the 3′-untranslated region of  target mRNAs, leading to 
mRNA degradation or translational inhibition[1]. 

Since the identification of  the first miRNA, lin-4, 
in Caenorabditis elegans in 1993[2,3], thousands of  miRNA 
genes have been identified in animal and plant genomes[4]. 
As a class, miRNAs account for about 1%-2% of  genes 
in worms, flies, and mammals[5]. Each miRNA can target 
hundreds of  mRNAs within a given cell type, and a single 
mRNA is often the target of  multiple miRNAs, and thus 
over half  of  the human transcriptome is predicted to be 
under miRNA regulation, embedding this post-transcrip-
tional control pathway within nearly every biological pro-
cess[5]. 

Given its fundamental biological roles, it is not sur-
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prising that miRNA expression is tightly controlled and 
that its deregulation can lead to various diseases. In this 
review, we summarize our current knowledge about the 
physiological role of  miRNAs in mammalian biology and 
the manner in which miRNA activities contribute to dis-
eases including inflammatory disorders and cancer.

MIRNA BIOSYNTHESIS AND 
REGULATION
Biosynthesis
Our knowledge of  miRNA biogenesis and regulation has 
been greatly expanded in recent years[1]. The canonical 
miRNA biogenesis takes place in a multi-step process 
and involves two RNAse Ⅲ endonucleases, Dicer and 
Drosha. MiRNAs are encoded by genomic DNA and 
are most commonly transcribed by RNA polymerase Ⅱ, 
which generates a primary miRNA (pri-miRNA) tran-
script. Within the primary transcripts, miRNAs form 
stem-loop structures, which contain the mature miRNA 
as part of  an imperfectly paired double-stranded stem 
connected by a short terminal loop. Pri-miRNAs are then 
processed by a microprocessor complex, a multiprotein 
complex with the two core components, Drosha and Di 
George Syndrome critical region 8 (DGCR8)[6-8]. This re-
sults in the formation of  a hairpin-shaped RNA molecule 
of  70-100 bp called miRNA precursor or pre-miRNA, 
which is then exported into the cytoplasm in a process 
involving the nucleocytoplasmic shuttle Exportin-5 and 
in a Ran-GTP-dependent manner[9-11]. In cytoplasm, 
the pre-miRNA hairpin is cleaved by the endonuclease 
DICER into an imperfect miRNA:miRNA* duplex of  
21-23 nucleotides in length[12]. After separation of  the 
two strands of  the duplex, one of  the strands (the mature 
miRNA) is transferred into an Argonote (Ago) protein 
located in the RNA-induced silencing complex (RISC 
or miRISC), which is involved in the repression of  gene 
expression by leading miRNAs to specific target mRNAs, 
whereas the other strand (the star-strand) is degraded. It 
has been shown that strand selection and RISC assembly 
in mammals are accomplished by a complex that contains 
Dicer, Ago and the double-stranded RNA binding pro-
tein TRBP[13-15]. MiRNAs target mRNAs by interacting 
with sites of  imperfect complementarity. Short “seed” 
sequences at the 5′-ends of  miRNAs (nucleotides 2-8) are 
critical, and in some cases fully sufficient, for target selec-
tion[16,17].

Regulation 
Although there have been recent advances in our knowl-
edge of  the biogenesis of  the miRNA pathway, relatively 
little is known about the mechanisms regulating the activ-
ity of  the pathway’s components. Several recent studies 
indicate that the regulation of  miRNA expression and 
function occurs at three levels: transcription, processing 
and subcellular localization[17,18]. 

The first, and one of  the most important, mechanisms 
controlling miRNA abundance is the regulation of  pri-

miRNA transcription, which could be positively or nega-
tively regulated by different factors such as transcription 
factors, enhancers, silencers and epigenetic modification 
in miRNA promoters[16]. For example, the oncogene 
c-myc can bind to the promoter of  the miR-17-5p cluster, 
thereby up-regulating expression of  the miRNAs encoded 
by the cluster[19,20]. Similarly, the tumour suppressor p53 
has been shown to upregulate the transcription of  miR-34 
family members, inhibiting important factors of  cell pro-
liferation and survival, such as Bcl2 and Cdk4 and 6[21-24]. 
A region of  miRNA genes is located within CpG islands 
involving the epigenetic control of  miRNA transcription. 
It is estimated from recent works that 5%-10% of  mam-
malian miRNAs are epigenetically regulated[19,25-27]. 

Several post-transcriptional regulatory mechanisms 
that affect miRNA processing at different stages, from 
the pri-miRNA transcripts to the delivery of  mature miR-
NAs to their target mRNAs, have recently been investi-
gated[18]. For example, p53 can form a complex with Dro-
sha, which increases the processing of  pri-miRNAs to 
pre-miRNAs[28]. Histone deacetylase Ⅰ can enhance pri-
miRNA processing by deacetylating the protein DGCR8 
of  the microprocessor complex[29]. Cytokines such as 
interferons have been shown to inhibit Dicer expression, 
decreasing the processing of  pre-miRNAs[30]. 

MICRORNAS AND IMMUNE SYSTEM
The immune system has evolved to maintain self-toler-
ance and to recognize efficiently specific pathogens. The 
innate immune system acts as a first protector providing 
an immediate response to pathogens, and propagation 
of  the innate response activates the adaptive immune 
system. Both innate and adaptive immune responses are 
highly regulated, and recent studies have shed light on the 
role of  miRNAs in this intricate system[31,32]. The role of  
miRNAs in immune responses will be discussed in this 
section.

MicroRNAs and innate immune response
The innate immune system is activated via recognition of  
pathogen-associated molecular patterns by toll-like recep-
tors (TLRs)[33], which will recruit adaptor proteins to the 
receptor, followed by activation of  downstream signalling 
pathways such as the nuclear factor kappa-light-chain-
enhancer of  activated B cells (NF-κB) pathway[34]. This 
signal transduction ultimately leads to induction of  im-
mune gene expression. 

The first study examining the effect of  lipopolysac-
charide (LPS)-mediated activation of  TLR signalling on 
miRNA production identified miR-155, miR-146a and 
miR-132, which are induced in human macrophages 
by LPS[35]. Further analysis showed that miR-155 is in-
duced by LPS, cytokine IFN-β and various TLR ligands 
in murine macrophages[36,37]. MiR-155, once induced, is 
involved in the activation of  tumor necrosis factor-α 
(TNF-α) and interleukin-6 (IL-6), enzyme linked immu-
nosorbent assay pathway via targeting the Fas-associated 
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death domain protein, I B kinase ε, and receptor (TNF 
receptor superfamily)-interacting serine-threonine kinase 
1[37]. MiR-155 plays a role in the innate immune response 
by regulating suppressor of  cytokine signalling (SOCS)-1, 
a negative regulator of  dendritic cell antigen-presenting 
capacity[37-39]. Likewise, miR-155-deficient dendritic cells 
exhibit impaired antigen presentation and therefore are 
unable to activate T cells to promote inflammation[39]. 
One study demonstrated that in human myeloid-derived 
DCs, knockdown of  miR-155 expression significantly 
increased protein expression of  the pro-inflammatory cy-
tokine IL-1[40]. The same study also showed that miR-155 
directly inhibited expression of  the pro-inflammatory 
signalling protein TAK1-binding protein 2 (TAB2, also 
known as MAP3K7IP2), which could be a mechanism 
underlying its anti-inflammatory property[40]. In contrast, 
other studies have shown that miR-155 can enhance in-
flammatory responses. Overexpression of  miR-155 in 
mouse bone marrow leads to a myeloproliferative pheno-
type that is similar to that observed transiently after LPS 
stimulation[41]. MiR-155 can negatively regulate SHIP1, 
an important negative regulator of  phosphoinositide 
3-kinase (PI3K) and the downstream AKT pathway[42,43]. 
SHIP1, which is similar to SOCS1, is a negative regulator 
of  TLR4 signaling[44], and hence repression of  SHIP1 by 
miR-155 may counter this negative regulation and in-
crease downstream AKT signalling. 

Like miR-155, miR-146a is induced by LPS, TNF-α 
and IL-1β in a NF-κB-dependent manner. MiR-146a 
in turn inhibits expression of  two components of  the 
TLR4 signaling pathway, IL-1 receptor associated kinase 
and TNF receptor-associated factor-6[35]. Thus, miR-146a 
functions as a negative feedback regulator of  the TLR/
NF-κB pathway. MiR-155 and miR-146 expression is in-
creased in macrophages in response to LPS stimulation, 
while miR-125b expression is decreased. MiR-125b can 
target TNF-α mRNA, and a decrease in its expression 
leads to elevated TNF-α production and consequently 
increased inflammatory response[37]. 

Macrophage inflammatory response to infection 
involves the upregulation of  several miRNAs, such as 
miR-21, miR-9 and miR-147[45-47]. These miRNAs can 
also be induced by TLR signaling, and can negatively 
regulate activation of  inflammatory pathways in myeloid 
cells. MiR-9 represses NF-κB subunit 1 (NFKB1/p50 
unit) and helps to maintain a constant level of  NF-κB1 
protein expression during TLR4-mediated activation 
of  monocytes and neutrophils[46]. MiR-147 has been 
shown to attenuate TLR2, TLR3 and TLR4-mediated 
production of  inflammatory proteins such as TNF-α 
and IL-6[47]. Induction of  miR-21 inhibits PDCD4, an 
IL-10 inhibitor, thereby derepressing IL-10. IL-10 in turn 
inhibits miR-155, allowing SHIP1 to be derepressed and 
inhibit TLR signaling[45,48]. Hence, immune responses are 
highly regulated by TLRs-mediated upregulation of  dif-
ferent miRNAs.

In addition to miRNA induction by TLR signaling, 
recent studies have also reported inflammatory repres-

sion, such as miR-155 repression, in response to anti-
inflammatory cytokine IL-10[49]. 

MicroRNAs and adaptive immune response
In addition to their role in regulating the innate immune 
system, miRNAs have been implicated in adaptive immu-
nity by controlling the development and activation of  T 
and B cells. 

T cells
Specific miRNA expression profiles have been reported 
in different T cell subsets and stages of  development[50-52], 
suggesting that miRNA-mediated regulation of  signal-
ing networks in T cells, and probably other immune cells, 
is dynamic and highly regulated. Interestingly, miRNA 
profiling in naive, effector and memory CD8+ T cells 
has revealed that a few highly expressed miRNAs are 
dynamically regulated during antigen-specific T-cell dif-
ferentiation[52]. Mice exhibiting T-cell specific deletion 
of  Dicer had lower numbers of  mature T cells with ab-
normally developed T-cell subsets than wild-type mice, 
indicating that miRNAs are required for T cell develop-
ment[53,54]. Two specific miRNAs have been implicated in 
T cell development, and probably account for some of  
the phenotype of  Dicer-deficient T cells. The miR-17-92 
cluster suppresses expression of  pro-apoptotic proteins, 
including BCL-2-interacting mediators of  cell death (BIM 
or BCL2L11) and phosphatase and tensin homologue. 
This miRNA cluster is thought to increase T cell survival 
during development and is expressed during the double 
negative 2 stage of  thymopoiesis[55]. 

The role of  miRNAs in the differentiation of  T 
cells into distinct effector T helper cell subsets has been 
recently reported. It was demonstrated that miR-326 
regulates differentiation of  TH17 cells both in vitro and 
in vivo[56]. MiR-155 is implicated in regulatory T (Treg) cell 
formation and function, since forkhead box P3 (FOXP3), 
a transcription factor that is required for the develop-
ment and function of  Treg cells, may directly regulate the 
expression of  this miRNA[57]. Furthermore, miRNA-
155-deficient mice are immunodeficient, indicating the 
implication of  miR-155 in homeostasis and the immune 
system[39]. Similarly, using genetic deletion and transgenic 
approaches, Thai and colleagues showed the important 
role of  miR-155 in the mammalian immune system, 
specifically in regulating T helper cell differentiation and 
the germinal center reaction to produce an optimal T 
cell-dependent antibody response[58]. Certain miRNAs, 
such as the miR-17-92 cluster, might be involved in the 
development and function of  T follicular helper cells 
(specialized T cells that provide selective signals to sup-
porting geminal center B cells), which are essential for 
long-lived antibody responses[59,60]. In addition, miR-181a, 
which is increased during early T cell development and 
down-regulated in mature CD4 T cells such as Th1 and 
Th2 effector cells, can enhance TCR signaling strength by 
inhibiting multiple phosphatases that negatively regulate 
the TCR signaling cascade[61]. Finally, conditional deletion 
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ated with several human disorders such as inflammatory 
bowel disease (IBD) (Table 1), which is a chronic inflam-
matory gastrointestinal disorder. Although the etiology 
of  IBD remains largely unknown, extensive studies in the 
last decades have suggested that it involves environmental 
and genetic factors that lead to dysfunction of  the epithe-
lial barrier with consequent deregulation of  the mucosal 
immune system and responses to gut microbiota[76]. 

Distinguished miRNA expression profiles have been 
recently described in tissues of  patients with active and 
inactive UC, CD, irritable bowel syndrome (IBS), infec-
tious colitis (IC), and microscopic colitis (MC)[77]. Wu and 
colleagues demonstrated that active UC was associated 

of  Dicer or Drosha in Treg cells led to lethal autoimmune 
inflammatory disease, accompanied by impaired develop-
ment or function of  Treg cells, indicating the role of  miR-
NAs in Treg cell biology[62-64]. 

B cells
Distinct miRNA profiles in naive, germinal central and 
post-germinal central B cells have been reported[65-67], 
suggesting the implication of  miRNAs in B cell devel-
opment and maturation. A pioneer study showed that 
miR-181 is highly expressed in B cells of  mouse bone 
marrow, and its ectopic expression in hematopoietic stem 
and progenitor cells resulted in an increase in the per-
centage of  B-lineage cells but not in T cells or myeloid 
cells[68], indicating the role of  lineage-specific miRNAs in 
regulating lymphocyte development. Conditional deletion 
of  Dicer in B cells completely arrested B cell develop-
ment in mice, which is thought to be due to dysregulated 
expression of  the pro-apoptotic protein BIM, probably 
during the selection of  effective antigen receptors[69]. No-
tably, B cells lacking miR-17-92 family and Dicer-deficient 
B cells exhibited similar gene expression profiles[70], sug-
gesting that this miRNA cluster could play a determining 
role in the regulation of  B cell development.

Recent studies have explored the role of  miR-150, a 
miRNA specifically expressed by mature lymphocytes, in 
B cell differentiation[51,71,72]. MiR-150 expression increases 
during B-cell maturation in bone marrow, and its consti-
tutive expression blocked B cell development at the tran-
sition from the pro-B-cell to pre-B-cell developmental 
stage, leading to severe defects in the production of  ma-
ture B cells[71]. MiR-150-deficient mice exhibited a 2-fold 
increase in splenic B-1 cell numbers, with a relative de-
crease in those of  B-2 cells, but had no apparent defect in 
the development of  other lymphoid-derived T- and B-cell 
types[72]. Mice expressing a miR-150 transgene early in life 
also had dramatically impaired B cell development with 
normal T cell levels. These defects in miR-150 gain- and 
loss-of-function were further shown to be due to dysreg-
ulation of  c-Myb, a target of  miR-150 and a transcription 
factor that controls multiple steps of  lymphocyte devel-
opment[72]. MiR-155-deficient B cells showed defects in 
antibody class switching and differentiation into plasma 
cells, resulting in an impaired humoral response to T cell-
dependent antigenic stimulation[39,58,73]. The constitutive 
expression of  miR-34a blocked B cell development at the 
pro-B to pre-B cell transition, leading to a reduction in 
mature B cells[74]. This block appeared to be mediated by 
miR-34a-inhibited expression of  the transcription factor 
Foxp1[74], which is an essential regulator of  B cell devel-
opment[75]. Together, these studies show the important 
role of  miRNAs in normal B cell development. 

MICRORNAS AND INFLAMMATORY 
BOWEL DISEASE 
As miRNAs play a critical role in the regulation of  the 
immune system, failure of  miRNA regulation is associ-

Table 1  MicroRNAs dysregulated in ulcerative colitis and/or 
Crohn’s disease

Up-regulated Down-regulated Source, 
reference

UC vs 
healthy

miR-16, miR-21, miR-23a, 
miR-24, miR-29a, miR-126, 

miR-195, let-7f, miR-21, miR-155

miR-192, 
miR-375, miR-

422b

Sigmoid 
colon[77]

miR-21, miR-155 Colon[78]

miR-7, miR-31, miR-135b, 
miR-223, miR-29a, miR-29b, 

miR-126*, miR-127-3p, miR324-
3p

miR-188-5p, 
miR-25, miR-
320a, miR-346

Colonic 
mucosa[79]

(miR-196a, miR-29a, miR-29b, 
miR-126*, miR-127-3p, miR324-

3p)1

(miR-188-5p, 
miR-25, miR-

320a, miR-346)2

miR-28-5p, miR-151-5p, 
miR-199a-5p, miR-340*, 

miRplus-E1271, miR-103-2*, 
miR-362-3p, miR-532-3p

miR-505* Peripheral 
blood[80]

CD vs 
healthy

miR-9, miR-126, miR-130a, 
miR-181c, miR-375, miR-26a, 
miR-29b, miR-30b, miR-34c-

5p, miR-126*, miR127-3p, miR-
133b, miR-155, miR-196a, 

miR324-3p, miR-21, miR-22, 
miR-29c, miR-31, miR-106a, 

miR-146a, miR146b-3p, miR-150

Colonic 
mucosa[79]

(miR-9*, miR-30a*, miR-30c, 
miR-223 miR-25a, miR-29b, 

miR-30b, miR-34c-5p, miR-126*, 
miR127-3p, miR-133b, miR-155, 
miR-196a, miR324-3p, miR-21, 
miR-22, miR-29c, miR-31, miR-
106a, miR-146a, miR146b-3p, 

miR-150)1

UC vs 
CD

miR-199p-5a, miR-362-
3p, miR-340*, miR-532-3p, 

miRplus-E1271

miR-149*, 
miRplus-F1065

Peripheral 
blood[80]

(miR-150, miR-
196b, miR-199a-
3p, miR-199b-5p, 
miR-223, miR-

320a)2

Colonic 
mucosa[79]

miR-28-5p, miR-103-2*, 
miR-149*, miR-151-5p, 
miR-340*, miR-532-3p, 

miRplus-E1153

miR-505* Peripheral 
blood[80]

1miRNAs upregulated specifically in non-inflamed colonic mucosa; 2miR-
NAs downregulated specifically in non-inflamed tissue colonic mucosa. 
UC: Ulcerative colitis; CD: Crohn’s disease.
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with the differential expression of  11 miRNAs (3 signifi-
cantly decreased and 8 significantly increased in UC tis-
sues). MiR-192, the expression of  which is decreased in 
active UC, was predominantly localized to colonic epithe-
lial cells, and targeted macrophage inflammatory peptide 
(MIP)-2α, a chemokine expressed by epithelial cells[77]. 
In colonic epithelial cells, TNF-α-induced MIP-2α ex-
pression was inhibited by a miR-192 mimic. In contrast, 
miR-21 is significantly increased in patients with active 
UC compared to healthy subjects. In inactive UC patients, 
miR-375 and miR-422 expression was increased, while 
that of  miR-192 was unaltered compared to healthy sub-
jects[77]. Inactive UC showed similar expression levels of  
miR-375, miR-422b, and miR-23a to IBS and IC tissues. 
The miRNAs differently expressed in active UC were not 
dysregulated in MC and CD. This study highlights the 
specific miRNA expression patterns in active and inactive 
IBD tissues, and suggests that miRNAs could regulate 
expression of  proteins implicated in the pathogenesis. 

Another study showed the upregulated expression of  
several miRNAs in active UC compared to healthy co-
lonic biopsies, suggesting that upregulation of  miRNAs 
may be responsible for the development of  intestinal 
inflammation in UC[78]. MiR-21 was found among the up-
regulated miRNAs, which is consistent with the findings 
of  Takagi et al[78]. 

Of  interest, Fasseu and colleagues identified restricted 
subsets of  miRNAs abnormally expressed in inactive 
colonic mucosa of  IBD patients[79]. This elegant study 
identified 14 (in UC) and 23 (in CD) miRNAs with 
significantly altered expression (> 5-fold increase or < 
0.05-fold decrease) in quiescent colonic mucosa com-
pared to healthy control tissues. Eight of  the miRNAs 
(miR-26a, -29a, -29b, -30c, -126*, -127-3p, -196a, -324-3p) 
were commonly dysregulated in non-inflamed UC and 
CD. Six miRNAs (miR-196b, -199a-3p, -199b-5p, -320a, 
-150, -223) displayed significantly distinct dysregulation 
of  expression between non-inflamed UC and CD colonic 
biopsies. Interestingly, several miRNA genes with dys-
regulated expression mapped within acknowledged IBD-
susceptibility loci. In addition, significant dysregulated 
expression of  four and five miRNAs specific to inflamed 
UC or CD tissues, respectively, compared to healthy 
controls was observed[79]. This study sheds light on the 
role of  miRNAs as contributors to IBD susceptibility, in 
particular their implication in the onset and/or relapse of  
inflammation from quiescent mucosa of  IBD patients. 

There have been recent reports of  differential miR-
NA expression profiles in the peripheral blood of  IBD 
patients[80]. Four miRNAs (miR-199a5p, -362-3p, -532-3p 
and miRplus-E1271) were upregulated and one miRNA 
(miRplus-F1065) was downregulated in the peripheral 
blood of  patients with active CD, but not inactive CD, 
compared to healthy controls[80]. Both active and inactive 
CD patients had increased expression of  miR-340 and 
decreased expression of  miR-149 in the blood. Expres-
sion of  three miRNAs (miR-103-2, 262-3p, 532-3p) was 
increased in the blood of  both active and inactive UC 

patients. In addition, a subset of  11 miRNAs can distin-
guish active CD from active UC[80]. This study important-
ly supports the evidence that distinct peripheral blood 
miRNA profiles in different circulating immune cell types 
are associated with IBD.

Efforts have been made to understand the mecha-
nisms underlying the implication of  miRNAs in the 
pathogenesis of  IBD. The potential association between 
single nucleotide polymorphisms (SNPs) in pre-miRNA 
coding regions and IBD susceptibility has been analyzed. 
A study in a Japanese cohort of  170 UC patients and 403 
healthy controls revealed the association of  three SNPs 
(rs11614913, rs2910164, and rs3746444) in coding regions 
of  pre-miR-196a2, pre-miR-146a and pre-miR-499[81]. 
Of  particular interest, the CD-associated SNP C313T in 
immunity-related GTPase family, M (IRGM) gene caused 
a loss in binding of  miR-196[82] (Figure 1). IRGM plays 
an important role in the immune system by its involve-
ment in the autophagy process. In addition, miR-196 is 
overexpressed in the inflamed epithelium of  CD patients 
and downregulates the IRGM protective variant (c.313C) 
but not the risk-associated allele (c.313T)[82]. Loss of  tight 
regulation of  IRGM expression by miR-196 resulted in 
defects in autophagy-mediated control of  intracellular 
replication of  adherent-invasive Escherichia coli (AIEC), 
leading to abnormal persistence of  AIEC in host cells 
(Figure 1). This suggests that the association of  IRGM 
with CD could arise from abnormal miRNA-mediated 
IRGM regulation, which affects the efficacy of  autopha-
gy, thereby contributing a synonymous polymorphism as 
a likely causal variant. 

Intestinal microbiota is increasingly recognized as a 
risk for, and a causal factor of, IBD. Our recent studies 
showed that miRNAs are involved in the regulation of  
host gene expression by gut microbiota[83]. In another 
study, we showed that miRNAs play a role in determining 
the unique physiological characteristics of  intestinal epi-
thelial cells, such as their differentiation during migration 
along the crypt/villus axis[84]. In particular, expression of  
CD98, a transmembrane glycoprotein that regulates inte-
grin signalling, cellular homeostasis and innate immune 
response in the gut[85], and its function are directly under 
the control of  miRNAs during the differentiation of  in-
testinal epithelial cells[86]. MiRNAs could also be involved 
in the upregulation of  CD98 during intestinal inflamma-
tion and IBD[86]. The biological importance of  miRNAs 
in the pathogenesis of  IBD is becoming clearer, and 
targeting miRNAs in the gastrointestinal tract may be a 
promising approach for future therapeutic opportunities.

MICRORNAS AND COLORECTAL 
CANCERS 
The transformation of  a normal epithelium into a can-
cerous state involves modifications in several genes that 
are involved in different stages of  carcinogenesis such 
as apoptosis, proliferation, limitless replicative potential 
of  tumor cells, angiogenesis, migration and invasion[87]. 
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Colorectal cancer (CRC) is one of  the most common 
cancers worldwide. Its incidence is greater in industrial 
countries than in developing countries[88]. MiRNAs have 
been shown to play an important role in oncogenesis by 
regulating the expression of  genes involved in cancer 
initiation, promotion and development[89]. Hundreds of  
miRNAs mapped to the human genome regions that 
are known to be altered in cancer, and a similar number 
of  miRNAs are aberrantly expressed in cancerous tis-
sues[90,91]. By analyzing miRNA expression profile (miR-
Nome) of  prostate, stomach, pancreas, lung, breast and 
colon tumors, Volinia and colleagues identified a solid 
cancer miRNA signature including those with well-char-
acterized cancer association, such as miR-17-5p, miR-20a, 
miR-21, miR-92, miR-106a, and miR-155[92]. In particular, 
21 miRNAs are up-regulated and 1 is down-regulated in 
colon tumors compared to normal tissue[92]. MiRNA pro-
files can identify different tissue and tumor types better 
than mRNA expression patterns, making them attractive 
targets for development as cancer biomarkers[93]. Distin-
guished miRNA profiles can even be found in the serum 
of  patients with cancers. The functions of  such circulat-
ing miRNAs have not been identified, but profiling of  
serum miRNAs might be a powerful approach for early 
cancer diagnosis. The cancer-associated miRNAs may 
function as oncogenes or tumor suppressors depending 
on their role in carcinogenesis. Some of  the best ex-
amples of  such miRNAs will be discussed in this section 

(Figure 2).

Oncogenic miRNAs
MiR-21 is one of  the most up-regulated miRNAs in vari-
ous cancers, including CRC[92,94], and was identified as an 
independent predictor of  overall survival in the valida-
tion set containing tumor samples from 113 patients with 
CRC[95]. It has been shown that miR-21 is involved in 
invasion, intravasation and metastasis processes by target-
ing the tumor suppressor PDCD4[96], and in CRC tissues 
expression of  miR-21 is inversely correlated with that of  
PDCD4 compared to normal tissue[97]. Shibuya and col-
leagues suggested that miR-21 expression may predict 
poor prognosis in CRC[98]. Likewise, these authors also 
examined the prognostic value of  miR-155 in CRC since 
its expression is up-regulated in tumor tissues compared 
to normal adjacent tissues from CRC patients[98]. MiR-155 
was previously shown to target the tumor protein 53-in-
duced nuclear protein 1 (TP53INP1), a pro-apoptotic 
stress-induced p53 target, and significant reduction or 
loss of  TP53INP1 expression was detected during ad-
enocarcinoma progression[99].

MiR-17-92 and miR-106b-25 clusters are known to 
be up-regulated in CRC stromal tissues compared with 
normal stroma[100]. They include, respectively, multiple 
mature miRNAs, miR-17, miR-18a, miR-19a, miR-20a, 
miR-19b1, miR-92-1[101], and miR-106b, miR-93 and 
miR-25[102]. These miRNA clusters play an important role 
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Figure 1  Hypothetical model for the involvement of miR-196 in the pathogenesis of Crohn’s disease. MicroRNAs (miRNAs, miR) 196 normally targets immu-
nity-related GTPase family, M (IRGM) mRNA within RNA-induced silencing complex (RISC) for a negative regulation (left panel). The IRGM risk allele (IRGM*) mRNA 
lacks the binding site for miR-196 and therefore is not regulated by this miRNA (right panel). During Crohn’s disease, loss of tight regulation of IRGM* expression by 
miR-196 may lead to defects in autophagy with most intracellular bacteria replication occurring in dysfunctional vacuoles[82] (dotted cycle). This consequently results in 
abnormal persistence of pathogens in host cells, which could further worsen disease status[82].
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during carcinogenesis[92,100,103,104]. An anti-apoptotic ef-
fect of  miR-17-92 appears to be one of  the mechanisms 
underlying its procarcinogenic role in CRC develop-
ment and progression[105]. Abrogation of  miR-92a leads 
to cell apoptosis, and there is a correlation between the 
miR-17-92 overexpression in tumors of  CRC patients 
and the downregulated expression of  BIM, a member of  
the Bcl-2 family that promotes apoptosis[105]. Some works 
have reported that there is an interconnection between 
the expression of  miR-17-92 cluster and angiogenesis, 
which occurs later in tumor development and is one of  
the most important stages in carcinogenesis. Dews and 
colleagues demonstrated that the anti-angiogenic fac-
tors thrombospondin-1 (tsp-1) and connective tissue 
growth factor (CTGC) are down-regulated by this cluster 
in intestinal epithelial cells expressing constitutively the 
oncogene c-myc[106], which was shown to be involved in 
regulation of  miR-17-92 expression[20]. MiR-18 targets 
tsp-1 and miR-19 modulates the expression of  CTGF[107]. 

Other miRNAs have also been identified as causal 
factors in colon carcinogenesis. For example, miR-196a 
had higher expression level in CRC tissues than in normal 
epithelial tissues[108]. MiR-196a exerts a pro-oncogenic in-
fluence in CRC as a high level of  its expression promotes 
the oncogenic phenotype of  colorectal cancer cells such 
as increased cell detachment, migration and invasion[109]. 
MiR-31 is often up-regulated in CRC and its high expres-
sion associated with advanced tumor stage but the clinical 
significance is unclear[110]. MiR-181b-1, miR-135a, miR-
135b, miR-675 are also known to be up-regulated in CRC 
tumors[111]. MiR-135a is able to promote the growth and 
invasion of  CRC cells by targeting the metastasis sup-
pressor 1[112].

Tumor suppressor miRNAs
Mir-143 and miR-145 are among the best examples of  
tumor suppressor miRNAs. The expression of  these 
miRNAs is down-regulated in CRC tumors, and in other 

cancers such as breast, prostate, cervical and lymphoid 
cancer[113-115]. Many studies have reported that down-
regulation of  miR-143 and miR-145 correlates with poor 
prognosis[110,115,116]. The expression and post-transcrip-
tional maturation of  these miRNAs were recently shown 
to be enhanced by the tumor suppressor p53 in response 
to DNA damages in CRC cell lines[28,117]. In particular, 
miR-143 is involved in inhibition of  oncogene KRAS ex-
pression[118]. MiR-145 is reported to inhibit tumor growth 
and angiogenesis by directly targeting p70S6K1[117], which 
is activated by mTOR, and its overexpression in cancer 
cells induces tumor angiogenesis[119-121]. Another study 
reported that this miRNA is able to inhibit tumor growth 
and angiogenesis in breast cancer by targeting N-RAS 
and VEGF-A, which are key players in carcinogenesis[122]. 

It was recently demonstrated that miR-34a is down-
regulated in colon tumors and also in circulating 
blood[123]. Furthermore, ectopic expression of  miR-34a 
in CRC cell line reduces cell proliferation, demonstrating 
that this miRNA has a tumor suppressive function in co-
lon carcinogenesis[124]. Several studies conducted in 2007 
revealed that miR-34a can target p53, leading to apoptosis 
and cell cycle arrest[21-24,125]. MiR-203 is identified as an-
other tumor suppressor miRNA. Its low expression was 
found in vitro in CRC cell lines and was correlated with 
tumor size in CRC. MiR-203 can inhibit proliferation of  
cancer cell lines[126]. Li et al[127] showed that miR-203 over-
expression significantly decreased cell proliferation and 
survival and induced cell apoptosis in the p53-mutated 
CRC cells. The tumor suppressive role of  miR-203 was 
mediated by negatively regulating Akt2 expression via 
mRNA degradation. In addition, overexpression of  
miR-203 decreased expression of  the anti-apoptotic gene 
Bcl-xL, leading to a resistance to apoptosis[127]. MiR-126 
is specifically expressed in endothelial cells and is known 
to be down-regulated in CRC compared to normal tissue 
via an unknown mechanism[128]. In vitro studies suggested 
that a loss in negative regulation of  p85 subunit of  PI3K 
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Figure 2  Overview of “oncogenic” and “tumor suppressor” microRNAs related to colorectal cancer described in this review, their targets and different 
carcinogenesis pathways in which they have been implicated. 
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by miR-126 could lead to a selective growth advantage 
during colon carcinogenesis[129].

CONCLUSION
MiRNAs are a class of  gene regulators that have recently 
emerged as key players in the innate and adaptive immune 
system. Changes in miRNA expression are observed in 
many human diseases such as inflammatory bowel disease 
and cancers. Dysregulated miRNA expression profiles in 
IBD have been reported and could be used as diagnostic 
biomarkers but further studies are needed to examine 
the mechanism of  their action in the etiopathogenesis of  
this disease and their clinical utility. Emerging evidence 
suggests that miRNAs play important roles in the patho-
genesis of  a limited range of  human cancers. Some miR-
NAs may be directly involved in cancer development by 
controlling cell differentiation and apoptosis, while others 
may be involved in cancers by targeting cancer oncogenes 
and/or tumor suppressors. Given the critical role of  
miRNAs, current studies are focusing on their association 
with CRC incidence and prognosis and on the possibility 
of  using circulating miRNAs or fecal miRNA expression 
as noninvasive early detection biomarkers. These data 
suggest that miRNAs may be potential molecular classi-
fiers, early detection biomarkers, and therapeutic targets 
for CRC. Finally, miRNA-based cancer therapy has been 
limited to targeting a single miRNA[130,131]. However, it has 
been recently shown that the small molecule enoxacin, 
a fluoroquinolone used as an antibacterial compound, 
enhances the miRNA-processing machinery by binding 
to TRBP[132]. Thus, if  most cancers are characterized by 
a dysregulation of  global mature miRNA expression, 
restoration of  the global miRNome may be an attractive 
approach in cancer therapy. In conclusion, a better un-
derstanding of  the function of  miRNAs is providing new 
insights into the molecular basis of  human pathologies, 
and new biomarkers for disease diagnosis and therapy. 
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