Skip to main content
. 2013 Mar 27;14:110. doi: 10.1186/1471-2105-14-110

Table 2.

Estimated posterior means and results for empirical simulation

 
Case 1
Case 2
Case 3
N 10 5 3
μ1
-0.170 (0.037)
-0.169 (0.041)
-0.157 (0.041)
σ02

3.653×10-4
3.604×10-4
3.83×10-4
 
(3×10-5)
(4.421×10-5)
(6.090×10-5)
σ12

0.984 (0.104)
0.968 (0.115)
0.955 (0.110)
Π1
0.151 (0.004)
0.153 (0.005)
0.156 (0.006)
cor(χg,χg^)

0.972 (0.006)
0.993 (0.003)
0.953 (0.011)
FDR
0.030 (0.008)
0.046 (0.011)
0.068 (0.013)
FDR^

0.024 (0.004)
0.037 (0.005)
0.049 (0.006)
Sensitivity
0.928 (0.014)
0.866 (0.020)
0.802 (0.025)
Specificity
0.995 (0.001)
0.994 (0.002)
0.991 (0.002)
 
Case 4
Case 5
Case 6
N
10
5
3
μ1
0.007 (0.035)
0.006 (0.038)
-0.002 (0.037)
σ02

3.634×10-4
3.532×10-4
3.450×10-4
 
(2.931×10-5)
(4.155×10-5)
(5.283×10-5)
σ12

1.172 (0.048)
1.151 (0.059)
1.140 (0.050)
Π1
0.179 (0.003)
0.183 (0.004)
0.188 (0.005)
cor(χg,χg^)

0.990 (0.002)
0.979 (0.004)
0.965 (0.007)
FDR
0.030 (0.008)
0.044 (0.009)
0.064 (0.012)
FDR^

0.021 (0.004)
0.031 (0.005)
0.042 (0.006)
Sensitivity
0.953 (0.011)
0.906 (0.015)
0.862 (0.020)
Specificity 0.995 (0.001) 0.992 (0.002) 0.989 (0.002)

Operating characteristics are based on the Bayes rule. cor(χg,χg^) is the correlation coefficient between the true difference and the estimated difference.