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In this paper, the authors review the field of resolution modeling in positron emission tomography
(PET) image reconstruction, also referred to as point-spread-function modeling. The review includes
theoretical analysis of the resolution modeling framework as well as an overview of various ap-
proaches in the literature. It also discusses potential advantages gained via this approach, as discussed
with reference to various metrics and tasks, including lesion detection observer studies. Furthermore,
attention is paid to issues arising from this approach including the pervasive problem of edge arti-
facts, as well as explanation and potential remedies for this phenomenon. Furthermore, the authors
emphasize limitations encountered in the context of quantitative PET imaging, wherein increased in-
tervoxel correlations due to resolution modeling can lead to significant loss of precision (reproducibil-
ity) for small regions of interest, which can be a considerable pitfall depending on the task of interest.
© 2013 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4800806]
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I. INTRODUCTION

Positron emission tomography (PET) is a powerful molecular
imaging modality enabling measurements of radiotracer dis-
tributions in vivo. At the same time, PET imaging continues
to be affected by a number of resolution degrading factors,1

which translate to undesired cross-contamination between ad-
jacent functional regions with distinct activities, referred to as
the partial volume effect (PVE).2

This issue has been tackled via a number of postrecon-
struction partial volume correction (PVC) methods.3 These
methods can be broadly grouped into (i) region-of-interest
(ROI)-based and (ii) voxel-based techniques. The first set
of methods (e.g., Refs. 4–9) produces improved estimates
to mean ROI uptake, utilizing anatomical information as
commonly extracted from segmented MRI images, but they
commonly involve assumptions of PET tracer distribution
homogeneity within the anatomical regions, and impor-
tantly, do not produce images. Voxel-based methods, by
contrast, do produce images. Examples include partition-
based10–13 or multiresolution14–16 methods, though these tech-
niques typically include simplifying assumptions. Iterative
deconvolution17 is another possibility, but can lead to en-
hanced noise levels (though promising enhancements involv-
ing regularization18 or denoising19 have been noted).

An alternative approach to PVC (that also reduces image
noise) has been to incorporate anatomical information within
the PET image reconstruction task20 (from MRI or CT im-
ages, e.g., as are readily available and fairly reliably coaligned
in dual-modality PET/CT imaging21, 22 and increasingly so

with emerging PET/MRI imaging23–25). This anatomy-guided
reconstruction approach is commonly achieved via Bayesian
maximum a posteriori (MAP) reconstruction, incorporating
segmented anatomical images, in which intervoxel intensity
variations are penalized within the regions, while allowing
for large intervoxel variations across the boundaries (e.g.,
Refs. 26 and 27). Such utilization of anatomical knowledge
has been demonstrated by theory and simulations to be supe-
rior to postprocessing techniques.28 In fact, anatomy guided
PET reconstruction allows concurrent improvements in both
the effective spatial resolution and signal-to-noise ratios in
the reconstructed images. Nonetheless, a number of simpli-
fying assumptions are commonly made (e.g., uniformity in
radiopharmaceutical uptake within anatomic labels): to this
end, more sophisticated approaches29–34 have been investi-
gated, though they are often seen to introduce a number of
additional parameters to be further fine-tuned for particular
tasks of interest. This approach thus remains an open area of
interest.

An altogether distinct approach to this problem, referred
to as resolution (or point-spread-function; PSF) modeling,
which this work reviews, aims to model the very phenom-
ena that degrade resolution within the reconstruction algo-
rithm. In particular, following the introduction of statistical
image reconstruction methods in PET,35, 36 and the so-called
system matrix, it has become possible to accurately model
the relationship between the object and projection space.37

The accuracy with which the system matrix is defined has a
critical role in the quality of the reconstructed images, and
as such, it is potentially promising to model and incorporate
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various resolution degrading effects within the PET image re-
construction task. Besides subject motion, a number of phys-
ical processes degrade image resolution in PET: these include
positron range, photon noncollinearity, and detector-related
effects (including crystal widths, intercrystal scattering and
intercrystal penetration). One may then aim to model and in-
corporate these processes within the system matrix of the sta-
tistical image reconstruction algorithm, as is commonly per-
formed for normalization and attenuation correction,38 and
has also been proposed for scatter modeling39, 40 and motion
compensation.41–46

In what follows, we provide some theoretical considera-
tions for the concept of resolution modeling in Sec. II, which
includes consideration of approaches to simplify resolution
modeling (Sec. II.A), as well as comparison of cascaded
vs unified reconstruction (e.g., conventional reconstruction
followed by PVC vs comprehensive resolution modeling)
(Sec. II.B). This will be followed by a discussion of the var-
ious resolution modeling strategies as invoked in the field
(Sec. III), including detector response (Sec. III.A) and
positron range modeling (Sec. III.B). Strengths and limita-
tions of resolution modeling in various imaging contexts and
tasks will be discussed in Sec. IV, including particular atten-
tion to performance evaluations using conventional metrics
(Sec. IV.A) vs observer studies (Sec. IV.B), the issue of edge
artifacts (Sec. IV.C), and considerations and reservations in
quantitative imaging (Sec. IV.D). This will be followed by
concluding remarks in Sec. V.

II. THEORETICAL CONSIDERATIONS

Let us denote the system matrix as P ∈ RJ×I whose el-
ements pij model the probability that an event generated in
voxel j (j = 1. . . J) is detected along a line-of-response (LOR)
i (i = 1. . . I). The system matrix may be factorized into several
components:47, 48

P = Pdet.sensPdet.blurPattnPgeomPpositron (1)

representing the sequential nature of the physical processes,
where the image-space component Ppositron ∈ RJ×J models
blurring effect in the image space, such as positron range,
Pgeom ∈ RI×J models the geometrical mapping from the im-
age space to the sinogram space that is determined by the solid
angle subtended from each voxel to the faces of each detector
pair, Pattn ∈ RI×I is a diagonal matrix containing attenuation
factors, Pdet.blur ∈ RI×I models detector blurring effects in-
cluding crystal penetration, intercrystal scattering, and crystal
misidentification, and Pdet.sens ∈ RI×I is a diagonal detector
normalization matrix. Strictly speaking, Pdet.blurPattnPgeom are
not factorizable because photon attenuation and detector blur-
ring effects depend on the specific path that a photon trav-
els within each LOR. However, especially for modern scan-
ners with small detector elements, the factored model is fairly
accurate. Similarly, photon noncollinearity should be mod-
eled in the geometric component Pgeom of the system ma-
trix; however, as an approximation to simplify the system
matrix computation, one can assume photon noncollinearity

is depth-independent and model it in the detector blurring
matrix Pdet.blur.

Overall, approaches to resolution modeling vary in terms
of how they approximate the above formulation and how
the individual resolution degrading terms are estimated. The
majority of these techniques focus on estimation of Pdet.blur

which we discuss in Sec. III.A, while positron range mod-
eling methods (that can be especially important for iso-
topes producing high energy positrons) are discussed in
Sec. III.B.

II.A. Model simplifications: projection-space
vs. image-space resolution modeling

Ignoring the diagonal matrices for normalization and atten-
uation, the factored system matrix is often further simplified
to a product of two matrices. In one case, the blurring effect
is modeled in the sinogram space with P = BG, while in the
other case, the blurring is modeled in the image space with
P = GR. In both cases, G can be a simple line integral model.
B and R denote the sinogram and image domain blurring ma-
trices, respectively.

Both simplified models have been used in practice, as we
will review in Sec. III. When the positron range effect is neg-
ligible, such as PET imaging with 18F tracers, the sinogram
blurring model (BG) is adequate. In addition, as a conse-
quence of the central slice theorem, space-invariant positron
range blurring (which, in the Fourier domain, is multiplica-
tive) can be modeled in the sinogram space via a radial fil-
ter. Thus, the sinogram blurring model can be used in many
situations without loss of modeling accuracy. One limitation
is that it cannot model a space-variant positron range effect.
By comparison, the image domain PSF model (GR) is ca-
pable of modeling space-variant blurring caused by positron
range. It can also model some detector blurring effects. How-
ever, the accuracy of the model depends on the overlap of the
range spaces (also called column space) of matrices P and
G.49 When the range space of P is inside the range space of
G, an image domain blurring matrix R can be found to model
all detector blurring effects.

Often, matrix R is obtained by reconstructing a set of point
source measurements. When the point source data are of high
counting statistics, the matrix R can then be approximated via
the least squares (LS) solution arriving at R = (GTG)−1GTP.
It then follows, as we show below, that even when the range
condition is not satisfied, the LS reconstruction of any object
x (with projection data y = Px) using the GR model is unbi-
ased, so long as GTP and GTG are both invertible:

x̂ = (RTGTGR)−1RTGTy = R−1(GTG)−1(RT)−1RTGTPx

= R−1(GTG)−1GTPx = R−1Rx = x (2)

However, the noise of the LS reconstruction is

� x̂ = (RTGTGR)−1RTGT� yGR(RTGTGR)−1

= R−1(GTG)−1GT� yG(GTG)−1(RT)−1

= (GTP)−1GT� yG(PTG)−1
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For white noise, i.e., �y = σ 2I, the above equation reduces to

� x̂ = σ 2[PTG(GTG)−1GTP]−1. (3)

Under the same condition, the covariance of the reconstruc-
tion obtained using the true system matrix P is

�0 = σ 2[PTP]−1.

Now let A = G(GTG)−1GT, noting that it is an orthogonal
projection onto the range of G [The term orthogonal projec-
tion here is in the context of linear algebra: a matrix A is an
orthogonal projection if A2 = A and AT = A.]. It is then easy
to see that for any vector t ∈ RJ, we have

〈APt, APt〉 = tTPTAPt = 〈Pt, APt〉 .

Combined with the Cauchy inequality, it then follows
that 〈APt, APt〉 = √〈Pt, Pt〉 〈APt, APt〉 and therefore 〈APt,
APt〉 ≤ 〈Pt, Pt〉; thus tTPTG(GTG)−1GTPt ≤ tTPTPt. As
such, PTP − PTG(GTG)−1GTP is a positive semidefinite ma-
trix. Consequently, [PTG(GTG)−1GTP]−1 − [PTP]−1 is also
positive semidefinite (Corollary 7.7.4 in Ref. 50) and we have

tT[PTG(GTG)−1GTP]−1t ≥ tT[PTP]−1t. (4)

Let t be the indicator function for an ROI. The left-hand and
right-hand sides of Eq. (4) are the variances of the estimated
total ROI activity from the GR model and the true system
model P, respectively. Thus, Eq. (4) shows that for ROI quan-
tification, the variance from the GR model is greater than or
equal to that from the true system model. As a special case,
when the ROI contains a single pixel, Eq. (4) indicates that
the pixel variance of the GR model is greater than or equal to
that of the true system model.

The above analysis shows that the GR model can result
in an unbiased estimate but with higher variance. Therefore,
one cannot evaluate the accuracy of a system model solely
based on noise-free reconstructions (or equivalently, spatial
resolution measurements). Noise property of the reconstruc-
tion should be examined. One example to illustrate this noise
amplification is to consider P as the system matrix for an ideal
fully 3D PET and G as the system matrix for the correspond-
ing 2D PET that consists of the direct planes only. Obviously
the range spaces of P and G do not overlap and the range con-
dition is not satisfied. When the BG model is used, the ma-
trix B can be set to perform inverse Fourier rebinning51 thus
P = BG. When the GR model is used, we have R = I because
the fully 3D PET and 2D PET both contain the same spa-
tial blurring model. However, reconstructions using the GR
model (2D PET) result in much higher noise than when the
BG model (3D PET) is utilized.

II.B. Unified vs cascaded modeling of resolution
degradation

When a factored system matrix is used, the PET sys-
tem can be considered as a cascade of a set of subsystems.
For image reconstruction, one can choose either a sequential
approach by performing normalization correction, attenua-
tion correction, sinogram deblurring, inverse radon trans-
form, and image deconvolution, step-by-step, or a single

inversion of the whole system matrix. When all the matri-
ces in Eq. (1) are invertible, the two approaches are equiv-
alent (the ML solution is the analytic inverse). However, the
invertibility of the geometric projection matrix is rarely true,
because Pgeom is often a tall matrix, especially for fully 3D
PET and TOF scanners. Therefore, when using the sequential
approach, one has to model the noise propagation carefully.
Otherwise, the benefit of noise modeling of an iterative recon-
struction can be lost. This is because while noise in the raw
PET data can be well modeled by independent Poisson distri-
bution, noise properties become complex after preprocessing
steps.52 For this reason, most sinogram restoration methods,
such as those by Huesman et al.52 and Liang,53 are combined
with an analytic image reconstruction method. This approach
may pose computational advantages, but can result in noise
amplification.

When the image domain blurring matrix R is invertible,
one can perform ML image reconstruction with G followed
by image deconvolution using R to obtain the same result
as that obtained by using GR in an iterative image recon-
struction, assuming both algorithms are iterated to conver-
gence. This is because a function of the ML estimate is the
ML estimate of the function,54 and thus, if z is an ML esti-
mate of Rx (i.e., when only modeling G), then R−1z is an
ML estimate of x (i.e., modeling GR). However, intermedi-
ate iterates of the two algorithms can be very different be-
cause they highly depend on the algorithms and the initial
images. In fact, the sequential approach involving EM re-
construction using G followed by image deconvolution us-
ing R, which can be thought of as performing postreconstruc-
tion PVC, was found in a study to result in slightly higher
noise relative to single unified reconstruction.55 The per-
formances became similar after inserting an image smooth-
ing step within the sequential approach in order to reduce
noise.

It is worth noting that though theoretically appealing, in-
clusion of all components in the forward- and backprojection
operations does not necessary result in faster convergence for
image reconstruction. In fact, it has been shown that with
resolution modeling, the initial convergence speed, as mea-
sured by contrast recovery vs iteration, can be slower than that
without a resolution model.56, 57 In particular, when the con-
dition numbers of the matrices on the right hand side of Eq.
(1) are very different, decoupling them may result in faster
convergence.58, 59 One approach to decoupling the matrices
without affecting the image quality is to use the nested EM
algorithm.58 Although the approach was proposed for direct
reconstruction of linear parametric images from dynamic PET
data, the method is applicable to PET image reconstruction
with a factored system matrix. With this method, each image
update using the GR model can be implemented by one it-
eration of EM reconstruction using G followed by multiple
iterations of image deconvolution using R.59 The advantages
of this method would be that it gives the same solution as us-
ing the GR model directly and it does not require the matrices
to be invertible. However, the individual elements of matrices
G and R should be nonnegative for the EM algorithm to be
applicable.
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III. RESOLUTION MODELING STRATEGIES

The majority of resolution modeling approaches focus on
estimation and incorporation of Pdet.blur which we discuss
next (Sec. III.A). Some of these methods also inherently in-
corporate positron range modeling, e.g., when performing
characterization using 18F (e.g., Refs. 60 and 61) or 22Na
(e.g., Refs. 49 and 62) sources (which have very similar
positron range properties to one another63). Nonetheless,
Sec. III.B discussed methods specifically aimed at positron
range modeling, which is of particular interest for imag-
ing tasks involving more energetic positrons, e.g., 82Rb PET,
wherein resulting positron range contributions can compete
significantly64 with other resolution degrading factors.

III.A. Detector response modeling

We first note that 3D PET projection data are described via
four coordinates, an example of which is (r, θ , z, φ) denoting
the radial bin, azimuthal angle, axial bin, and axial angle, re-
spectively, while there are three coordinates, Cartesion (x, y,
z), that define the image space. As such, there has been a pref-
erence to perform resolution modeling in the image space, as
described next.

III.A.1. Image-space modeling

Specifically, Reader et al.65, 66 modeled resolution blurring
entirely with an image-space component Preso ∈ RJ×J of the
system matrix:

P = Pdet.sensPattnPgeomPreso, (5)

where Preso was modeled incorporating Gaussian fits to the
PSF (as obtained from preliminary reconstructions without
resolution modeling). The approach is very straightforward to
implement, does not pose a significant computational burden,
is feasible for list-mode image reconstructions, and produces
images of high quality. Nonetheless, the PSF is in practice not
purely Gaussian. Sureau et al.60 used a similar shift-invariant
approach, though using sum of two Gaussians to better model
the shape of the PSF, followed by assessment of impact
on dynamic PET studies and estimated kinetic parameters.
Antich et al.55 also used a shift-invariant approach in small an-
imal imaging, though utilizing a generalized convolution ker-
nel involving summation of a Gaussian and two non-Gaussian
terms.

The abovementioned overall approach, however, did not
model the presence of varying intercrystal blurring that is
known to lead to the parallax effect, the degradation of res-
olution as one moves away from the center of the field-of-
view (FOV). Further generalizations by (i) Rahmim et al.,67

(ii) Rapisarda et al.,62 (iii) Cloquet et al.,49 and (iv) Kotasidis
et al.61 used space-varying blurring kernels [as estimated from
(i)–(iii) regular line or point sources or (iv) simultaneously
printed68, 69 point sources]. This included additional inclusion
of (i)–(v) anisotropicity, (ii)–(iii) asymmetry, and (iii)–(iv)
non-Gaussianity to better model the PSF. Overall, these more

generalized approaches demonstrated some improvements in
resolution, and in contrast vs noise tradeoff curves.

III.A.2. Projection-space modeling

The abovementioned image-based methods, however, can
only be considered as approximations relative to the appro-
priate projection-space modeling of Pdet.blur (see theoretical
analysis in Sec. II). In its most general form, Pdet.blur, com-
bined with the projection operation Pgeom, equates a seven-
dimensional70 system response function (SRF) S(r, θ , z, φ;
x0, y0, z0), mapping a given voxel (x0, y0, z0) to (r, θ , z, φ).
(Factoring out the projection operation Pgeom, and using an
eight-dimensional SRF S(r, θ , z, φ; r0, θ0, z0, φ0), that maps
given projection coordinates (r0, θ0, z0, φ0) to their blurred
counterparts (r, θ , z, φ), is actually less general: this is be-
cause depth-information (distance of source-voxel to detec-
tor) is lost, which may be important in the presence of axial
mashing (spanning).71, 72) In practice, the use of such func-
tions is not feasible computationally and/or storage-wise, and
as a result, reduced dimensionality has been sought by various
projection-space approaches in the literature: these methods
can be categorized into those based on (a) analytic models,
(b) Monte Carlo (MC) simulations, and (c) measured datasets,
which we elaborate next.

(a) Analytic models: Lecomte et al.73 and a number of
subsequent works,74–78 involving further refinements, appli-
cations, and comparisons used an analytic model of intercrys-
tal penetration determined by the angle of incidence. This was
followed by an analytic model of radial blurring in the coin-
cidence aperture function; i.e., to extend individual detector
blurring to that of radial blurring for detector pairs in coin-
cidence. The SRF as such was effectively reduced to a two-
dimensional S(r; r0), given the 2D PET context in above for-
mulations and the fact that in cylindrical scanners the angle
of incidence is purely determined by the radial bin r0 of the
incident ray. This approach, however, neglected contributions
due to intercrystal scattering, and only incorporated intercrys-
tal penetration.

Rahmim et al.79 extended the approach by convolving the
response by a shift-invariant 2D Gaussian kernel Sscatter(r, z)
of intercrystal scattering, which was assumed to be indepen-
dent of the angle of incidence, unlike the penetration kernel,
and was estimated via measured projection data of a point
source at the center of the FOV. The response was also con-
volved by a 2D Gaussian kernel Snon–colin.(r, z; r0) which mod-
eled photon noncollinearity via a 2D Gaussian with FWHM
= 0.0022 L, which only depended on separation of the de-
tector pairs L, itself also determined by the radial bin r0 for
cylindrical scanners. Above works, however, were primarily
developed in the context of 2D PET acquisition. In the con-
text of 3D PET, Huesman et al.80 developed an analytic for-
mulation for intercrystal penetration using a multiray tracing
method. The same approach was refined by Moehrs et al.81 to
include the intercrystal scattering effect.

(b) MC simulations: Mumcuoglu et al.82 and Qi et al.47, 48

used MC simulations to estimate the SRF, which in-
cluded photon noncollinearity, intercrystal penetration, and
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intercrystal scattering, and applied this technique to different
animal and human-PET scanners. The approach effectively
simplified the SRF to a three-dimensional S(r, θ ; r0) esti-
mating blurring only among the radial and azimuthal compo-
nents within any given direct or oblique 2D sinograms, with
the blurring function purely determined by the incident radial
bin r0, attributed to azimuthal angular symmetry. By contrast,
Alessio et al.70 performed MC simulations to estimate a sim-
plified SRF S(r, z; r0) that performed blurring along the ra-
dial and axial bins. The latter was performed in the context of
Fourier-rebinning83 followed by 2D PET reconstructions.

(c) Measured datasets: To accurately quantify the SRF,
ideal experiments would employ elaborate collimated point
sources. Otherwise, it is not straightforward to distinguish
contributions from the various neighboring coordinates. An
alternative approach is to use statistical methods to sepa-
rate these various contributions when utilizing noncollimated
points sources, as proposed in Ref. 56 in the case of 2D PET to
quantify blurring along both radial and azimuthal directions.
Most approaches, however, as described next, utilize noncol-
limated point and/or line source measurements in conjunction
with more simplified SRF models, dropping characterization
of blurring along the azimuthal angle θ (and the axial angle φ

in 3D PET).
In particular, Panin et al., in the context of 2D PET

(Ref. 71) and 3D PET,72 used a 3D positioning robot to per-
form very elaborate point source measurements, involving
1599 individual positions, for a whole-body PET/CT scan-
ner. The SRF, as modeled along the radial r and axial z
directions, was a function of the radial bin r0, axial bin z0,
and axial angle φ0 of the incident LOR (and additionally the
depth d of the source voxel along the LOR in the case of axial
blurring, due to the complicating presence of axial mashing).
This work was incorporated within the HD-PET release by
Siemens in a number of clinical PET/CT scanners, and sub-
sequently studied in a number of applications, e.g., cardiac
imaging.84, 85

The previously mentioned model S(r, z; r0) by Alessio
et al.70 actually showed minimal improvements relative to
a further simplified model S(r; r0) performing blurring only
along the radial direction, which was subsequently adopted
in a later work:63 the approach involved measurement of
projection-space profiles for point sources scanned at 14 ra-
dial positions across the transaxial FOV: profiles for inter-
mediate radial positions were estimated via linear interpola-
tions of discrete cosine transform (DCT) coefficients from the
measured profiles. The resulting S(r; r0) is depicted in Fig. 1.
This approach, with minor modifications, was adopted by GE
within the released SharpIR algorithm.

A similar model was previously pursued by Frese et al.86

though for an entirely different geometry of two opposing de-
tector banks (with adjustable separation), and quantified using
a line source scanned across the FOV in very small steps of
�r0 = 0.5 mm. Lee et al.87 also used a similar model S(r; r0),
performing line source measurements at 14 radial positions
r0 whose individual profiles were fitted using six-parameter
asymmetrical Gaussian–Lorentzian curves, and individually
interpolated across the spectrum of r0 values.

FIG. 1. Isocontour plot of radial blurring kernels (shown along the x axis)
interpolated for all incident radial bins r0 (y axis). Reprinted with permission
from A. M. Alessio, C. W. Stearns, T. Shan, S. G. Ross, S. Kohlmyer, A.
Ganin, and P. E. Kinahan, IEEE Trans. Med. Imaging 29(3), 938–949 (2010).
Copyright c© 2010 by IEEE.

Recently Zhou and Qi88 used combined image-space and
projection-space modeling to improve the model accuracy.
The blurring matrices were estimated from point source data
using a maximum likelihood approach. The advantage of the
combined approach is that one can use a very simple geomet-
ric projection matrix to reduce reconstruction time without
any noticeable degradation in the image quality.

III.B. Positron range modeling

The abovementioned system matrix formulation (1) al-
lows modeling of the positron range effect within the recon-
struction algorithm. As PET imaging is primarily performed
with 18F or 11C labeled tracers, which depict relatively small
positron ranges compared to other resolution degrading ef-
fects, most abovementioned works either do not model the
positron range, or use 18F or 22Na sources, which depict very
similar positron range properties to one another,63 to inher-
ently incorporate impact of positron range.

Here we discuss methods specifically aimed at positron
range modeling for imaging tasks involving more energetic
positrons, e.g., 82Rb PET, wherein resulting positron range
contributions can compete significantly64 with other resolu-
tion degrading factors.

Ruangma et al.89 performed positron range modeling for
three positron emitting isotopes of Cu, namely, Cu-60, Cu-
61, Cu-64, assuming a uniform medium (e.g., soft tissue or
water). To simulate the propagation of positrons in matter, the
software package EGS4+PRESTA (Electron Gamma Shower
Code Version 4+ Parameter Reduced Electron Step Transport
Algorithm)90 was utilized.
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By contrast, Rahmim et al.79 applied an analytic model
of positron range to 82Rb PET image reconstruction. They
achieved this in reference to the seminal work of Palmer and
Brownell91 wherein an analytic model of positron range was
developed and shown to closely agree with experimental92 as
well as simulated93 results. Specifically, for a given emitted
positron energy E, the annihilation density D(r,E) was mod-
eled as a 3D symmetric Gaussian with its standard deviation
being a function of the density d, effective atomic weight Aeff

and atomic number Zeff of the medium. The overall distribu-
tion was then evaluated as

D̄(r) =
∫

D(r, E)N (E)dE, (6)

where N(E) is the positron emission energy probability
density, and for which an analytic model has also been
implemented.79, 94, 95 The resulting overall distribution was
then fit via a 3D biexponential model, and used within the
EM reconstruction framework.

III.B.1. Space-variant modeling

It is natural to consider the fact that positron range dis-
tributions within media of different properties (density, effec-
tive atomic weight/number) such as lung, soft tissue, and bone
can be very different (heterogeneity), which also can result in
anisotropicity of positron distributions near the boundaries of
different media. It is also imaginable that modeling and in-
corporation of such differences could lead to further improve-
ments in image qualities and imaging tasks.

Bai et al.96 proposed an approach wherein multiple convo-
lutions were performed, initially for a given positron start po-
sition, and subsequently to surviving positrons in their poten-
tially different local medium, attempting to model medium in-
homogeneity as positrons propagate. The authors showed vi-
sual enhancements, for Cu-60 and Cu-64 imaging, compared
to the case of no modeling at all (see discussion later).

In the context of 82Rb modeling, Rahmim et al.97 com-
puted the overall annihilation distribution for a number of ma-
terials in the human body, including interpolations for mate-
rial properties in-between. A nearly exponential function was
then used to fit the annihilation distributions, followed by re-
lating the resulting function parameters to attenuation coeffi-
cients μ (at 511 keV) which can be estimated from accompa-
nying CT scans (as routinely done for attenuation correction).
The authors then used an incremental step update approach to
model anisotropicity of positron distributions near the bound-
aries, followed by incorporation within the system matrix of
the EM algorithm.

Alessio et al.98 proposed an alternative framework, based
on a formula fit to empirical beta decay data by Katz and
Penfold99 to compute 1D positron annihilation distributions
for a range of densities, and the corresponding attenuation
coefficients μ. A biexponential function was fit to the distri-
butions, and its parameters were plotted as a function of μ.
3D annihilation distributions were then generated by normal-
izing the 1D distributions with the surface area of the sphere
at each radius. To adjust for variations across boundaries, the

parameters for the originating voxel and particular voxel of in-
terest were averaged. The authors subsequently incorporated
this model within the forward-projection step of the EM al-
gorithm. It is worth noting that this latter reconstruction ap-
proach, where the forward- and backprojection steps are not
matched, has the potential to exhibit divergent results (e.g.,
see Ref. 44).

In contrast to abovementioned approximating methods,
MC simulation is the ideal technique to estimate positron
propagations for diverse anatomies and radioactive profiles,
and yet iterative (on-the-fly) estimation and incorporation of
such modeling within the reconstruction task is computation-
ally very expensive. Fu and Qi100 proposed a novel approxi-
mate error correction formulation, wherein image reconstruc-
tions were performed using less accurate (yet more feasible)
system matrix modeling, but a data precompensation step in-
volving extensive MC simulations was implemented to cor-
rect for the mismatch between the “true” system matrix vs
the approximate one used. However, the authors showed that
a single data precorrection step was not sufficient, and that
at least every few iterations, a new MC simulation had to be
performed.

Overall, it remains an open question as to how important
it is to perform space-variant modeling of positron range.
All abovementioned works performed comparisons primar-
ily with respect to no resolution modeling. Bai et al. ac-
knowledged in a later publication101 that their approach only
“revealed little improvement over the infinite homogenous
model,” though they found this likely attributed to the lack of
anisotropic propagation modeling within each stage of their
convolutional model. In any case, in the context of 82Rb my-
ocardial perfusion, though myocardium-to-lung contrast vs
noise performance was observed97 to be enhanced with re-
spect to space-invariant modeling, it does not follow that de-
fect detection can be necessarily enhanced, given the fact that
the heart is primarily surrounded, within positron range dis-
tances, by blood and tissue all of which have nearly identical
materials properties. Alternative potential exploration of this
approach within noncardiac 82Rb imaging102 and other imag-
ing applications remains to be thoroughly evaluated.

IV. STRENGTHS AND LIMITATIONS

Resolution modeling commonly leads to visually en-
hanced images, depicting higher contrast for small or nar-
row structures126 (e.g., see Fig. 2). Nonetheless, it is impor-
tant to carefully quantify various quantitative metrics, and to
properly assess potentially improved performance for various
tasks and applications, which we review next.

IV.A. Resolution, contrast, and noise

Resolution modeling methods, as discussed in Sec. III, are
very commonly seen to lead to improved resolution (e.g.,
see Fig. 3), which translates to enhanced contrast recovery
for extended objects. At the same time, it is critical to note
that resolution modeling can significantly modify the noise
structure. (Noise here indicates the statistical uncertainty
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FIG. 2. PET/CT scan in the staging of left breast cancer. Detection per-
formed 1 h after the IV infusion of 185 MBq of 18F-FDG. Iterative recon-
struction (a) without and (b) with resolution modeling (using the commercial
SharpIR software from GE Healthcare, itself closely based on Ref. 63). En-
hanced visualization of the lymph nodes has been achieved. Reprinted with
permission from A. Pecking, D. Bellet, and J. Alberini, Clin. Exp. Metastasis
29, 847–852 (2012). Copyright c© 2012 by Springer Publishing.

arising from the random nature of radioactive emissions,
which could include various associated photon emissions
(e.g., cascade gamma rays), though in practice, resolution
modeling efforts have been primarily limited to “clean”
radionuclides.) In particular, resolution modeling can lead to
(i) diminished voxel variance while (ii) increasing intervoxel
covariance, as demonstrated in Ref. 103 utilizing a noise prop-
agation model104 in iterative reconstruction, or in Ref. 60
using experimental multiple-noise-realization measurements.

FIG. 3. Transverse sections of point source images reconstructed with
FORE+OSEM: (a) without and (b) with resolution modeling. Reprinted with
permission from K. Lee, P. E. Kinahan, J. A. Fessler, R. S. Miyaoka, M.
Janes, and T. K. Lewellen, Phys. Med. Biol. 49(19), 4563–4578 (2004). The
particular resolution modeling approach used in the reference was described
in Sec. III.A under projection-space modeling methods). Copyright c© 2004
by Springer.

The latter is what gives rise to the “lumpiness” of the noise
texture from resolution modeling.

Tong et al.105 provided formulations for how varying vari-
ance and covariance are expected to impact various measures
of noise, as we discuss next. For a uniform region r consisting
of N voxels with voxel variance σ 2

0 for each voxel and inter-
voxel covariance covi, j between any two voxels i and j, let us
consider two different measures of noise: (i) spatial variance,
a measure of image roughness, calculated for a given noise
realization, across voxel values fi within the region-of-interest
(ROI) with mean m:

σ 2
spatial = 1

N − 1

N∑
i=1

(fi − m)2. (7)

(ii) Variance of ROI mean uptake mr, across multiple noise
realizations r = 1. . . R, with mean overall uptake m̄:

σ 2
ensemble = 1

R − 1

R∑
r=1

(mr − m̄)2. (8)

The expectations of these statistics can be shown to be given
by

E
[
σ 2

spatial

]
= σ 2

0 − 1

(N − 1)N

∑
i �=j

covi,j

= σ 2
0 − 2

(N − 1)N

∑
i>j

covi,j (9)

E
[
σ 2

ensemble

] = σ 2
0

N
+ 1

N2

∑
i �=j

covi,j

= σ 2
0

N
+ 2

N2

∑
i>j

covi,j (10)

Two observations can be made: (i) diminished voxel variance
σ 2

0 and increased covariance covi, j translate to a reduced mea-
sures of spatial noise or image roughness,103, 105 while they
work against one another for ensemble variance of mean ROI
values: the latter is because positive covariances contribute
positively to ensemble noise.105 In fact, (ii) covariance con-
tributions are greater in the case of ensemble noise because
the first term includes normalization of σ 2

0 by N, which en-
hances relative contributions of the second term. As such,
noise, when measured spatially, can be significantly reduced
due to resolution modeling, for a given iteration number, con-
trary to the ensemble measure of noise which could actu-
ally not change105 or even increase106 This issue of increased
variability, i.e., degradation of precision in quantitative stud-
ies, is elaborated in Sec. IV.D, including an illustrated ex-
ample. Overall, however, dual-metric contrast (or resolution)
vs noise tradeoff curves (often generated using increasing re-
construction iterations) are commonly reported to depict en-
hanced performance whether noise is defined as σ spatial (e.g.,
Refs. 49, 61, 62, 66, 79, and 84) or σ ensemble (e.g., Refs. 49,
60, 63, and 70), but plots in the latter category tend to de-
pict less significant improvements, consistent with abovemen-
tioned analytic observations. We suggest in Sec. IV.B that a
more thorough analysis of the noise structure, e.g., through
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the noise power spectrum, may be needed to arrive at a more
thorough analysis of the impact of resolution modeling.

IV.B. Observer studies

Dual-metric tradeoff curve analysis can potentially serve
as a good initial step to quantitatively compare different
techniques.107, 108 As such, they can be appropriately used to
narrow down the range of reconstruction parameters to be
subsequently studied in observer studies, which are then used
to confirm or modify the preliminary findings of preferring
one tradeoff curve to another, and to determine the optimal
point (e.g., iteration number) within a specific tradeoff curve.

Furthermore, it is worth noting that the abovementioned
noise metrics may disregard valuable information. To see
this, for simplicity, let us first assume a system with shift-
invariant resolution and stationary noise. Consider the modu-
lation transfer function (MTF) which is the Fourier transform
of the PSF, normalized by the area (volume) A of the PSF
(A should ideally be ∼1 with proper calibration, but may not
be especially in the case of non-linear reconstruction algo-
rithms). We also define the noise power spectrum (NPS) as
the Fourier transform of the noise covariance. For a detection
task involving a difference signal �f(r), such as a lesion to be
detected, the inter-class (lesion absent vs. present) signal-to-
noise (SNR) is given by (e.g. see Ref. 109):

SNR2 = A2
∫

dqk |�F (k)|2 MT F 2(k)

NPS(k)

= A2
∫

dqf |�F (k)|2 NEQ(k) (11)

where q is the dimension of the image and �F(k) is the
Fourier transform of the difference signal. The above ex-
pression can be arrived at assuming an ideal observer with
signal- and background-known-exactly (SKE/BKE) having
(a) Gaussian noise or (b) Poisson noise in the weak-signal
limit, or (c) in the case of the linear Hotelling observer
(Eqs. 13.238, 13.239, 13.256 of Ref. 54, respectively). The
ratio MTF2(k) to NPS(k) referred to as the noise-equivalent
quanta (NEQ) can be thought of as a “window” through which
the observer “sees”, and thus the NEQ quantifies how much of
the frequency content is transmitted through the imaging and
reconstruction. We also note that under assumption of nor-
mality of the observer metric, which is the case for a linear
observer under Gaussian noise, the area-under-curve (AUC)
in ROC analysis is directly related to the SNR according to54

AUC = 1

2
+ 1

2
erf

(
SNR

2

)
, (12)

where erf(z) is the error function defined by erf(z)
= 2√

π

∫ z

0 dy exp[−y2].
One thus notes that a detection task is not fully deter-

mined by simplified noise metrics; rather a more thorough
description of intervoxel correlations, such as the NPS, can
provide a more comprehensive picture. Next, we note that
one can imagine the widened intervoxel covariance struc-
ture due to resolution modeling to lead to narrower NPS;

e.g., by analogy to the Fourier transform of a Gaussian dis-
tribution. As such one could conjecture that the NEQ, al-
ready enhanced by wider MTF due to better recovery of
higher frequencies, will be further boosted, at higher frequen-
cies, due to division by diminished NPS values. This was re-
ported in a dissertation110 in the case of collimator-detector
response function (CDRF) compensation111 in SPECT imag-
ing, and recently127 in the case of resolution modeling in
PET: in fact complex NPS structures were observed, includ-
ing increased mid-frequency components of the NPS and
diminished high-frequency components, relative to no com-
pensation, ultimately demonstrating limited NEQ improve-
ments. Overall, the abovementioned framework, coupled with
the complex nature of the NPS and thus NEQ, may hold a
key to explaining why in the inclusion of resolution model-
ing, observer task performance may result in relatively less
improvements compared to those observed in conventional
resolution/contrast vs noise analysis.

In the context of resolution modeled PET imaging, Kadr-
mas et al.112, 113 performed elaborate tumor detection evalua-
tion studies using a sophisticated whole-body phantom com-
posed of multiple individual phantoms with realistic FDG up-
take levels, and including numerous “shell-less” 68Ge silicone
gel lesions. The studies included application of numeric chan-
nelized nonprewhitened; CNPW (Ref. 114) as well as hu-
man observers. The results, in the context of localization ROC
(LROC) analysis, indicated significant improvement upon in-
clusion of resolution modeling. Figure 4 shows the impact
of resolution modeling in the second study, which revealed
additional significant improvements due to further inclusion
of time-of-flight (TOF) acquisition capability. Similar rela-
tive patterns were observed by Schaefferkoetter et al.115 in
ROC/LROC analysis of numeric (CNPW, and channelized
Hotelling observer; CHO) as well as human observer studies
involving addition of separately scanned small spheres to the
lung or the liver in clinical patient scans. However, when reso-
lution modeling was utilized without the aid of TOF, improve-
ments were limited to lung lesions, and liver lesions exhib-
ited no improvements. Interestingly, retrospective analysis of
clinical FDG PET/CT studies by Akamatsu et al.116 (though
evaluating liver SNRs, not lesion detectability) also revealed
significant improvements when including TOF capability, and
more so when combining TOF and resolution modeling, but
not when resolution modeling only was employed. Finally,
a recent simulation-based numeric (CHO) observer study of
myocardial perfusion (MP) also revealed non-enhanced MP
defect detectability performance upon inclusion of resolution
modeling.127

IV.C. Edge artifacts

Resolution modeling can lead to notable edge artifacts,
reminiscent of the Gibbs ringing overshoot at the edges. (As a
function including a discontinuity (e.g., step function) is rep-
resented using a Fourier series with finite number of terms, an
overshoot is observed at the point of discontinuity. This over-
shoot is also accompanied by ringing. Overall, this effect is
referred to as the Gibbs phenomenon and is related to the sinc
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FIG. 4. Results for (left) model observer study and (right) human observer study, providing comparison and ranking of four reconstruction algorithms, namely,
standard OSEM reconstruction (LOR), coupled with resolution modeling (PSF), with TOF, or with both (PSF+TOF). Model observer results plot area under
LROC curve versus number of iterations. Human observer LROC curves demonstrate distinctions in performance for the four algorithms, and confirm model
observer results. Reprinted with permission from D. J. Kadrmas, M. E. Casey, M. Conti, B. W. Jakoby, C. Lois, and D. W. Townsend, J. Nucl. Med. 50(8),
1315–1323 (2009). Copyright c© 2009 by Society of Nuclear Medicine and Molecular Imaging (SNMMI).

function which is the impulse response of a perfect low-pass
filter.) An example is shown in Fig. 5 involving reconstruc-
tions of a clinical FDG scan. With increasingly small regions,
this effect can manifest itself in the form of a visible dip at the
center (due to enhanced edges), and with sufficiently small
ROIs, where the edge artifacts begin to merge, this can lead
to overshoots;106, 117 both effects are seen in Fig. 6. This issue

FIG. 5. Two transaxial slices from OSEM+3 mm postfilter (top), and
OSEM+PSF modeling (bottom) for a clinical FDG scan. Images have
matched color scales and matched pixel-to-pixel variability in central white
matter. Reprinted with permission from A. M. Alessio, C. W. Stearns, T.
Shan, S. G. Ross, S. Kohlmyer, A. Ganin, and P. E. Kinahan, IEEE Trans.
Med. Imaging 29(3), 938–949 (2010). Copyright c© 2010 by IEEE.

also challenges accuracy in quantifications of small uptake re-
gions, as elaborated in Sec. IV.D.

Edge artifacts were recognized early on (even in recon-
structions without formal resolution modeling): in particular
Synder et al.118 attributed this to two phenomenon: (1) mis-
match between the true projection kernel and the kernel used
in the reconstruction; (2) contamination of the high frequency

FIG. 6. OSEM reconstructed images of a phantom obtained without and
with resolution (PSF) modeling, and profile through the center of 16 and
8 mm cylindrical insets. Inset-to-background concentration ratio was 8:1.
From Bai and Esser, Nuclear Science Symposium Conference Record
(NSS/MIC), pp. 2263–2266, 2010. Copyright c© 2010 by IEEE. Reprinted
by permission of IEEE.
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FIG. 7. Reconstructed images at iteration 500 for three different scenarios.
Top to bottom: no data blurring/no-PSF recon, 14 mm data blurring/no-PSF
recon, 14 mm data blurring/14 mm PSF recon. Left to right: reconstructed
images, and horizontal and vertical profiles through center of the phantom.
Reprinted with permission from S. Tong, A. M. Alessio, K. Thielemans, C.
Stearns, S. Ross, and P. E. Kinahan, IEEE Trans. Nucl. Sci. 58(5), 2264–2275
(2011). Copyright c© 2011 by IEEE.

components of the true kernel (which fall very rapidly towards
zero) due to noise contributions including those from machine
precision: the high frequencies, needed to reconstruct regions
near sharp transition, thus cannot be appropriately recovered
within the deconvolution approach. However, in a very il-
lustrative simulation, Tong et al.119 simplified the imaging
problem to an idealized scenario only involving image-space
blurring (no projections and no noise), and applied the EM
algorithm to recover the original image, demonstrating con-
tinued presence of edge artifacts (Fig. 7). The authors then
attempted to explain the problem from a system theory per-
spective, quantifying the rank and condition number, i.e., the
largest singular value divided by the smallest, of the blur-
ring kernels for different kernel sizes, demonstrating increas-
ing rank deficiency and conditions numbers with increased
blurring.

Proposed solutions to the edge artifact problem include:

(1) An approach is to use a reconstruction filter that un-
derestimates the true PSF. This approach, originally
referred as the resolution kernel method,118, 120 was
framed as a reconstruction algorithm that estimated a

desired blurred version of the object, and not the object
itself, thus utilizing underestimated resolution widths.
The approach is very effective at suppressing edge ar-
tifacts (e.g., see Refs. 106 and 119). (This algorithm
is distinct from the method of sieves also pursued by
Snyder et al.:120, 121 the method of sieves seeks to con-
strain the EM solution to a bandwidth limited subspace
of all possible solutions, and turns out to be equiva-
lent to using the standard EM algorithm with the ad-
ditional usage of an image-space blur component K,
followed by convolution of the final estimated image
with the blurring kernel K. However, this approach can
only reduce noise but not edge artifacts.) Watson122

proposed an explanation for this, and a derivation for
the required amount of underestimation. He suggested
that direct use of measured PSF values within re-
construction actually overestimated the PSF because
reconstructions include additional “numerical” mech-
anisms of point spread, primarily due to image dis-
cretization and the projection operations. Using the
heuristic assumption that modeled PSF widths and nu-
merical PSF widths combined quadratically (Gaussian
convolutions), Watson proposed a first order approx-
imation to estimate the “numerical” blur and subse-
quently the amount by which modeled PSF had to be
underestimated with respect to the measured PSF.
Nonetheless, we note that this cannot entirely explain
the observed edge artifacts, because in a number of
works the “true” PSF actually had the exact same66, 119

structure as the modeled PSF, and thus numerical blur
was applied not at all or equally to both, an exam-
ple of which is shown in Fig. 8: in particular, slight

FIG. 8. Reconstructions (of the true image; shown on the right) for varying
true PSF kernel FWHM (first number in brackets) and for varying system-
model convolution kernel FWHM (second number). The leftmost column
corresponds to reconstructing without system resolution modeling (*, 0), for
different levels of acquisition blurring. If resolution is overmodeled (by us-
ing a convolution kernel too large), artifacts appear. Matching the convolution
kernel size with the resolution of the acquisition process, in which case the
diagonal lines of images from the bottom left corner to the top right corner
are obtained, results in visually improved images; however Gibbs artifacts
can still occur [e.g., (5.5)]. Reprinted with permission from A. J. Reader, P.
J. Julyan, H. Williams, D. L. Hastings, and J. Zweit, IEEE Trans. Nucl. Sci.
50(5), 1392–1397 (2003). Copyright c© 2003 by IEEE.
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edge artifacts are still seen on the top-right image.
These observations can be easily reproduced in sim-
ple EM recovery of blurred images, e.g., as performed
by Tong et al.,119 where edge artifacts are commonly
obtained. This issue needs to be better understood
theoretically. Blurred versions of images with edge
artifacts look very similar to blurred versions of
the true images, and our simulations show that log-
likelihood values are nearly identical. It appears that
the EM algorithm approaches the ML solution by
gradually recovering the high-frequency content be-
cause high-frequency information is attenuated by the
1/ωr response of the backprojection operation in the
update equation. This is actually the underlying mech-
anism whereby the EM reconstruction can be regular-
ized by early stopping of the iterations to avoid high-
frequency noise. However, the lack of high-frequency
content can cause ringing artifacts near sharp bound-
aries, similar to the Gibbs ringing artifacts in trun-
cated Fourier series. Moreover, in some cases, the
convergence of a high-frequency component can be
nonmonotonic and certain high-frequencies can even
be amplified before convergence, which can fur-
ther exaggerate the edge artifacts as shown by Tong
et al.119 Further research could shed light on alterna-
tive formulations that may better recover the high fre-
quency content. In any case, Watson’s approach would

minimize the edge artifacts because it avoids overesti-
mations of the PSF which is known to lead to even
larger artifacts (e.g., middle-right image in Fig. 8).

(2) Performing object-specific modulation transfer analy-
sis, Tong et al.119 demonstrated an amplified frequency
band in the Fourier domain, corresponding to ring-
ing artifacts at the edges, which was shown to be sta-
ble for phantoms of different sizes and contrast levels.
Subsequently, they proposed a band suppression filter,
to mitigate the edge artifacts, demonstrating enhanced
resolution performance relative to a simple low-pass
filter.

IV.D. Quantitative studies

Quantification accuracy includes the effects of variance
as well as bias. Both need to be ideally minimized, but
in practice there is often a tradeoff, and the particular task
determines the importance of each factor. As discussed in
Sec. IV.A, increased intervoxel correlations can result in: (i)
improved contrast recovery due to reduced partial volume ef-
fect, and also (ii) reduced spatial roughness, but unchanged or
even increased variability, thus reduced reproducibility, if the
ROI size is comparable to the correlations lengths (lumpiness
of structure). This effect is of particular relevance in a situa-
tion where the biological outcome of interest is derived from

FIG. 9. Binding potential values in the right (black) and left (white) striatum for each rat and each reconstruction type: F120-filtered backprojection, HRRT-
filtered backprojection, HRRT-OSEM-OP followed by 2 mm smoothing, and HRRT-OSEM-OP with resolution modeling. The 4 bars in each group correspond
to the four BPND (each animal was imaged twice on each scanner) values extracted from each scan of each rat on each camera. Reprinted with permission from
S. A. Blinder, K. Dinelle, and V. Sossi, Med. Phys. 39(8), 5073–5083 (2012). Copyright c© 2012 by American Association of Physicists in Medicine (AAPM).
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a quantitative comparison of radioactivity concentrations be-
tween different regions. This is the case, for example, when
estimating tissue input binding potentials BPND.123

At first glance it might appear tempting to take advan-
tage of the increased effective resolution offered by resolution
modeling algorithms to improve the quantification accuracy
of the radioactivity concentration estimates in smaller struc-
tures and thus BPND. To this extent, Blinder et al.106 com-
pared BPND estimates of a dopaminergic tracer in a group
of healthy rats imaged twice with the dedicated microPET
Siemens Focus 120,124 (considered as reference), with those
obtained in identical scanning conditions on the high resolu-
tion research tomograph (HRRT). Data acquired on the latter
scanner were reconstructed with and without resolution mod-
eling. When resolution modeling is used the HRRT effective
resolution [∼(1.8 mm)3; (2.3)3 mm otherwise] becomes com-
parable to that of the Focus 120 [∼(1.7 mm)3]. The struc-
ture of relevance was the rat striata (∼3.5 mm)3, composed by
symmetrical right and left sides. As depicted in Fig. 9, the re-
construction of the HRRT data performed without resolution
modeling led to a variability of 17%, and ∼25% lower BPND

values compared to those obtained from the Focus 120. By
comparison, the magnitude of the BPND estimates was found
to be better matched with the Focus 120 (but actually on av-
erage 7% higher) when the data were acquired on the HRRT
and reconstructed with resolution modeling. The BPND esti-
mate variability, in this case, was much higher for the HRRT,
26.8% compared to 5.9% obtained with the Focus 120. In-
terestingly, when individual BPND values were plotted (not
shown here) as a function of the number of reconstruction it-
erations, a very different convergence pattern was observed
between two virtually identical structures (left and right stria-
tum) when resolution modeling was included in the recon-
struction, partially explaining the large variability observed in
Fig. 9.

Taken together these data show that while resolution mod-
eling is effective at reducing the larger bias due to the partial
volume effect, it does so at the expense of significantly in-
creased variability and the introduction of a smaller bias due
to edge artifacts. These results thus convey the important mes-
sage that in a situation when the object size is commensurate
with the width of the resolution kernel, resolution modeling
must be used with caution as it can significantly decreases
the reproducibility of the data. Its use may remain beneficial
when partial volume induced bias, rather than noise, is the
dominant problem. An example of this is when the blood in-
put function is estimated from the images wherein resolution
modeling can substantially improve the performance;125 oth-
erwise biased input function estimates can lead to erroneous
results in kinetic parameter estimation, though, again, this will
result in increased variability in the parameter estimates.

V. CONCLUSIONS

This paper presents an extensive review of the status of res-
olution modeling algorithms. Considerable effort has been de-
voted to this topic resulting in the development of a variety of
approaches both for characterization of resolution degrading

effects and for the correction of the resulting blurring during
data reconstruction. Resolution modeling has resulted in sig-
nificant improvements in image resolution and contrast, while
the effect on noise, and the ultimate impact on signal detec-
tion, is less straightforward, which this review have attempted
to shed more light on. It is also very important to notice that
there are unresolved aspects, such as the presence of edge
artifacts, which remain to be fully understood. Furthermore,
while resolution modeling can produce images with reduced
roughness, it can simultaneously lead to increased variability
when quantification in small structures is required, which can
pose a serious burden in quantitative studies. With the present
status of knowledge, it is thus important to carefully assess in
which conditions the use of resolution modeling is beneficial
and warranted.
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