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The influence of the thyroarytenoid (TA) and cricothyroid (CT) muscle activation on vocal fold

stiffness and eigenfrequencies was investigated in a muscularly controlled continuum model of

the vocal folds. Unlike the general understanding that vocal fold fundamental frequency was

determined by vocal fold tension, this study showed that vocal fold eigenfrequencies were primarily

determined by vocal fold stiffness. This study further showed that, with reference to the resting

state of zero strain, vocal fold stiffness in both body and cover layers increased with either vocal

fold elongation or shortening. As a result, whether vocal fold eigenfrequencies increased or

decreased with CT/TA activation depended on how the CT/TA interaction influenced vocal fold

deformation. For conditions of strong CT activation and thus an elongated vocal fold, increasing TA

contraction reduced the degree of vocal fold elongation and thus reduced vocal fold eigenfrequencies.

For conditions of no CT activation and thus a resting or slightly shortened vocal fold, increasing

TA contraction increased the degree of vocal fold shortening and thus increased vocal fold

eigenfrequencies. In the transition region of a slightly elongated vocal fold, increasing TA contraction

first decreased and then increased vocal fold eigenfrequencies.
VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4799809]
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I. INTRODUCTION

Although vocal fold approximation has been generally

considered a necessary condition to initiate phonation, it has

been shown that stiffness conditions in the different layers of

the vocal fold are more important in determining the actual

vibration pattern (van den Berg and Tan, 1959; Hirano,

1974; Titze and Talkin, 1979; Hirano and Kakita, 1985;

Zhang, 2011). This observation was summarized in the

body-cover theory of phonation, which argues that different

combinations of the contraction levels of the cricothyroid

(CT) and thyroarytenoid (TA) muscles can produce different

stress conditions in the vocal folds and different voice types.

Despite this importance of vocal fold stiffness, there has

been no systematic and quantitative investigation of how and

to what extent activation of laryngeal muscles, particularly

the interaction of the CT and TA muscles, affects the

stiffness of the different layers of the vocal folds, and the

resulting vibration, acoustics, and voice quality. Our current

understanding, based on the body-cover theory, remains

largely qualitative. A more quantitative and physically based

description of laryngeal muscle activation that is capable of

predicting simultaneous changes in vocal fold geometry and

stress distribution is necessary to fully understand the role of

individual and coordinated laryngeal muscle activation in

vocal fold posturing and control of phonation.

Such quantitative and physically based understanding of

the muscular regulation of vocal fold geometry and stiffness

is particularly important to understanding the pitch control

mechanisms during phonation. Although it is generally

accepted that activation of the CT muscle increases funda-

mental frequency (F0), the role of the TA muscle in F0 con-

trol still remains controversial. Despite many previous

experimental and theoretical investigations, it still remains

unclear under what conditions F0 will rise, fall, or stay con-

stant with increasing activity of the TA muscle in humans

(Titze et al., 1988). Early models of pitch control are based

on the ideal string model of the vocal fold (Titze, 1994),

which states that the fundamental frequency of vibration

increases with vocal fold tension but decreases with vocal

fold elongation. The string model was later extended to a

beam model taking into consideration of the effects of bend-

ing stiffness (Titze and Hunter, 2004) and hyperelasticity

and viscous effects (Zhang et al., 2006b, 2007b). In order to

relate fundamental frequency to contractions of the CT/TA

muscles, Titze et al. (1988) extended the string model to a

body-cover two-layer vocal fold model. In this modified

model, although the vocal fold was still simplified as a

string, the vocal fold stress now had contributions from both

the body and cover layers. In addition to the passive stress,

the active stress due to TA contraction was multiplied by an

effective vibration depth ratio of the TA muscle and added

to the passive stress. With this modified model, they showed

that increasing TA activities can either increase or decrease

vocal fold eigenfrequencies, depending on the depth of the

body layer involved in vibration. However, the effective

depth of vibration is a dynamic variable and cannot be deter-

mined a priori. It is still unknown how much control humans

have over the effective depth of vibration (Titze et al.,
1988). In another study, Titze and Story (2002) developed

rules that relate muscle activation to the model constants of
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a bar-plate and a three mass model, and used this model to

investigate the influence of CT and TA contraction on

the model eigenmodes. This rule-based model was later

coupled with a one-dimensional flow model to investigate

the influence of CT/TA contraction on vocal fold vibration

and acoustics (Lowell and Story, 2006). However, model

constants of lumped-element models are difficult to relate to

realistic directly measurable variables, and the rules are diffi-

cult to translate to vocal fold models of realistic geometry

and material properties.

Furthermore, these pitch models may have oversimpli-

fied the physics involved in vocal fold vibration. Both the

ideal string model and the beam model consider only the

anterior-posterior (AP) tension and neglect other stress com-

ponents, particularly the stress distribution within the trans-

verse plane (the plane perpendicular to the AP direction).

The vocal fold length is on average only about 2–3 times of

the transverse dimension of the vocal fold so that the dynam-

ics in the transverse plane may not be negligible. Indeed,

vocal fold vibration is known to involve deformation primar-

ily in the transverse plane. On the other hand, the lumped-

element models such as the two-mass model or the bar-plate

model, by design, neglect dynamics along the AP direction.

To properly model the complete physics involved, an

approach based on continuum mechanics is required. Based

on continuum mechanics, three-dimensional continuum

models capture the dynamics of vocal fold vibration without

making oversimplifying assumptions about the stress condi-

tions during vocal fold vibration. Such an approach was used

in previous studies to investigate the in vacuo eigenmodes of

the vocal folds (Titze and Strong, 1975; Berry and Titze,

1996; Cook and Mongeau, 2007; Cook et al., 2008; Xue

et al., 2011; Zhang, 2011; Bhattacharya and Siegmund,

2012). In these studies, the vocal fold was modeled as a lin-

ear elastic material, and the material constants were given as

an input variable and were not related to laryngeal muscle

contraction. Thus, although vocal fold dynamics in all three

dimensions were properly modeled, the influence of laryn-

geal muscle activation on vocal fold eigenfrequencies was

not investigated.

The goal of this study was to develop a continuum

finite-element model of laryngeal muscle activation.

Although finite-element continuum models have been devel-

oped to investigate laryngeal muscle activation (Hunter

et al., 2004; Gommel et al., 2007), these studies focused on

the influence of muscle activation on vocal fold posturing

rather than its influence on vocal fold geometry and stress

distribution within the vocal folds. Such changes in vocal

fold geometry and stress distribution were investigated in

Deguchi et al. (2011), but the effects of CT and TA muscle

contraction were modeled as an imposed strain in the AP

direction and only the passive stress in vocal fold was calcu-

lated. In this study, we focused on the effects of laryngeal

muscle activation on vocal fold geometry, stress distribution,

and stiffness. We particularly focused on the effects of CT

and TA contraction as these two muscles are generally con-

sidered the primary regulators of vocal fold geometry and

stiffness. A constitutive law of the vocal folds that included

both a passive and an active component was developed so

that changes in vocal fold geometry and stress distribution

within the vocal folds due to muscle activation can be

directly calculated. This model was then used to investigate

the influence of CT and TA contraction on the in vacuo
eigenmodes of the vocal fold. Because phonation onset

results from synchronization of the first few eigenmodes

(Zhang et al., 2007a; Zhang, 2010), investigation of how

muscle activation affects the first few eigenfrequencies

would provide insights toward the muscular control mecha-

nisms of phonation frequency.

II. NUMERICAL METHOD

A sketch of the vocal fold model is shown in Fig. 1.

Although the real vocal folds are known to have multiple

layers with complex geometry, there has been little data

available in the literature, particularly regarding the geome-

try and material properties of each layer of the vocal folds.

Therefore, in this study, a body-cover two-layer simplifica-

tion of the vocal fold with uniform cross section along the

AP direction was used. Unlike the traditional body-cover

structure of Hirano (1974), the body layer in this study con-

sisted only of the TA muscle fibers, whereas the cover layer

consisted of all other passive soft tissues. The lateral surface

FIG. 1. (Color online) A sketch of (a) the vocal fold model and (b) its cross

section.
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of the TA muscle is connected to the thyroid cartilage

through a soft tissue layer, accurate modeling of which

would require inclusion of this soft tissue layer in the vocal

fold model. For simplicity, and in order to study elongation

and shortening of the vocal fold, in this study the lateral sur-

face of the vocal fold was constrained in the medial-lateral

and inferior-superior directions but was able to slide in the

AP direction. As this study focused on the effects of CT/TA

contraction, the posterior surface of the vocal fold was fixed,

simulating the condition of strong contraction of the lateral

cricothyroid muscle and the interarytenoid muscle. The

vocal fold was attached anteriorly to a rigid thyroid cartilage

layer which was also under the influence of the CT muscle

on the other end. The side surfaces of the cartilage layer

were constrained in the transverse plane but were allowed to

slide in the AP direction.

A. Constitutive equations of the vocal fold

The stress-strain relation of the vocal folds was defined

using a strain energy function

S ¼ @W

@E
; (1)

where W is the strain energy function, S is the second Piola-

Kirchhoff stress tensor, and E is the Lagrangian strain tensor.

The strain energy function includes both a passive and an

active component

W ¼ Wpassive þWactive: (2)

In this study, the passive stress-strain relation of the vocal

fold was described using a five-parameter Mooney-Rivlin

model

Wpassive ¼ c10ð�I1 � 3Þ þ c01ð�I2 � 3Þ þ c20ð�I1 � 3Þ2

þ c11ð�I1 � 3Þð�I2 � 3Þ þ c02ð�I2 � 3Þ2

þ jðJ � 1Þ2; (3)

where �I i (i¼ 1,2) are the modified principal invariants of the

deformation tensor (Holzapfel et al., 2000), J is the Jacobian

or the volume ratio between the deformed and undeformed

vocal fold, and the coefficients c and j are model constants.

For this study, both the vocal fold cover and body layers

were assumed nearly incompressible, with j¼ 3 MPa. The

model constants in Eq. (3) were estimated by curve fitting

the experimentally measured stress-strain curve as reported

in Zhang et al. (2007a), which was obtained in a tensile test-

ing experiment using an excised human vocal fold cover.

The stress-strain curve from the curve-fitted five-parameter

Mooney-Rivlin model is shown in Fig. 2(a). The estimated

model constants are listed in Table I. Previous studies have

shown that the passive material properties of vocal fold body

and cover are comparable (Alipour-Haghighi and Titze,

1991; Chhetri et al., 2011). In this study, for simplicity, the

same passive stress-strain relation as in Fig. 2(a) was used

for the whole vocal fold volume including both the CT and

TA muscles and the cover layer.

The active component of the strain energy function was

derived by considering a uniaxial motion due to the activa-

tion of an incompressible muscle fiber, in which case the

active stress along the fiber direction is related to the fiber

stretch as

ractive ¼ k
@Wactive

@k
; (4)

where k is the muscle fiber stretch along the fiber direction,

and is related to the Cauchy-Green deformation tensor by

k2 ¼ ~mT
0 � C � ~m0; (5)

FIG. 2. (Color online) (a) The active and passive stress-strain curve of the

vocal fold; (b) the active and passive equivalent tangent Young’s moduli of

the vocal fold as defined in Eq. (15).

TABLE I. Model constants of the constitutive equations [Eqs. (3) and (9)].

Parameter value

c10 104 Pa

c01 �8.5� 103 Pa

c11 �2.5� 104 Pa

c20 1.8� 105 Pa

c02 �7� 104 Pa

rTA
max 1.05� 105 Pa

kofl 1.4
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where ~m0 is the direction of muscle fibers. For muscles ori-

ented along the y-direction [e.g., the TA muscle in Fig. 1(a)],

Eq. (5) becomes

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~mT

0 � C � ~m0

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ 0 1 0 �

C11

C21

C31

C12

C22

C32

C13

C23

C33

2
4

3
5 0

1

0

2
4
3
5

vuuut ¼
ffiffiffiffiffiffiffi
C22

p
: (6)

In general, the active stress depends on both the strain

and strain rate. As this paper focused on the steady-state

vocal fold deformation and stress distribution under a given

CT/TA activation condition and its influence on vocal fold

eigenfrequencies, the active stress was assumed to be inde-

pendent of the strain rate and scale linearly with the activa-

tion level a as

ractive ¼ armaxf active k
kofl

; (7)

where kofl is the optimal stretch of muscle fiber at which

maximum active stress rmax occurs, and f active is the normal-

ized function of muscle active force. In this study, the

normalized function of active force f active as described in

Blemker et al. (2005) was used

f active ¼ 1� 4 1� k
kofl

� �2

; 0:5kofl � k � 1:4kofl

0; 0:5kofl > k; k > 1:4kofl:

8<
:

(8)

In this study, the value of kofl was set to 1.4 as in Blemker

et al. (2005). Thus, for a given activation level, the active

stress first increases with increasing strain, and reaches the

maximum value at the optimal stretch, which occurs at a

strain of 0.4 in this study, and then decreases with further

increase in strain. The value for rTA
max was taken from the

measurement by Alipour-Haghighi et al. (1989) on canine

vocalis muscle. In the simulations of this study, the strain of

the TA muscle was found to be less than 0.4. Thus, for a given

level of TA contraction, the active stress increased with elon-

gation of the TA muscle [Fig. 2(a)], which is similar to that

experimentally observed for vocal folds (Alipour-Haghighi

et al., 1989).

The active component of the strain energy function was

obtained by substituting Eqs. (7) and (8) into Eq. (4), noting

that the active stress is uniaxial along the fiber direction

Wactive ¼
armax

3
4 1� k

kofl

� �2

� 3

" #
1� k

kofl

� �
; 0:5kofl � k � 1:4kofl

0; 0:5kofl > k; k > 1:4kofl:

8><
>: (9)

It should be pointed out that although the passive part is an

isotropic constitutive model, the active part is anisotropic.

Thus the body layer becomes anisotropic with TA activation.

B. CT muscle model

Although the CT muscle is oriented primarily in the ver-

tical direction in humans (note that the combined direction

vectors of the pars recta and pars oblique are not purely ver-

tical but have a horizontal component), contraction of the

CT muscle produces primarily a horizontal force to elongate

the vocal fold (Titze, 1994, p. 13). Thus, for simplicity, the

effect of CT contraction was modeled in this study as an

external distributed force applied horizontally to the anterior

surface of the thyroid cartilage layer. Similarly to the TA

muscle, the external force exerted on the anterior surface

due to CT activation was modeled as

FA ¼ SA � rCT
active ¼ SA � aCTrCT

maxf active kCT

kofl

; (10)

where SA is the cross section area of the CT muscle, aCT is

the CT activation level, and rCT
max is the CT maximum acti-

vation stress. The stretch of the CT muscle kCT was calcu-

lated as

kCT ¼
LCT � vTh

LCT

; (11)

where LCT¼ 15 mm is the original length of the CT muscle,

which was set as the same length as the TA muscle, and vTh

is the average AP displacement of the thyroid cartilage layer.

For simplicity, all other material parameters of the CT mus-

cle, including the muscle activation function f active, were set

the same as the TA muscle, except for the maximum active

stress for which different values were used (see Table II).

C. Pre-stressed eigenvalue analysis

Unlike the eigenvalue analysis of linear materials, for

hyperelastic materials effects of initial stress and strain

TABLE II. CT/TA activation strength ratio and body-cover depths in the

five cases studied.

CT/TA activation strength Depth of body/cover layer (mm)

Case 1 rCT
max:rTA

max¼ 2:1 Db¼ 5, Dc¼ 2.5

Case 2 rCT
max:rTA

max¼ 1:1 Db¼ 5, Dc¼ 2.5

Case 3 rCT
max:rTA

max¼ 0.5:1 Db¼ 5, Dc¼ 2.5

Case 4 rCT
max:rTA

max¼ 2:1 Db¼ 6, Dc¼ 1.5

Case 5 rCT
max:rTA

max¼ 2:1 Db¼ 4, Dc¼ 3.5
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within the vocal folds need to be considered in the eigen-

value analysis, also known as pre-stressed eigenvalue analy-

sis. Thus, in this study, the analysis procedure included two

steps. In the first step a static analysis was performed to cal-

culate the static deformation and stress distribution within

the vocal folds under a given condition of CT/TA activation.

Then, the eigenvalue analysis was performed on the

deformed configuration of the vocal fold taking into consid-

eration of the initial stress and strain as obtained from step I.

The governing equation for the pre-stressed eigenvalue

analysis is

½M�€q þ ½K�q ¼ 0; (12)

where [K] and [M] are the stiffness and mass matrices of the

vocal fold, respectively, and q is the vector of generalized

coordinates. The stiffness matrix can be further divided into

two components (Bonet and Wood, 2008)

½K� ¼ ½Kc� þ ½Ks�; (13)

where [Kc] is the constitutive stiffness matrix, which is deter-

mined by the constitutive model, and [Ks] is the initial stress

matrix associated with the initial stress in the vocal fold due

to static deformation or muscle activation. It should be

pointed out that [Ks] is nonzero only when both the initial

stress induced by muscle activation and the geometrical non-

linearity of strain are taken into account (Bathe, 1995). Thus,

[Ks] disappears when muscles are totally relaxed and the

“pre-stressed eigenvalue analysis” reduces to the general

eigenvalue analysis for [K] ¼ [Kc].

For nonlinear materials such as the hyperelastic material

model used in this study, the [Kc] matrix is a function of

vocal fold strain, and thus has different values at different

conditions of CT/TA activation. This contrasts with linear

materials for which the Young’s modulus remains constant

during deformation. For convenience of discussion, we

defined an equivalent tangent Young’s modulus as

Et ¼ @r
@k
; (14)

which consists of both a passive and an active component

Et
passive ¼

@rpassive

@k
and Et

active ¼
@ractive

@k
: (15)

The dependence of the passive and active tangent Young’s

moduli on corresponding vocal fold strain is shown in

Fig. 2(b). Note that the minimum passive Young’s modulus

occurred at conditions of zero strain and increased with

change in stress in any directions (either tensile or

compressive).

Equation (12) shows that, for a constant mass matrix,

vocal fold eigenfrequencies depend on both vocal fold tangent

stiffness (the [Kc] term) and vocal fold stress (the [Ks] term).

Increasing tangent stiffness increases vocal fold eigenfrequen-

cies. On the other hand, vocal fold tension introduces positive

components to the [Ks] matrix and thus increases vocal fold

eigenfrequencies, whereas compression introduces negative

components and decreases eigenfrequencies. Therefore, the

influence of CT/TA activation on vocal fold eigenfrequencies

can be studied by considering its influence on both the [Kc]

and [Ks] matrices.

D. Simulation conditions

It is expected that the relative strength between the CT

and TA muscles has important effects on the CT/TA interac-

tion and its influence on vocal fold stiffness. Because there has

been little data regarding the CT/TA maximum active stress in

humans, five cases of different CT/TA relative strength ratios

(ratio between the maximum active stress) and body-cover

depth ratios were investigated in this study, as shown in Table

II. Our preliminary simulation results showed that vocal fold

eigenfrequencies in case 1 were primarily regulated by the CT

muscle, which is similar to that in humans. Thus, case 1 was

considered as the baseline condition in this study and the

results presented below are from this case unless otherwise

noted. The effects of CT/TA strength ratio was investigated by

comparing cases 1, 2, and 3, and are discussed in Sec. III E.

The effects of the body-cover depth ratio were investi-

gated in Sec. III F by comparing cases 1, 4, and 5, in which

cases the total depth of the vocal fold (Db þ Dc) was kept

constant at 7.5 mm [Fig. 1(b)], but with varying depth ratio

FIG. 3. (Color online) (a) The active and passive AP stresses, and (b) their

ratio as estimated from the elongation simulations with and without maxi-

mum TA contraction, following a similar procedure of the experiments in

Alipour-Haghighi et al. (1989).
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Dc/Db. The same variation range of the depth ratio was also

used in the previous study by Mendelsohn and Zhang (2011).

E. Model implementation and validation

The finite-element model was developed using the com-

mercial software COMSOL. The constitutive laws were

defined using user-defined hyperelastic strain energy functions

as in Eqs. (3) and (9). Triangular prism elements were used to

mesh the whole model. Mesh convergence was verified by

performing simulations using three different mesh densities,

with total number of elements within the vocal fold of 5472,

13 120, and 39 584, respectively. It was found that, for the

mesh with 13 120 elements produced, the maximum displace-

ments in all three directions were within 1% of the predictions

from the model with the finest mesh. This mesh size of 13 120

elements was thus used for all the results presented in Sec. III.

Direct quantitative validation of the vocal fold model by

comparison to experiments is difficult because it is currently

impossible to measure stress distribution within the vocal folds

and the exact vocal fold geometry of all layers (particularly,

the inner layers) in experiments. Thus, in this study, the vocal

fold model was only validated through qualitative comparison

to previous experimental observations. Specifically, the elon-

gation experiments as reported in Alipour-Haghighi et al.
(1989) were numerically simulated. In that study, the TA mus-

cle was fixed at one end and elongated at the other end along

the muscle fiber direction. For each imposed elongation or

strain of the TA muscle, a passive AP stress was estimated as

the AP stress measured at a condition without TA contraction,

whereas a total stress was estimated as the AP stress measured

when TA muscle was maximally activated. The difference

between these two stress values was used as an estimation of

the active stress due to TA contraction. In this study, simula-

tions were performed with similar conditions, i.e., the vocal

fold was gradually elongated, and the average AP stress at the

posterior surface was calculated with (aTA¼ 1) and without

activation of the TA muscle (aTA¼ 0), from which the active

and passive stresses were estimated in the same way as in

Alipour-Haghighi et al. (1989). The active and passive stresses

thus estimated, and their ratio as a function of the elongation

strain, are shown in Fig. 3. This curve showed a predominant

role of the active stress for small strains and this dominance of

the active stress decreased with increasing vocal fold elonga-

tion. This result was in good agreement with the experimental

observation (Figs. 4 and 5 in Alipour-Haghighi et al., 1989),

suggesting that the constitutive law of this study was at least

adequate for the modeling of laryngeal muscle activation.

III. RESULTS

A. Vocal fold deformation

Figures 4(a) and 4(b) show the contour plots of vocal

fold elongation and maximum medial bulging, respectively,

FIG. 4. (Color online) Contours of (a) vocal fold elongation, (b) maximum medial bulging in the middle cross section, (c) the average AP strain ey in the mid-

dle cross section, and (d) the average transverse strain ex in the middle cross section in case 1.
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as a function of the contraction levels of the CT and TA

muscles for case 1. The maximum medial bulging was calcu-

lated as the maximum medial-lateral displacement along the

medial surface in the middle cross section of the vocal fold.

Figure 4(a) shows that changes in vocal fold length

depended on the relative strength of the CT and TA muscles.

Contraction of the CT muscle elongated the vocal fold,

whereas TA activity shortened the vocal fold. In this case,

the CT muscle had the same cross-sectional geometry as the

TA muscle but was twice as strong in the maximum activa-

tion stress. Therefore, the contour lines for vocal fold elon-

gation were roughly anti-symmetric along the straight line

aTA¼ 2aCT in Fig. 4(a), with maximum elongation occurring

at aCT¼ 1 and aTA¼ 0 and maximum shortening occurring

at aCT¼ 0 and aTA¼ 1. The contours of vocal fold elonga-

tion were similar to those predicted in Titze (1994, Fig. 8.3).

Due to incompressibility, changes in vocal fold length

were accompanied by changes in the transverse cross-

sectional geometry. Specifically, Fig. 4(b) shows that vocal

fold shortening due to strong TA activities caused a maxi-

mum medial bulging of 0.7 mm.

Figures 4(c) and 4(d) show the average vocal fold strain

along the AP direction and within the transverse plane,

respectively. As there was no considerable difference

between the body and cover layers, the vocal fold strain

shown was obtained by averaging over the entire vocal fold

middle cross section. In general, the magnitude of the AP

strain was larger than that of the transverse strain.

B. Vocal fold stress distribution

The contour lines for the AP stress distribution within

the body and cover layers in case 1 are shown in Fig. 5. As

there was only passive stress in the cover layer, the AP stress

in the cover layer was primarily determined by changes in

vocal fold length. Consequently, the contour lines for the AP

stress in the cover [Fig. 5(a)] were similar to those for vocal

fold elongation [Fig. 4(a)]. Contraction of the CT muscle

increased the AP stress in the cover layer, whereas TA con-

traction decreased it. Maximum AP stress occurred when the

vocal fold elongation was maximum at aCT¼ 1 and aTA¼ 0,

whereas minimum (negative) AP stress occurred at maxi-

mum vocal fold shortening at aCT¼ 0 and aTA¼ 1.

For the body layer [Fig. 5(b)], the AP stress had contri-

butions from both the passive stress due to vocal fold elonga-

tion and the active stress from TA contraction. For the strain

range observed in this study (0–0.15), the active stress was

so large [Fig. 2(a)] that the total AP stress in the body layer

was primarily determined by the active stress except for con-

ditions around the upper left corner in Fig. 5(b). Equation (7)

shows that the active stress was determined by the normal-

ized active force function f active, which again depended on

the AP strain, and the activation level of the TA muscle.

Although TA contraction shortened the vocal folds and

reduced the AP strain and the normalized active force func-

tion f active, this decrease was generally small and dominated

by the increase in the activation level, especially under con-

ditions of large positive strain at which the rate of active

stress increase with strain is small. As for the CT muscle, its

contraction elongated the vocal folds and increased the AP

strain and thus the AP stress in the body layer. Therefore,

unlike that for the cover layer, increased activity in the TA

and CT muscles both increased the averaged AP stress in the

body layer [Fig. 5(b)].

Although not shown in this study, the transverse stresses

were at least an order of magnitude smaller than the AP

stress, with a maximum averaged stress of 600 Pa along the

medial-lateral direction and 2500 Pa along the inferior-

superior direction. The shear stress was about 10 Pa in the

cover layer and about 600 Pa in the body layer.

C. Tangent Young’s moduli

Figure 6 shows the contour levels for the tangent

Young’s moduli within the transverse plane and along the

AP direction for both the body and cover layers of case 1, as

calculated according to Eqs. (14) and (15).

As the transverse tangent Young’s moduli in both

layers and the AP tangent Young’s modulus in the cover

layer contained no contributions from TA activation, the

contour plots for these tangent Young’s moduli were simi-

lar to that of vocal fold elongation. However, a distinction

between the Young’s moduli and the vocal fold strain was

that the minimum values of the tangent Young’s moduli

were obtained at conditions of zero strain rather than at the

FIG. 5. (Color online) Contours of the average AP stress ry in the middle

cross section in (a) the cover layer and (b) the body layer in case 1.
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largest negative strain, as discussed above in Fig. 2(b). As

a result, although the tangent Young’s moduli generally

increased with increasing CT activity and decreasing TA

activity, this trend was reversed in the lower right corner of

Fig. 6, or conditions of weak or no CT activation. In this

region, the tangent Young’s moduli increased with increas-

ing TA activity and decreasing CT activity. The contour

plot for the AP tangent Young’s modulus in the body layer

followed a generally similar pattern to other tangent

Young’s moduli, except that the region of transition exhib-

ited a slightly complex pattern, due to extra contributions

from TA activation.

Because there was not much difference in the transverse

strain between the body and cover layers, the transverse tan-

gent Young’s moduli in these two layers were of the same

order of magnitude for all CT/TA conditions. The tangent

Young’s moduli along the AP direction were in general

higher than the transverse Young’s moduli. Figure 6(e)

shows the ratio between the AP and transverse tangent

Young’s moduli in the cover layer. For conditions of vocal

fold shortening [the lower right portion of Fig. 6(c)], the AP

tangent Young’s moduli in the cover layer was comparable

to the transverse Young’s modulus. In contrast, for condi-

tions that led to vocal fold elongation [the upper left portion

of Fig. 6(e)], the AP tangent Young’s modulus in the cover

layer was about 4–10 times higher than the transverse

Young’s modulus. For the body layer, the AP Young modu-

lus was generally of the same magnitude as the AP Young’s

modulus in the cover layer, except for conditions around

regions of zero AP strain, in which the body-cover ratio in

AP Young’s modulus increased from 1 to 18 with increasing

TA activity [Fig. 6(f)].

Thus, increasing vocal fold elongation generally led to

increased difference between the AP and transverse tangent

Young’s moduli but there was not much body-cover stiffness

differential in either the transverse plane or along the AP

direction. In contrast, vocal fold shortening, especially under

strong TA contractions, led to primarily a large body-cover

FIG. 6. (Color online) Contours of

(a) the transverse tangent Young’s

modulus of the cover layer Et
x cover,

(b) the transverse tangent Young’s

modulus of the body layer Et
x body,

(c) the AP tangent Young’s modulus

of the cover layer Et
y cover, (d) the

AP tangent Young’s modulus of

the body layer Et
y body, (e) the ratio

Et
y cover/E

t
x cover, and (f) the ratio

Et
y body/Et

y cover. All data were from

case 1.
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difference in stiffness along the AP direction, but with small

AP-transverse difference in cover layer stiffness.

D. Vocal fold eigenfrequencies

Figure 7 shows the contour plots of the first two eigen-

frequencies in case 1. Higher-order eigenfrequencies had

similar contour lines and are thus not shown here. Both two

eigenfrequencies exhibited similar contour level patterns.

Due to the imposed larger maximum activation stress of the

CT muscle, both the minimum and the maximum values of

the eigenfrequencies were determined by the CT muscle

alone, with the eigenfrequencies increased by almost two

octaves from minimum CT contraction to maximum CT con-

traction. CT contraction was also more effective in regulat-

ing eigenfrequencies than the TA muscle.

In the upper left region of Fig. 7, which corresponds to

conditions of vocal fold elongation, the eigenfrequencies

increased with increasing CT activation and decreasing TA

activation. However, the trend was reversed in the lower

right portion of Fig. 7, which roughly corresponds to condi-

tions of vocal fold shortening. In this region, the eigenfre-

quencies decreased with increasing CT activation and

decreasing TA activation. Nonmonotonic variation patterns

were also observed in the transition region with weak CT

activation, in which the eigenfrequencies initially decreased

with increasing TA (CT) activation level but then increased

with further increase in the TA (CT) activation level.

This variation pattern of the eigenfrequencies with CT/

TA activation levels was similar to that of the tangent

Young’s moduli (Fig. 6). In contrast, although the eigenfre-

quency contour plots were also similar to that of the AP

stress in the cover layer, they were qualitatively different in

the lower right region of the contour plots, in which the

eigenfrequencies exhibited an opposite trend to that of the

AP stress with varying CT/TA activation levels. As dis-

cussed in Sec. II C, in addition to the mass matrix, the eigen-

frequencies are determined by the combined effect of a

constitutive component [Kc], which can be quantified by the

tangent Young’s moduli, and an initial stress component

[Ks] due to initial stress generated by muscle activation

(primarily along the AP direction). Although these two stiff-

ness matrices generally had the same effects on eigenfre-

quencies (increasing stress often led to increased stiffness),

they have opposite effect on eigenfrequencies when the

vocal fold was shortened (with respect to the resting state)

due to stronger TA activation in which case the AP stress

decreased but stiffness increased. The fact that the eigenfre-

quency contours were similar to those of the stiffness rather

than the AP stress indicated that vocal fold stiffness played a

FIG. 7. (Color online) Contours of the (a) first and (b) second eigenfrequencies and the corresponding eigenmode shape in case 1. For eigenmodes with AP in-

phase motion, the modal shape was also shown in the middle cross-section. For eigenmodes with AP out-of-phase motion, the modal shape was shown in the

cross-section at the antinode location along the AP direction.
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more important role than the AP stress in determining vocal

fold eigenfrequencies, at least under conditions that led to

vocal fold shortening. To further illustrate this, Fig. 8 shows

the contour plot of the first eigenfrequency as predicted from

the ideal string model using the averaged AP stress in the

cover layer. The ideal string model predicted a maximum

value of 200 Hz for the first eigenfrequency, which was

much lower than the 281 Hz as predicted from our contin-

uum model. This indicates that the vocal fold stiffness was

equally important as vocal fold tension in determining vocal

fold eigenfrequencies even at conditions of maximum vocal

fold tension. For conditions in the lower right region of

Fig. 8, the AP stress in the cover layer was negative and thus

no prediction was available from the ideal string model,

which contrasted to a nonzero minimum first eigenfrequency

calculated from the continuum model.

Figure 7(a) also showed that the first eigenfrequency in

the lower right region of the figure was comparable to its

maximum value achieved at maximum CT and zero TA con-

traction. Because both the AP stiffness and the AP stress had

much reduced values in the lower right region compared to

that in the upper left region of the contour plot, this sug-

gested that the transverse tangent Young’s moduli played an

important role in affecting eigenfrequencies at conditions in

the lower right corner of the contour plot.

Figure 7 also shows sketches of the first two eigenmo-

des. The modal shape was generally similar to those in previ-

ous studies (Zhang, 2011). It is worth noting that the first

eigenmode exhibited in-phase motion along the AP direction

for all conditions of CT/TA contraction. For the second

eigenmode, it exhibited an in-phase motion along the AP

direction only for conditions in the upper left portion of the

Fig. 7(b), for which there was a large AP-transverse ratio in

vocal fold stiffness. The vibration pattern of the second

eigenmode switched to an out-of-phase motion along the AP

direction for conditions in the lower right corner of Fig. 7(b),

in which the AP tangent Young’s modulus was comparable

to the transverse Young’s modulus but a large body-cover

ratio in AP Young’s modulus existed. This is consistent with

previous study (Zhang, 2011) which showed that the out-of-

phase motion along the AP direction often occurred in

lower-order eigenmodes of isotropic models, but gradually

shifted to high-order modes with increasing AP stiffness or

reduced body-cover AP stiffness ratio.

E. Effects of CT/TA activation strength ratio

Figure 9 shows the contours of the first eigenfrequency

for cases 2 and 3, which had a CT/TA maximum active

stress ratio of 1 and 0.5, respectively. Similar patterns as in

case 1 [Fig. 7(a)] can be observed, except that the contour

pattern was rotated anti-clockwise with decreasing CT/TA

maximum active stress ratio. With increasing dominance of

TA activation, maximum value of the first eigenfrequency

occurred at aTA¼ 1, and aCT¼ 0 in Fig. 9, rather than at

aTA¼ 0, and aCT¼ 1 as in Fig. 7. For case 3, which had the

lowest CT maximum activation stress, changes in the first

eigenfrequency were primarily achieved by TA activation,

instead of CT activation, which is contradictory to empirical

observations in humans that CT is the primary regulator of

phonation frequency. This suggests that the CT muscle is

likely to be stronger than the TA muscle in humans.

F. Effects of body-cover depth ratio
on eigenfrequencies

Figure 10 shows the contour plots of the first eigenfre-

quency for cases 4 and 5, which had a cover layer depth

(along the medial-lateral direction) of 1.5 and 3.5 mm,

respectively. Note that the depths of the body and cover

FIG. 8. (Color online) Contours of the first eigenfrequency as calculated based

on the ideal string model using the averaged AP tension shown in Fig. 5.

FIG. 9. (Color online) Contours of the first eigenfrequency in (a) case 2 and

(b) case 3.
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layers were simultaneously varied so that the total depth

remained constant. Comparison between Figs. 7 and 10

shows that changes in body-cover depth ratio only had minor

effects on the eigenfrequency contour. Increasing cover-

layer depth led to a relative larger region of low values of

eigenfrequencies in the aCT - aTA space.

IV. DISCUSSION AND CONCLUSIONS

Unlike the general understanding based on the ideal

string model that vocal fold eigenfrequencies are determined

by vocal fold tension, this study showed that vocal fold

eigenfrequencies were primarily determined by vocal fold

stiffness, rather than vocal fold stress. Predictions based on

the ideal string model underestimated the maximum first

eigenfrequency by about 80 Hz and predicted a zero eigen-

frequency for vocal folds at the resting state of zero stress.

Although stiffness is closely related to stress for nonlinear

materials such as the vocal folds because an increase in

stress also leads to an increase in stiffness, they have differ-

ent physical meanings: one is a property of the material

itself, whereas the other describes the mechanical state of

the material. Previous experimental studies using vocal fold

models made from linear materials have shown that phona-

tion frequency remained almost constant during elongation

(Shaw et al., 2012) and with increasing subglottal pressure

(Zhang et al., 2006a), confirming the relevance of vocal fold

stiffness rather than stress distribution in the regulation of

eigenfrequencies and phonation frequency.

We further showed that, starting from resting state of

the vocal fold (i.e., zero initial stress), both elongation and

shortening led to increase in vocal fold stiffness in both the

transverse plane and along the AP direction. As a result,

whether the vocal fold eigenfrequencies increased or

decreased with CT/TA activation depended on whether the

CT/TA interaction increased or decreased the degree of

existing vocal fold deformation [Fig. 2(b)]. For conditions of

strong CT activation, and thus an elongated vocal fold,

increasing TA contraction reduced the degree of vocal fold

elongation and thus reduced vocal fold eigenfrequencies. For

conditions of no CT activation and thus a resting or slightly

shortened vocal fold, increasing TA contraction increased

the degree of vocal fold shortening and thus increased vocal

fold eigenfrequencies. In the transition region of a slightly

elongated vocal fold, increasing TA contraction first

decreased and then increased vocal fold eigenfrequencies.

Similar patterns can be also observed on the influence of

CT contraction on vocal fold eigenfrequencies (i.e., how eigen-

frequencies change with increasing CT activity). This may

seem to contradict common experience that the CT muscle

contraction always increases phonation frequency. However, it

is noted that in this study CT contraction lowered vocal fold

eigenfrequencies only at very low levels of CT contraction,

which may not occur in humans wherein the vocal fold is under

certain AP tension even at resting state (Chhetri et al., 2011).

This study also showed that when the vocal fold was elon-

gated, the AP stiffness (maximum around 600 kPa) increased

at a much higher rate than the transverse stiffness (maximum

around 60 kPa), but the body-cover difference in both the AP

and transverse stiffness remained small (ratio < 3). Thus, the

vocal fold at these conditions can be approximated as one

transversely isotropic elastic layer. When the vocal fold was

shortened, the rate of increase in AP stiffness (maximum

around 300 kPa) and the transverse stiffness (maximum around

200 kPa) were comparable, but there was a large body-cover

ratio in the AP stiffness (as large as 18). In this region, the

vocal fold was thus better modeled as a two-layer approxima-

tion with a large body-cover difference in stiffness.

It is noted that the muscular regulation of vocal fold

stiffness critically depends on the nonlinearity of the vocal

fold material properties, particularly the passive component.

Although we expect the qualitative trends of the results of

this study would remain similar if a different passive stress-

strain curve was used, further numerical investigation with

parametric variations of the material properties of the vocal

fold is necessary to provide a clear picture of the influence

of material properties on vocal fold stiffness and eigenfre-

quencies. For example, Titze and Story (2002) showed that

the fundamental frequency increased with increasing activ-

ities in both the CT and TA muscle in the lower left region

of their muscle activation plot. Such trend was also observed

in this study but only for an extremely restricted region close

to the origin in the lower left region of Fig. 7 (aCT < 0.1 and

aTA< 0.1). It is possible that this trend may occur for a

larger range of conditions if different passive material prop-

erties are used. Also, the vocal ligament, which was not

FIG. 10. (Color online) Contours of the first eigenfrequency in (a) case 4

and (b) case 5.
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modeled in this study due to lack of experimental data of its

material properties, has been hypothesized to play an impor-

tant role in vocal fold dynamics, and thus needs to be investi-

gated in future studies.
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