Skip to main content
. 2013 Apr 24;19(6):437–447. doi: 10.1111/cns.12081

Table 1.

Comparison of gamma‐band oscillations (GBO) in patients with schizophrenia, animal models of schizophrenia, and following applications of ketamine to healthy humans, intact animals, and rodent brain slices

Enhanced GBO power Attenuated GBO
Schizophrenia (human) Background, psychosis
Spontaneous 140, 141
Hallucinations 122, 134, 135, 180
Prestimulus baseline 112
Sensory‐evoked Task related
(ASSR, visual stimuli, attention, working memory) 113, 114, 115, 116, 117, 118, 119, 120, 121 (but see 133 for ASSR GBO increase)
Chronic animal models of schizophrenia Background
Prenatal MAM rat 101
Amygdala picrotoxin rat 99
PV‐Cre/NR1 mice 136
Dysbindin‐1 mutant mice 107
Sensory evoked‐Task related
Prenatal MAM rat (reverse learning 89)
Neonatal VH lesion rat (ASSR 105, 106)
PV‐Cre/NR1 mice (opto‐stim 136)
Dysbindin‐1 mutant mice (ERP 107)
Reduced GBO reaction to NMDAR antagonists
Prenatal MAM 101, 104
Neonatal VH lesion rat 208
PV‐Cre/NR1 mice 136
Acute ketamine or other NMDA antagonists—human Auditory ERP 28
ASSR 124
Magnetoencephalography 125
Acute ketamine or other NMDA antagonists –
in vivo rodents
Background
Spontaneous 25, 109, 127, 128, 142 (NR2A 48)
Delayed in REM sleep (NR2B 100)
Prestimulus baseline‐mice 26, 103
Sensory evoked
Auditory ERP‐mice 26, 103
In vitro GBO in neocortex Bath application of ketamine or other NMDAR antagonists 130, 131, 147 (but see 129 for negative finding) Reductions in peak frequency with bath application of ketamine only 130, 131
Reduction in peak frequency ex vivo following 5 daily i.p. injections 209