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Abstract
A challenge in biology is to understand how complex molecular networks in the cell execute
sophisticated regulatory functions. Here we explore the idea that there are common and general
principles that link network structures to biological functions, principles that constrain the design
solutions that evolution can converge upon for accomplishing a given cellular task. We describe
approaches for classifying networks based on abstract architectures and functions, rather than on
the specific molecular components of the networks. For any common regulatory task, can we
define the space of all possible molecular solutions? Such inverse approaches might ultimately
allow the assembly of a design table of core molecular algorithms that could serve as a guide for
building synthetic networks and modulating disease networks.

In the postgenomic era, we are accumulating a vast amount of data describing the array of
molecules in living cells and their web of interactions. Yet even as more and more genomes,
proteomes, and network maps appear, one of the remaining great challenges is to make
sense of all the data to answer the fundamental question of how complex molecular
networks are able to robustly and accurately carry out their physiological functions. Do we
need to take into account all of this information to comprehend the mechanism, or are there
more salient functional features which we can focus on, and, conversely, other details that
we can place less emphasis on? Have such networks evolved as arbitrary and unique
solutions, or is there an underlying logic and pattern to how and why networks have the
structures that they have? These questions of mapping network structure and function are at
the very heart of understanding the mechanistic relationship between genotype and
phenotype at the cellular level.

Do Simplifying Design Principles Underlie Complex Biological Networks?
Here we explore the question of whether there might exist simplifying design principles that
underlie the structure and evolution of complex cellular regulatory networks. The word
design is often considered taboo within the biological community, given its close association
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with the term intelligent design—the notion that living systems were purposefully
constructed by an intelligent force rather than through a random, evolutionary process. We
argue that there is an important scientific role for considering design principles and how
they influence biological systems. After all, biological systems have evolved under selective
pressures to perform certain functions that increase organismal fitness. At the same time,
there are physical constraints that limit the ways in which the tool kit of available
biomolecular components can be used to solve these functional needs (i.e., limits on
diffusion, catalytic or gene expression rates, binding specificity, etc.). Thus it seems critical
to ask, for given functions, are there “better” or more accessible designs for how to harness
molecular components to perform particular regulatory functions? If so, then such “good”
designs would be likely attractors for the search process of evolution—if one could
hypothetically replay evolution over repeatedly, one would observe convergence to these
same archetypal classes, even if the detailed molecular implementations were very different.
Thus when we use the term design principles, we are referring to the underlying landscape
within which evolution can explore, and not to the explicit path or process by which a
particular complex system came about.

Another way to phrase these questions is to ask whether there are meaningful ways to
abstract diverse and complex regulatory networks to understand the common patterns for
how they achieve a particular function. As an analogy, take the example of a chair. We can
find many examples of chairs throughout cultures and history that differ greatly in their
details, but at some abstract level, they all share low-resolution structural commonality that
is dictated by how the laws of physics can be used to solve the functional problem of
supporting a seated human being (Figure 1A). Similarly, at a molecular scale, in machines
such as DNA polymerases, we can recognize common abstract organizational similarities
that persist across different examples, in spite of wide sequence variation. These similarities
are again linked to the physical constraints on how to perform this particular class of
molecular scale mechanical work (Figure 1B). These two analogies are meant to be simply
illustrative, and there are many other examples one could use to illustrate the concept of
common design principles.

Today, much effort is focused on understanding how regulatory networks allow a cell to
process information in complex ways. Thus, a reasonable question is whether we can
recognize analogous core organizational rules in cellular networks that are dictated by
function. In macroscopic information processing systems, such as electronic circuits or
computer programs, there are common architectures and algorithms that are used to solve
common problems (Figure 1C). Might this also be the case for cellular information
processing systems, and if so, how do we go about recognizing them?

An attractive working concept that a number of researchers have converged upon is the idea
of a tool kit of elemental network motifs, each of which can perform common core functions
(Buchler et al., 2003; Alon, 2007; Ma et al., 2009; Sneppen et al., 2010; Tyson and Novák,
2010). These motifs could potentially serve as the core framework or elemental building
blocks to construct complex cellular functions. This universe of core motifs might be
relatively finite, given the physical constraints on the biological molecules used to build
them. Although hypothetical, one can easily imagine how such a set of core functional
modules could be extraordinarily valuable in deconstructing the logic and mechanism
underlying diverse classes of complex biological processes, including cell signaling,
development, and metabolism (Hartwell et al., 1999; Tyson et al., 2001; Milo et al., 2002;
Wagner, 2005; Ma et al., 2006, 2009; Novák and Tyson, 2008; Sneppen et al., 2010; Peter
and Davidson, 2011a; Stephens et al., 2011; Bar-Even et al., 2012; Kholodenko et al., 2012).
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There are several ways to explore the validity of this kind of network organizational
framework (Figure 1D). If the premise is true that there are a finite number of ways to
harness biochemical systems to execute a particular regulatory function, and that these rules
govern network structure and evolution, then there are several predictions. First, we would
expect that even in highly diverse organisms, there would be evolutionary convergence on
particular preferred network motifs that perform common modular functions. Second, we
would expect that, if we used molecularly constrained first principles to theoretically scan
through the space of all possible networks, we should be able to enumerate and define a
finite subset of networks capable of performing certain common, key regulatory functions.
Third, we should be able to use these design principles to guide forward engineering in
biology—the use of synthetic biology to build cells or organisms with new custom, targeted
behaviors—as we would predict that even nonevolved regulatory systems should obey the
same design rules.

Evidence of Common Solutions: Enriched Network Motifs
One way to explore whether nature has preferred network designs is to search for network
motifs that occur at a higher frequency than expected. One of the most accessible types of
networks to examine in this way is transcriptional regulatory networks, which can be
mapped using high-throughput methods like chromatin immunoprecipitation studies, which
reveal links between specific transcription factors and their downstream targets.

Seminal studies by Alon and colleagues revealed that in bacterial transcriptional networks,
there are indeed highly enriched motifs within these transcription factor networks (Shen-Orr
et al., 2002). Some of the simplest and most prevalent motifs are autoregulatory circuits
(Rosenfeld et al., 2002; Isaacs et al., 2003), which can involve direct (e.g., a factor
regulating its own expression) or indirect (with intervening links) feedback, and which can
be positive or negative (Figure 2A). Examination of example motifs of this type have shown
that positive feedback loops are often observed in systems that show switch-like behavior,
memory, or bistability (i.e., toggling between fully ON or OFF states) (Alon, 2007).
Negative feedback loops are functionally associated with systems that show strong noise
resistance to perturbations (Becskei and Serrano, 2000; Alon, 2007; Hsu et al., 2012).
Negative feedback loops are also associated with regulatory circuits that show acceleration
—a more rapid time constant for reaching a new, input-induced steady state (Rosenfeld et
al., 2002). Construction of synthetic positive and negative feedback circuits has validated the
ability of these network architectures to robustly achieve these properties (Becskei and
Serrano, 2000; Gardner et al., 2000). Molecular nodes, be they promoters or signaling
proteins, seem particularly amenable to these kinds of feedback regulation, given the
diversity of allosteric or binding mechanisms by which these nodes can be regulated by
partners that lie downstream in regulatory pathways.

Another, slightly more complex, network architecture that is highly enriched in bacterial
transcriptional circuits is feedforward loops (FFLs), in which a single upstream node fans
out to regulate two distinct downstream pathway branches of different lengths, but then
these branches reconverge on an integrating node further downstream (Alon, 2007) (Figure
2B). Even in the more recently characterized human transcription factor network, there is
strong enrichment for FFL motifs among three node networks (Gerstein et al., 2012; Neph et
al., 2012). There are two major classes of feedforward loop motifs (each with several
subclasses): coherent FFL motifs, in which the long and short branches of the network have
the same net sign of action, and incoherent FFL motifs, in which the two branches have
different overall signs of action (one branch is positive, one branch is negative) (Figure 2B).
These subclasses are associated with distinct functions (Alon, 2007; Goentoro et al., 2009).
Examples have been found of coherent feedforward loops that act as persistence detectors—

Lim et al. Page 3

Mol Cell. Author manuscript; available in PMC 2013 May 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



systems that only switch on when the input persists for a minimum stimulation time (Figure
2C). Such motifs have a terminal integrating node that functions as an AND gate (stimulus
must come from both branches simultaneously to activate this node). Thus the terminal node
will only switch on when the stimulus lasts for as long as the difference in time that it takes
for the signal to be transmitted down the two branches of the network. This kind of
persistence detecting network module is postulated to filter against induction of a response
by spurious, transient stimulation. Other classes of enriched motifs have been well
summarized in a number of excellent reviews, and these motifs and their associated
functional behaviors are summarized in Figure 2D (Alon, 2007; Sneppen et al., 2010; Tyson
and Novák, 2010).

There are several limitations to the approach for searching for enriched motifs. First, in most
cases, except for relatively straightforward transcription factor networks, we have relatively
little data in which to search for enriched motifs—many proteomic data sets lack
information about the directionality or sign of regulatory links. Second, we do not have a
good understanding of the degeneracy of regulatory networks, and therefore we can only
search for the enrichment of relatively rigidly defined network features. We are learning that
in many cases, molecular details of cellular regulatory systems can be remarkably different,
even among networks that perform the same overall function and share, at low resolution,
the same overall regulatory architecture (Marín et al., 2000; Kitagawa and Hieter, 2001;
Dementyeva and Zakian, 2010; Li and Johnson, 2010). Thus our goal of recognizing such
potential enriched motifs is made more challenging by the degeneracy caused by
evolutionary drift or fine-tuning. In seeking such modules, we must be cognizant that in
some cases, similar network designs may be constructed, not only form completely different
types of molecules, but also may have extra or equivalent links inserted or deleted. In
addition, in some cases, a node that is composed of an individual molecule in one network
may correspond to a multimolecular system in a different but functionally similar network.
Thus any one function might be performed by a cluster of network architectures, rather than
a few specific circuits. Identifying these functionally critical structural patterns and
identifying the proper level of granularity with which to view networks will be essential.

Theoretical Exploration of Network Space
The fact that certain simple transcriptional network motifs are observed at higher frequency
is consistent with there being an underlying design logic but does not give a complete
picture. Particular network motifs might be more prevalent because of historical
evolutionary accidents that locked in these types of solutions. A distinct approach for
extracting design principles is to try to use molecular first principles combined with
computational methods to theoretically explore the full space of possible networks. In this
case, one can start, not with a particular network structure, but rather with a target function
of interest, and ask the inverse question: given a particular function X or Y, what is the
space of possible network motif solutions that can solve these problems (Figure 3A)? In this
case, one is not asking what network is observed in any particular organism, but rather, what
is the full space of physically plausible ways to achieve a function, given the first-principles
biochemical constraints. How big is the space of solutions compatible with this function, and
what is the space of networks that are incompatible with function? Is the landscape such that
there are only a few clusters of network solutions, or are many solutions scattered about in
distinct regions of network space (Figure 3B)?

This approach requires a search through the large space of possible networks. In principle,
one could generate all possible molecular networks, and then test them for their ability to
perform the target function. In practice, however, this is not possible, given both the huge
size of possible networks (dependent on the number of nodes, types of nodes, and
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parameters necessary to describe each node) and the computational cost of functionally
evaluating each network. Thus, realistically, such an approach inherently requires some
form of coarse-grained approximation to be computationally feasible. All approaches also
require mathematically defining a relatively simple fitness function that can be used as a
metric for how well a network performs the target function. There are then several distinct
strategies, each with distinct advantages and compromises, that have been used to attack the
challenging problem of searching network space to find the highest-performing functions.

Evolutionary Search Algorithms
One search strategy is based on in silico evolution—a starting set of random networks is
permuted and tracked using genetic algorithms (François and Hakim, 2004; François and
Siggia, 2008, 2010; Warmflash et al., 2012). At each round of evolution, these networks are
tested for the target function, and a fraction of the best-performing networks are selected,
then used as the pool that is subjected to further mutation (addition/deletion of nodes,
addition/deletion of links, change in parameters). After multiple rounds of mutation and
selection (often hundreds of cycles), convergence on particular network structures can often
be observed. This type of simulation can be run many independent times. This strategy,
because it follows individual network evolution trajectories, has the advantage of
highlighting networks that are “evolvable”—ones for which there is a theoretically
assessable path (i.e., a path of monotonically increasing fitness). At the same time, such a
strategy is more likely to get trapped in local fitness maxima than to give a more unbiased
view of the global landscape.

Network Enumeration Approaches
A distinct but complementary search strategy is based on enumerating all possible
architectures within a complete network space and evaluating their ability to perform the
function (without any rounds of simulated evolution) (Schuster et al., 1994; Li et al., 1996;
Wagner, 2005; Ma et al., 2006, 2009; Lau et al., 2007; Hornung and Barkai, 2008). This
strategy should in principle give a more unbiased (path-independent) picture of the network
space, including plausible solutions that might be more difficult to reach through an
evolutionary process. However, in this case, one must compromise by clearly delimiting the
space to be searched by coarse-graining the features of the network. By fixing features such
as the number of nodes and the types of nodes (e.g., enzymatic versus transcriptional), one
can define a finite space of networks that is computationally feasible to analyze. At this
point it is feasible to search a space of around three nodes, which corresponds to 104

possible network architectures. Each of these nodes, however, has multiple parameters
associated with it, and it is impossible to perform a full scan through parameter space for all
networks. Thus a common strategy is to analyze each network architecture with a large
sample of parameters (e.g., 104). Parameters include features such as node concentrations,
kinetic parameters like kcat and KM for enzymes, hill coefficients for ultrasensitive nodes,
and link strengths (how much activity of upstream node alters activity of downstream node).

Although the ability of a network architecture to perform a function (its absolute fitness)
may vary greatly dependent on the exact parameters associated with that network, one can
evaluate each network architecture by its robustness, defined as the fraction of the sampled
parameters for which it can perform the target function above some threshold score. The
advantage of analyzing the network architectures by robustness is that it gives a picture of
the fitness landscape for that architecture—what is the probability that this solution could be
found in an evolutionary search, and what is the probability that the solution would be
evolutionarily stable, i.e., able to perform the function in the face of random evolutionary
drift of parameters?
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Searching for Solutions to Common Functional Problems
These two computational search strategies have been used to explore the solution space for a
number of common biological regulatory problems. These include dynamic behaviors
observed in biological regulation such as the following: bistability, the ability of a system to
switch in an all-or-none fashion between two distinct states, often with memory, as is
observed in cell fate switches (Shah and Sarkar, 2011); adaptation, the ability of a system to
transiently respond after input stimulus, but then to reset itself back to its original steady-
state output level in order to allow for detection of further stimuli, a linear control system
behavior that is observed in many sensory systems or homeostatic systems (François and
Siggia, 2008; Ma et al., 2009); and oscillation, the ability of a system to stably fluctuate
between distinct states, as is the case in the circadian clock or in wave-like signaling systems
(Wagner, 2005; Markevich et al., 2006; Tsai et al., 2008; Muñoz-García and Kholodenko,
2010). These network search approaches have also been used to search for solutions to
spatial regulation problems, such as the following: developmental patterning, networks that
can form polar boundaries (Ma et al., 2006) and networks that can interpret a transient
gradient to give an array of cells that form repeated stripes or a distinct series of segments,
as observed in development (François and Siggia, 2010); and cell polarization, networks that
can drive self-organized symmetry breaking to yield cells with molecularly distinct poles
(Chau et al., 2012).

These types of target problems or behaviors have been chosen because they represent
examples of what we currently consider as primitive regulatory functions that are prevalent
throughout biology. Although simple, we can also see how these core functions could serve
as building blocks to assemble higher-order function. We also know of and understand at
least some natural systems that perform these functions (i.e., we have positive controls).

These computational search strategies have been extremely enlightening. First, they almost
always yield networks that are capable of performing the target function, and identify known
solutions that have been observed in real biology. Second, the fact that in silico evolutionary
searches have been able to find networks that can perform these complex functions is
fundamentally important evidence supporting the plausibility of evolution of complex
behaviors (François and Siggia, 2008). It is remarkable that a random evolutionary search
process, using only a set of simple regulatory modules (like promoter/transcription factors
with varying affinities and hill coefficients) can lead to complex “biological” functions.
Third, in nearly all cases, such searches have found a relatively finite cluster of solutions for
each functional task, indicating that there may be some truth to the notion that there are a
small number of “good” network solutions for a given function.

An example of a specific biological function that has been analyzed by multiple theoretical
approaches is that of adaptation. As described earlier, adaptation is a dynamic behavior
observed in many sensory systems, ranging from vision to bacterial chemotaxis, in which
the system responds transiently to a change in input but then resets itself back to its original
steady state. Notably, both evolutionary algorithms (François and Siggia, 2008) and circuit
enumeration (Ma et al., 2009) approaches show convergence on a very small set of basic
circuit families, including the architecture that has been well characterized for adaptation in
bacterial chemotaxis.

In the enumeration analysis, all possible three-node network architectures (limited to
Michaelis-Menten enzyme nodes that regulate one another) were tested for adaptation
behavior, using 10,000 parameter sets for each (Figure 3C) (Ma et al., 2009). Out of the
16,000 possible networks, ~400 were found to show robust adaptation (i.e., performed
behavior under a reasonable number of parameter sets). Analysis of these networks revealed
that all 400 robust networks mapped to only two fundamental classes of network
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architectures. The first architecture is a negative feedback architecture in which the feedback
node buffers against change in output—analogous to the methylation-based feedback node
observed in bacterial chemotaxis that allows it to achieve adaptation to chemorepellent or
attractant input. The second architecture is an incoherent feedforward architecture in which
the slower feedforward node responds in a proportional way to compensate for input and
resets the output node to the original steady state. It can be analytically shown, in this case,
that these are the only two general solutions to yield a system that will return to the same
output steady-state value in the face of input perturbations.

Importantly, architecture alone is not sufficient to specify this function. First, each solution
class really represents a cluster of network architectures that embody a range of different
precise architectures that mathematically perform the same operation (i.e., negative feedback
loop via node B can involve different linkages A→B–|A, C→B–|A, or C→B–|C). Second,
while most parameters are relatively unconstrained in both of these general solution classes,
each has a handful of absolutely critical parameter values for key nodes. In these cases, the
critical regulatory nodes must have KM values that cause the enzyme to function in either
the linear or the saturated regimes. Thus, in reality, it is perhaps best to consider these two
general network solutions as being a cluster of networks encompassed by a set of
connectivity and parameter constraints.

It is quite remarkable that all of the functional networks for adaptation, as well as other
functional examples, cluster into so few major classes, showing that there are a finite
number of ways to solve this functional problem with basic molecular nodes. Thus, such
studies suggest that it may be possible to determine a set of basic architectures that are
preferred biochemical solutions for particular tasks.

Experimentally Exploring Network Space with Synthetic Biology
A parallel, and empirical, way to explore network space is using the emerging approach of
synthetic biology. Although synthetic biology is often associated primarily with specific
applications, such as the design of novel biomanufacturing pathways, the large-scale
rewiring of biological regulatory networks actually offers a remarkably powerful way to
explore basic science questions about the design logic of regulatory networks (Marshall,
2008; Rafelski and Marshall, 2008; Mukherji and van Oudenaarden, 2009; Weber and
Fussenegger, 2009; Bashor et al., 2010; Elowitz and Lim, 2010; Liu et al., 2011;
Nandagopal and Elowitz, 2011; Randall et al., 2011; Miller et al., 2012; Slusarczyk and
Weiss, 2012; Slusarczyk et al., 2012). An exciting approach is to empirically explore
network space by building new or altered synthetic circuits. If there are indeed a finite
number of possible core networks that can perform a key function, then the same design
rules should govern the construction of networks composed of nonnative components and
generated through a nonevolutionary process. In fact, rebuilding a minimal network that can
perform a function of interest using completely nonnative components can be viewed as one
of the strongest proofs of particular design rules (much like how the synthesis of organic
molecules was viewed as the ultimate proof of their molecular structure). Moreover,
synthetic networks, because of their minimal and streamlined designs, are often
experimentally easier to tune and scan parameter space for. Thus they may allow more
systematic probing of the boundaries of parameter space that are required for performing the
target function. In this sense, a synthetic biology approach is in many ways a philosophical
extension of the much older biochemical reconstitution approach—the goal is to minimize
and simplify the system to systematically explore the key requirements for function.

There are several distinct approaches to using synthetic biology to explore design principles.
Some researchers have used completely nonnative molecular platforms to build networks
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from scratch. One powerful system of this type is networks of specially designed interacting
nucleic acid molecules, whereby the presence of a single-strand molecule input can catalyze
stand displacement reactions that can, if properly designed, propagate as a cascade through
an in vitro molecular network. The cascades in these strand displacement systems are
catalytically controlled (i.e., activated strands act as enzymes) but are energetically powered
by the presence of “fuel” molecules that base pair with leftover strands, acting as a
LeChatlier’s sink to push the reactions forward (Seelig et al., 2006). As far as we know,
these types of reactions are not used in evolved living systems, but they represent an
orthogonal molecular communication system that is analogous to the distributed molecular
communication systems of cells. Such nucleic acid strand displacement reactions have been
used to construct systems that show network behaviors, including logic operations, cascades,
amplification, and feedback (Kim et al., 2006; Zhang et al., 2007; Qian and Winfree, 2011;
Qian et al., 2011). Theoretical analysis indicates that arbitrary chemical reaction networks
can be encoded using this type of nucleic acid component framework (Soloveichik et al.,
2010). Thus a goal in this field is to ask whether such nucleic acid strand displacement
circuits can be used as a platform to explore fundamental molecular rules about what
distributed molecular systems can or cannot compute.

Other synthetic biology approaches aim to use natural biomolecular components, but in
novel arrangements to construct circuits capable of target functions. One of the classic
examples of a synthetic network is the synthetic oscillator (Elowitz and Leibler, 2000), built
from a simple ring of three interlinked transcriptional repressors (Figure 4A). This original
synthetic repressor, though functional, showed relatively poor performance, displaying
inconsistent amplitudes and periods. Since then, many researchers have used synthetic
oscillator as a model for iterative network improvement (Figure 4B). These synthetic
biology efforts, combined with complementary computational analysis, have resulted in
dramatic improvements in performance by incorporating additional network elements such
as strong positive feedback on key nodes. Minimal designs have been identified that yield
robust oscillations with either tunable amplitude or frequency, and these match architectures
observed in natural oscillator systems. Thus iterative synthetic cycles have been useful in
defining the space of oscillatory networks, and in distinguishing bare bones oscillator
designs from slightly more complex designs that show far more robust behaviors or more
specialized classes of behaviors (Atkinson et al., 2003; Fung et al., 2005; Stricker et al.,
2008; Tsai et al., 2008; Tigges et al., 2009, 2010; Aubel and Fussenegger, 2010).

In addition to oscillators, synthetic biology approaches have been used to explore the
construction of systems performing a range of other functional behaviors, including bistable
memory switches, logic gate operations, population control, multicellular patterning,
multicellular boundary formation, and cell polarization (Figures 4D and 4E). This
impressive array of efforts has shown that it is possible to build minimal systems that
recapitulate complex dynamic and spatial biological behaviors. One of the clearest and most
important points to emerge is that it is often possible to use very different types of
components—be they transcriptional, signaling, metabolic, or RNAi—to achieve the same
class of behavior. In addition, these synthetic circuits have usually been constructed in a
manner that allows some aspect of combinatorial parameter tuning, and thus have provided a
way to empirically explore parameter space to define the boundaries that constrain function,
as well as bifurcations (boundaries in parameter space in which function qualitatively
changes). In the future, synthetic network combinatorial libraries combined with
sophisticated functional screens are likely to provide a powerful empirical way not just to
create a network with a particular target function, but to more fully define the architectural
and parameter constraints for that function.

Lim et al. Page 8

Mol Cell. Author manuscript; available in PMC 2013 May 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Looking Forward
We have explored the concept that complex molecular networks can be deconstructed into
simpler network motifs that underlie function. Several lines of evidence support this
conceptual simplification of biological regulatory networks. First, within transcriptional
networks that have been explored in a high-throughput manner, there are clearly certain
network motifs that are enriched, consistent with convergent evolution. These motifs are
also associated with classes of regulatory functions. Second, a number of theoretical
searches of network space suggest that for given regulatory functions such as adaptation or
oscillation there are a finite number of core network solutions. Such studies are supported by
synthetic biology reconstruction experiments in which different solutions are built and the
key parameters and links tested. These studies suggest that there may be utility in trying to
catalog the key subroutines that are necessary for life.

A Design Table of Modular Network Functions
These findings support the intriguing notion of organizing all plausible network
architectures into a “biological design table.” One way to view this framework is through an
imperfect but instructive analogy to the periodic table of elements (Figure 5). Prior to the
periodic table, many analytical measurements of elements had been collected, but there was
no sensible way to understand the properties and reactivity of each element. The era of
Mendeleev was one in which researchers took this large amount of confusing data and tried
to organize it in different ways in attempts to recognize meaningful patterns. This is similar
to the stage that we are at in understanding the mechanisms of biological regulatory
networks (Figure 5). One of the great insights provided by the periodic table was to classify
the physical properties of elements in a way that accurately predicted their chemical
reactivity and behavior. Instead of focusing on all properties describing each element, the
periodic table, in the end, sorted them based on atomic number and valence—the key
abstract properties that determined their ability to bond with other atoms. The organization
of the periodic table is really a reflection of the physics of electron orbitals (how they are
filled and how they determine bonding), but the abstract classification of atoms as simple
models with constrained valency and bonding properties essentially allows one to skip over
the detailed physics to understand, at a very practical level, the universe of possible higher-
order chemical structures that this atom can participate in.

In an analogous way, there may be ways to abstract and classify particular cellular network
architectures that focus on the properties that are most salient for their function, and the way
in which they might be used as modules in evolution to build higher-order networks. If we
did have such a design table for biological regulatory networks, it would be a powerful way
to deconstruct complex biological or disease networks and to understand how they function.
Might the observation of particular patterns of network architectures and parameters suggest
functional hypotheses, much the way that observation of sequence homology does today?
Such a design table would also be extremely useful to guide the design of novel synthetic
circuits for many applications.

But, even if we assume that this model of classifying network motifs is correct, there remain
many more questions than answers. Many of the most important and broad sets of questions
concern how to search for and map core network modules for this hypothetical design table,
discussed below.
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Classification: What Is the Set of Primitive Molecular Subroutines that Are Most Critical for
Cellular Systems?

Most theoretical studies searching for network space have been limited to a relatively small
set of behaviors (bistability, oscillation, adaptation, etc.), and it is both challenging and
fascinating to think more fundamentally about what are the core set of subroutines that are
necessary to build and keep an organism alive. Most work has focused on simple
information-processing functions, but such approaches could clearly be important in
understanding more complex spatial organization, such as development (Davies, 2008; Peter
and Davidson, 2011b, 2011a; Peter et al., 2012). Similar concepts may also operate in the
design and evolution of complex metabolic pathways, as there may be analogous rules
governing which chemicals are chosen as precursors, how they are linked by chemical paths
and branchpoints, and how the enzymes are regulated as a network (Bar-Even et al., 2012).

Metrics: What Are the Best Ways to Search for and Evaluate Networks?
There remain different strategies for searching network space—which makes the most sense
within the context of biology—searching through an evolutionary process (genetic
algorithms) or through full enumeration of a coarse-grained space? Moreover, what is the
best way to constrain and coarse-grain network space in such studies? How many nodes
should be allowed, and what node types should be used, given the many different possible
forms of regulatory molecules (e.g., enzymatic nodes, transcriptional nodes, miRNA nodes,
etc.). Are these mechanistic differences (which require different mathematical models for
node behavior) fine details, or do they significantly constrain solution space in different
ways? Finally, in evaluating the function of networks in these search problems, most
researchers have focused primarily on identifying robust networks (solutions that work in a
larger range of parameter space), as opposed to the ones with the highest performance. This
strategy is focused more on what is an evolutionary plausible solution—what is a solution
that could potentially be found through an evolutionary process, and one that would be
stable to drift in exact parameters. But is this assumption correct, or is it possible that nature
may have found higher-performance solutions that are distinct from the robust solutions?

From Abstract to Concrete: How Do We Identify Functional Networks from Experimental
Proteomic Data?

Beyond simple transcriptional networks, there are very few ways to take current proteomic
data and translate it into a functional and directional network map. Thus we lack sufficient
tractable experimental data. How can we address this gap and build a bridge that can link
theoretical network analysis to experimental high-throughput systems biology data? There is
currently a flood of functional genomic data that can identify sets of genes that are
functionally linked, and yield some information about whether they are linked in series or in
parallel processes via differential epistatic relationships (Ryan et al., 2012) (also see review
by Fraser et al., 2013, in this issue of Molecular Cell). How do we take these functional
genomic maps, as well as protein-protein interaction maps, and turn them into functional
network maps, given the ambiguity of linkage, directionality, and sign of regulation between
nodes?

Can Biological Regulation Be Accurately Represented by Simpler Networks?
Perhaps the most fundamental question concerning the logic of biological networks is
whether this type of abstract and hierarchical model of complex cellular networks is an
accurate approximation. Can we actually divide circuits into clearly distinct functional
classes? To some degree, we already know that the assumption that network architecture
alone is sufficient to determine function is wrong—the same network topology can
qualitatively change function in different regions of parameter space. But are these
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parameter “phase diagrams” for a particular network architecture relatively simple so that
we can define clear network/parameter regions that correspond to distinct functions? Or
alternatively, are the functional classes of networks so degenerate and overlapping such that
there are not distinct definable boundaries between circuits of different functional classes? It
is possible that there is a class of networks architectures that are monofunctional (locked
into one particular type of function, despite parameter variation), whereas other classes are
polyfunctional and can move from one functional regime to another based on subtle
parameter changes or changes of a few links.

Another fundamental question is whether network motifs really can be thought of as
modules that can be used to build more complex function (Hartwell et al., 1999). Even if an
isolated network can perform a function, does it still behave the same when it is linked to
other upstream and downstream modules? Or does the network behavior change when you
place this kind of functional load on it (i.e., can downstream effectors compete with
feedback or feedforward interactions with an output node?) (Jiang et al., 2011)?

A Question of Utility
Ultimately, like other abstract theoretical constructs such as the periodic table and valency in
chemistry, the bottom-line question concerns the utility of this framework. As the statistician
George Box wrote, “All models are wrong, but some are useful” (Box, 1976). At some
resolution, the abstract classification of networks is incorrect—each regulatory system will
have somewhat different links, composition, and parameters, and these will alter function of
the system in some way. But how good an approximation is this?

As discussed earlier, we believe that this conceptual framework of a design table of network
motifs will be useful for forward engineering. Some molecular networks will be easier to
recognize, build, and work with in a reliable and predictable way, and thus will have
immediate and exciting utility in the construction and engineering of biological systems. We
may be able to design optimized modules that can repeatedly and reliably execute desired
subfunctions, and include features like tunability and insulation. Thus this design framework
is likely to be of use in synthetic biology, whether it be in the design of organisms,
optimized production of fuels, nutrients, or chemicals, or in the design of smart cell-based
therapies that use designed signaling networks to make complex therapeutic decisions. One
of the more interesting questions will be whether the synthetic solutions we converge on for
particular functions are the same as those that evolution has settled on. It is possible that
evolutionary solutions may be more limited because of stochastic constraints on exploring
the solution space that are not limiting for first principles-based design.

Another emerging area in which a systematic understanding of network design principles
may be of great utility is systems pharmacology. Systems pharmacology can be thought of
as an example of network engineering in that one wants to take a disease network and
strategically figure out how to tune or modulate the network so that it restores function or
stability. One of the intriguing possibilities of network-based medicine is the idea that some
strategies might not focus on simply blocking one malfunctioning protein with a drug, but
that instead one might modulate different nodes in a network to redirect the network toward
a robust and stable region of function space (Yang et al., 2008). Importantly, it is possible
that such stable regions of function space that we want to drive disease networks toward
may be “synthetic” in the sense that they are different from the wild-type (nondisease)
network structure.

As we move forward with the maturation of systems and synthetic biology, we shall see if
this kind of conceptual framework of idealized network motifs is useful in mechanistically
deconstructing what are, for now, often impenetrably complex molecular networks. The

Lim et al. Page 11

Mol Cell. Author manuscript; available in PMC 2013 May 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



biggest payoff would indeed be achieving a more intimate and fundamental understanding
of the mysteries of how living systems harness ensembles of genetically encoded molecules
to execute complex phenotypic functions, and the landscape of physically plausible network
structure/function relationships that evolution operates within. Then we could look forward
to a day when we do not view the complexity of biological networks as a source of
confusion and mystery, but instead as a system that we have logical command of, and which
we can tune and harness in treating disease and solving other biotechnological challenges.
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Figure 1. Underlying Design Principles
(A) Mechanical devices often show core design principles intimately linked to their
function. For example, chairs, despite many differences in detail and in origin, usually share
common features that are linked to the physical requirements of supporting a seated human
being.
(B) Molecular machines also often shown common features, as illustrated by the common
organization of diverse DNA polymerases. (Panel is adapted from Steitz, 1999.)
(C) Ways in which complex cellular circuits might be abstracted into simpler core networks.
A complex network could potentially be composed of several subnetwork modules, each
with a simpler core function.
(D) Three interlinked ways to explore the existence of design rules and constraints: physical/
biochemical constraints should prescribe the range of possible network solutions to a
functional problem; common functional network solutions are expected to be enriched in
natural evolutionary examples; synthetic molecular networks should also obey design rules.
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Figure 2. Enriched Network Motifs
(A) The most common motifs in the bacterial transcription factor network are positive and
negative feedback loops.
(B) Feedforward loops (FFL) are a common three-node motif. The top and bottom nodes (X
and Z) are linked by both a direct regulatory path and an indirect one (via node Y). There are
eight major subclasses of FFLs, characterized by the signs of their regulatory links. Coherent
FFLs have indirect and direct links with the same overall sign. Incoherent FFLs have
indirect and direct links with the opposite overall signs.
(C) A type I coherent feedforward loop with an AND gate terminal node can show the
behavior of a persistence detector—it will only respond to a longer pulse of input.
(D) Table showing examples of simple functional behaviors and network architectures that
are often associated with them (reviewed in Alon, 2007; Sneppen et al., 2010; Tyson and
Novák, 2010).
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Figure 3. Theoretically Mapping Network Structure Function
(A) Ideal goal of exploring how distinct functions (X and Y) map to regions of possible
network space. Two functions might correspond to completely distinct or partially
overlapping classes of network architectures.
(B) Mapping the complexity of network space for one function. In this case there are two
major regions of network space that can show robust performance (fitness) of function X.
(C) Adaptation maps to two general network solutions. Adaptation is observed in many
sensory systems, and is defined as when the system output responds transiently to a change
in input, but then restores itself at the original steady-state output level in order to allow for
response to further changes in input. Searching the space of all three-node enzymatic
networks (16,000 possible architectures) for robust solutions for adaptation revealed only
two major solution classes: negative feedback loop with buffering node (NFBLB) and
incoherent feedforward loop with proportioner node (IFFLP). The architectures require
specific parameter ranges for links that control the key regulatory node B (Ma et al., 2009).
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Figure 4. Using Synthetic Biology to Empirically Map Network Space
(A) Improvements in transcriptional oscillator design. The original repressilator design, a
minimal three-ring negative feedback loop made of three repressors, functioned but did not
show consistent periods or amplitudes (Elowitz and Leibler, 2000).
(B) Many iterative improvements have been made in oscillator design, as exemplified by a
two-repressor negative feedback loop coupled with positive and negative self-feedback
loops, which yields a robust, tunable oscillator (Stricker et al., 2008).
(C and D) Exploration of multicellular patterning using synthetic circuits. Cell-cell
communication circuits in bacteria have been used to generate fields of many cells that show
developmental-like, static as well as expanding patterns such as ring/stripe formation (Basu
et al., 2005; Liu et al., 2011).
(E) Probing circuits that can yield intracellular spatial self-organization. Parallel
computational and synthetic studies were performed to construct circuits that can robustly
generate self-organized cell polarization. The most robust network involves a combination
of less functional minimal motifs, and was used to build a circuit that generated artificial
phosphoinositide (3,4,5) tris-phosphate (PIP3) poles in yeast (Chau et al., 2012).
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Figure 5. Concept of a Design Table for Biological Regulatory Networks
The periodic table abstracts the complex electronic structure of a particular atom and
organizes it according to atomic number and valence. These features are in turn the
functionally most important features relevant to understanding how the atom forms bonds to
generate higher-order chemical structures. Analogously, a hypothetical design table of core
regulatory network motifs might encompass and abstract the general/common solutions to
core biological functions (which result from the constraints on molecular systems). This
organization and classification might prove useful in understanding how evolution or
engineering can build higher-order networks that show particular complex behaviors.
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