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Abstract
Brain signals can provide the basis for a non-muscular communication and control system, a
brain-computer interface (BCI), for people with motor disabilities. A common approach to
creating BCI devices is to decode kinematic parameters of movements using signals recorded by
intracortical microelectrodes. Recent studies have shown that kinematic parameters of hand
movements can also be accurately decoded from signals recorded by electrodes placed on the
surface of the brain (electrocorticography (ECoG)). In the present study, we extend these results
by demonstrating that it is also possible to decode the time course of the flexion of individual
fingers using ECoG signals in humans, and by showing that these flexion time courses are highly
specific to the moving finger. These results provide additional support for the hypothesis that
ECoG could be the basis for powerful clinically practical BCI systems, and also indicate that
ECoG is useful for studying cortical dynamics related to motor function.

1. Introduction
Brain-computer interfaces (BCIs) use brain signals to communicate a user’s intent [1].
Because these systems directly translate brain activity into action, without depending on
peripheral nerves and muscles, they can be used by people with severe motor disabilities.
Successful translation of BCI technology from the many recent laboratory demonstrations
into widespread and valuable clinical applications is currently substantially impeded by the
problems of traditional non-invasive or intracortical signal acquisition technologies.

Non-invasive BCIs use electroencephalographic activity (EEG) recorded from the scalp [2,
3, 1, 4, 5, 6, 7, 8]. While non-invasive BCIs can support much higher performance than
previously assumed, including two- and three-dimensional cursor movement [5, 9, 8, 10],
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their use typically requires extensive user training, and their performance is often not robust.
Intracortical BCIs use action potential firing rates or local field potential activity recorded
from individual or small populations of neurons within the brain [11, 12, 13, 14, 15, 16, 17,
18, 19]. Signals recorded within cortex may encode more information and might support
BCI systems that require less training than EEG-based systems. However, clinical
implementations are impeded mainly by the problems in achieving and maintaining stable
long-term recordings from individual neurons and by the high variability in neuronal
behavior [20, 21, 22]. Despite encouraging evidence that BCI technologies can actually be
useful for severely disabled individuals [6, 23], these issues of non-invasive and action
potential-based techniques in acquiring and maintaining robust recordings and BCI control
remain crucial obstacles that currently impede widespread clinical use in humans.

The capacities and limitations of different brain signals for BCI applications are still unclear,
in particular in light of the technical and practical constraints imposed by the long-term
clinical applications in humans that are the immediate goal of BCI research. The further
development of most BCIs based on intracortical recordings is driven by the prevalent
conviction [24, 25, 26, 27] that only action potentials provide detailed information about
specific (e.g., kinematic) parameters of actual or imagined limb movements. It is argued that
the use of such specific movement-related parameters can support BCI control that is more
accurate or intuitive than that supported by BCIs that do not use detailed movement
parameters. This prevalent conviction has recently been challenged in two ways. First, it is
becoming increasingly evident that brain signal features other than action potential firing
rates also contain detailed information about the plans for and the execution of movements.
This possibility was first proposed for subdurally recorded signals by Brindley in 1972 [28].
More recently, several studies [29, 30, 31] showed in monkeys that local field potentials
(LFPs) recorded using intracortical microelectrodes contain substantial movement-related
information, and that this information “discriminated between directions with approximately
the same accuracy as the spike rate” [29]. Furthermore, our own results in humans [32, 33,
34, 35, 36, 37] showed that electrocorticographic activity (ECoG) recorded from the cortical
surface can give both general and specific information about movements, such as hand
position and velocity. We also found that the fidelity of this information was within the
range of the results reported previously for intracortical microelectrode recordings in non-
human primates (Table 3 in [36]). These results have recently been replicated and further
extended [38, 39]. There has even been some evidence that EEG and MEG carry some
information about kinematic parameters [40]. Second, it is still unclear whether information
about movement parameters does in fact extend the range of options for BCI research and
application. Recent studies using EEG and ECoG in humans ([5, 8, 9, 10] and [41],
respectively) used brain signals that did not reflect particular kinematic parameters.
Nevertheless, these studies demonstrated BCI performance that was amongst the best
reported to date. In summary, it has become clear that information about specific movement
parameters is accessible to different types of signals recorded by different sensors, and there
is currently little evidence that any sensor supports substantially higher BCI performance
than the others.

Going forward, a critical challenge in designing BCI systems for widespread clinical
application is to identify and optimize a BCI method that combines good performance with
ease of use and robustness. Based on the studies listed above and others [32, 42, 43, 44, 41],
ECoG has emerged as a signal modality that may satisfy these requirements. This notion has
been supported in part by our previous study [36], in which we showed that ECoG can be
used to decode parameters of hand movements. In the present study, we asked to what extent
ECoG also holds information about movements of individual fingers. There is some
evidence in the literature that supports this hypothesis. When monkeys were prompted to
move individual fingers [45, 46, 47], neurons were found to change their activity in widely
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distributed patterns. In line with this finding, [48] did not find a focal anatomical
representation of individual fingers in M1. This widely distributed and thus relatively large
representation has also been shown in humans, e.g., in fMRI studies [49, 50], lesion studies
[51, 52], and a MEG study [53]. Recent studies have already begun to attempt to
differentiate activity associated with particular finger movement tasks: in humans,
movements of the index finger could be discriminated from rest using EEG [54]; the
laterality of index finger movements could be determined using EEG [55, 56], MEG [57], or
ECoG [58]; MEG signals were found to correlate to velocity profiles of movements of one
finger [59]; and studies even found some differences between movements of different
fingers on the same hand using EEG [60], or more robust differences using ECoG [61, 62]
and activity recorded from individual neurons in monkey motor cortex [63, 64, 65, 66].

In this study, we set out to determine whether it is possible to faithfully decode the time
course of flexion of each finger, i.e., not only the laterality of finger movements or the type
of finger, in humans using ECoG. We studied five subjects who were asked to repeatedly
flex each of the five fingers in response to visual cues. The principal results show that it is
possible to accurately decode the time course of the flexion of each finger individually.
Furthermore, they confirm the finding of our previous study [36] that the most useful
sources of information that can be recorded with subdural electrodes are the local motor
potential (LMP) and ECoG activity in high frequency bands (i.e., from about 70 Hz to about
200 Hz) recorded from hand and other motor cortical representations. These results provide
strong additional evidence that ECoG could be used to provide accurate multidimensional
BCI control, and also suggest that ECoG is a powerful tool for studying brain function.

2. Methods
2.1. Subjects

The subjects in this study were five patients with intractable epilepsy who underwent
temporary placement of subdural electrode arrays to localize seizure foci prior to surgical
resection. They included three women (subjects A, C, and E) and two men (subjects B and
D). (See Table 1 for additional information.) All gave informed consent. The study was
approved by the Institutional Review Board of the University of Washington School of
Medicine. Each subject had a 48- or 64-electrode grid placed over the fronto-parietal-
temporal region including parts of sensorimotor cortex (Fig. 1). These grids consisted of flat
electrodes with an exposed diameter of 2.3 mm and an inter-electrode distance of 1 cm, and
were implanted for about one week. Grid placement and duration of ECoG monitoring were
based solely on the requirements of the clinical evaluation, without any consideration of this
study. Following placement of the subdural grid, each subject had postoperative anterior-
posterior and lateral radiographs to verify grid location.

2.2. Experimental Paradigm
For this study, each subject was in a semi-recumbent position in a hospital bed about 1 m
from a video screen. Subjects were instructed to move specific individual fingers of the hand
contralateral to the implant in response to visual cues. The cues were the written names of
individual fingers (e.g., “thumb”). Each cue was presented for 2 s. The subjects were asked
to repeatedly flex and extend the requested finger during cue presentation. The subjects
typically flexed the indicated finger 3–5 times over a period of 1.5–3 s. Each cue was
followed by the word “rest,” which was presented for 2 s. The visual cues were presented in
random order. Data were collected for a total period of 10 min, which yielded an average of
30 trials for each finger. The flexion of each finger was measured using a data glove (5DT
Data Glove 5 Ultra, Fifth Dimension Technologies) that digitized the flexion of each finger
at 12 bit resolution. The effective resolution (i.e., the resolution between full flexion and
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extension) averaged 9.6 bits for all subjects and fingers. Figure 2 shows an example of
flexion patterns for the five fingers acquired using this data glove. These behavioral data
were stored along with the digitized ECoG signals as described below, and were
subsequently normalized by their mean and standard deviation prior to any subsequent
analysis.

2.3. Data Collection
In all experiments in this study, we presented the stimuli and recorded ECoG from the
electrode grid using the general-purpose BCI2000 system [67] connected to a Neuroscan
Synamps2 system. Simultaneous clinical monitoring was achieved using a connector that
split the cables coming from the subject into one set that was connected to the clinical
monitoring system and another set that was connected to the BCI2000/Neuroscan system.
All electrodes were referenced to an inactive electrode. The signals were amplified,
bandpass filtered between 0.15–200 Hz, digitized at 1000 Hz, and stored in BCI2000 along
with the digitized flexion samples for all fingers [33]. Each dataset was visually inspected
and all channels that did not clearly contain ECoG activity (e.g., such as channels that
contained flat signals or noise due to broken connections — we did not notice and thus
exclude channels with interictal activity) were removed prior to analysis, which left 48, 63,
47, 64, and 61 channels (for subjects A–E, respectively) for our analyses.

2.4. 3D Cortical Mapping
We used lateral skull radiographs to identify the stereotactic coordinates of each grid
electrode with software [68] that duplicated the manual procedure described in [69]. We
defined cortical areas using Talairach’s Co-Planar Stereotaxic Atlas of the Human Brain
[70] and a Talairach transformation (http://www.talairach.org).

We obtained a template 3D cortical brain model (subject-specific brain models were not
available) from source code provided on the AFNI SUMA website (http://afni.nimh.nih.gov/
afni/suma). Finally, we projected each subject’s electrode locations on this 3D brain model
and generated activation maps using a custom Matlab program.

2.5. Feature Extraction
We first re-referenced the signal from each electrode using a common average reference

(CAR) montage. To do this, we obtained the CAR-filtered signal  at channel h using

. H was the total number of channels and sh was the original signal sample
at a particular time. For each 100-ms time period (overlapping by 50 ms), we then converted
the time-series ECoG data into the frequency domain with an autoregressive model [71] of
order 20. Using this model, we calculated spectral amplitudes between 0 and 200 Hz in 1-Hz
bins. We also derived the Local Motor Potential (LMP), which was calculated as the running
average of the raw unrectified time-domain signal at each electrode calculated for each 100-
ms time window. Fig. 3 demonstrates that there was practically no (linear) relationship
between the LMP and amplitudes in different frequencies, and generally little relation
between different frequencies. We then averaged the spectral amplitudes in particular
frequency ranges (i.e., 8–12 Hz, 18–24 Hz, 75–115 Hz, 125–159 Hz, 159–175 Hz). These
bins are similar to what we used in our previous study [36], except that we abandoned the
35–70 Hz frequency range because it has been demonstrated to reflect conflicting spectral
phenomena [72], and because its inclusion in preliminary tests decreased performance. Fig.
4 shows an example to demonstrate that our selected ECoG features at particular locations
typically exhibited correlation with the flexion of individual fingers.
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In summary, we extracted up to 384 features (6 features – the LMP and 5 frequency-based
features – at up to 64 locations) using 100-ms time windows from the ECoG signals. We
then decoded from these features the flexion of the individual fingers. As shown later in this
paper, we achieved optimal performance in decoding finger flexion when we used brain
activity that preceded the actual movement by 50–100 ms. These features were submitted to
a decoding algorithm that is described in more detail below.

2.6. Decoding and Evaluation
As described above, we first extracted several time- or frequency domain features from the
raw ECoG signals. We then constructed one linear multivariate decoder for each finger,
where each decoder defined the relationship between the set of features and flexion of a
particular finger. Each decoder was computed from the finger movement periods. A
movement period was defined as the time from 1000 ms prior to movement onset to 1000
ms after movement offset. Movement onset was specified as the time when the finger’s
flexion value exceeded an empirically defined threshold. Movement offset was specified as
the time when the finger’s flexion value fell below that threshold and no movement onset
was detected within the next 1200 ms. This procedure yielded 25–48 (31 on average)
movement periods for each finger. We discarded all data outside the movement periods so as
to provide a balanced representation of movement and rest periods for the construction of
the decoder.

For each finger, the decoder was constructed and evaluated using 5-fold cross-validation. To
do this, each data set was divided into five parts, the decoders were determined from 4/5th
of the data set (training set) and tested (i.e., the decoder was applied) on the remaining 1/5th
(test set). This procedure was then repeated five times – each time, a different 1/5th of the
data set was used as the test set. The decoder for the flexion of each finger was constructed
by determining the linear relationship between ECoG features and finger flexion using the
PaceRegression algorithm that is part of the Java-based Weka package [73]. Unless
otherwise noted, we utilized feature samples that preceded the flexion traces to be decoded.
Specifically, we used a window of 100 ms length that was centered at −50 ms with respect
to the flexion trace, i.e., causal prediction. Thus, this procedure could be used to predict the
behavioral flexion patterns of each finger in real time without knowledge of which finger
moved or when it moved. (All decoded flexion traces shown in Fig. 7 and Fig. 8, and
classification time courses shown in Fig. 11, are shifted back in time by the 50 ms offset
used for decoding to highlight the fact that cortical signals precede the movements.)

We then computed the Pearson’s correlation coefficient r between the actual and decoded
flexion traces for each test set. Finally, we derived a metric of decoding performance for
each subject and finger by averaging the r values across the five test sets.

3. Results
3.1. Brain Signal Responses to Finger Movements

We first characterized the brain signal responses to finger flexion. These responses were
assessed by determining the correlation of ECoG features with the task of resting or moving
a finger. The rest dataset included all data from 1800 ms to 1200 ms before each movement
onset. For each subject, finger, and feature, we then calculated the value of r2 between the
distribution of feature values during rest and the distribution of feature values for each time
point from 600 ms before to 600 ms after movement onset. Fig. 5 shows the results for
flexion of the thumb for all subjects.

The time-frequency plots on top show that in each subject the amplitudes at particular
locations and frequencies (in particular at frequencies >50 Hz) hold substantial information
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(up to an r2 of 0.66) about whether or not the thumb was flexed. This information was
highly statistically significant: when we ran a randomization test, r2 values of less than 0.02
were significant at the 0.01 level for any subject and time-frequency or LMP feature. This
information about finger flexion was localized to one or only a few electrode locations.
Furthermore, it is also evident from these plots that ECoG changes preceded the actual
movement. The traces on the bottom show that the LMP also changed substantially (i.e., up
to an r2 of 0.60) with the movement, and that, again, some of the changes preceded the
actual movement. Activity changes for different fingers (see Fig. 1 in the Supplementary
Material) showed the same general topographical and spectral characteristics as shown here
for the thumb movement. At the same time, each finger showed its own distinctive pattern
(e.g., time-frequency changes). As shown later in Section 3.6, these different patterns
allowed for accurate classification of individual fingers.

Fig. 5, Supplementary Figure 1, and the Supplementary Movie illustrate qualitatively how
ECoG signals differ between rest and finger movement. We also quantitatively assessed
these changes by determining how many electrodes showed significant activity changes for
the high gamma (75–115Hz) band and the LMP‡. We applied a three-way ANOVA to
determine which factors (subject, finger, or feature) were related to the number of channels
with significant signal changes (Ns). The results showed that Ns was not related to the
subjects (p = 0.20) or the different fingers (p = 0.77). However, the number of significant
electrodes significantly differed for the LMP (17% of all channels) and high gamma features
(5% of all channels) (p < 0.0001). Notably, we did not find a difference when we compared
Ns for the thumb versus the other fingers (p = 0.21). This suggests that a potential difference
in the size of the cortical representation of the thumb versus other fingers is smaller than the
spatial resolution (1 cm) available in this study.

In summary, changes in the LMP and amplitudes at frequencies higher than 50 Hz over hand
area of motor cortex are associated with flexion of individual fingers with different changes
for different fingers. Some of these changes preceded finger flexion. Furthermore, the LMP
feature is spatially broader than the high gamma feature. The analyses in the next section
determined how well each feature was related to the degree of finger flexion.

3.2. Relationship of ECoG Signals with Finger Flexion
To further characterize the relationship of the ECoG features with finger flexion, we
correlated, for all movement periods, the time course of the flexion with the time course of
each feature for each finger. We then computed one measure of the correlation coefficient r
and its significance p (determined using the F-test) for each subject, finger, and cross-
validation fold. To get these two measures for each finger of each subject, we used the
results from the four (out of five) cross validation folds with the highest r values. We then
converted the associated p values into indices of confidence ci (ci =− log10(p)), and averaged
those across the four cross validation folds.

The results of the analyses for thumb flexion are shown in Fig. 6. They are representative of
the results achieved for the other fingers, which indicates that the brain signal changes
associated with specific flexion values largely overlap for the different fingers. The two
large brain images on top show the confidence indices for the LMP and 75–115 Hz (i.e.,

‡To compute significance for each electrode, we ran a randomization test using 100 repetitions of the same procedure that produced
Fig. 5 and Supplementary Figure 1, which resulted in sets of r2 values for actual and randomized data. We then averaged these r2
values between −600ms to +600ms. Separately for the high-gamma (75–115Hz) band and the LMP, we then fit the randomized r2
data with an exponential distribution, using a maximum likelihood estimate of its one parameter. We computed the level of
significance α of the actual r2 value as its percentile within the randomized r2 distribution. A LMP or high gamma feature was
considered significant at a certain channel when its p-value (p = 1 − α) was smaller than 0.01 after Bonferroni-correcting for the
number of channels.
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high gamma), averaged across all subjects. The ten smaller brain images on the bottom show
results for individual subjects A–E and the LMP (upper row) and high gamma (lower row)
features.

The high values of the confidence indices over primarily different motor cortical areas and
for the LMP and high gamma features again document the important role of these locations
and ECoG features, respectively. Similar to our previous study [36], the topographies of the
confidence indices differ between the LMP and high gamma (see Fig. 5 in [36]), and are
more diffuse for the LMP. Interestingly, the patterns of confidence indices shown here are
spatially much more widespread than the information shown before in Fig. 5 that
differentiates movement from rest. See Section 4 for further discussion of this topic. Also,
the spatial distribution of the LMP and high gamma features for subjects A and B appears to
be more spatially widespread than that for the other three subjects. This is interesting, as
subjects A and B used their non-dominant hand for the finger movement task. The next
section demonstrates how this information about finger flexion supported the successful
decoding of individual finger flexion movements.

3.3. Accurate Decoding of Finger Flexion
Table 2 and Fig. 7 show the principal results of this study. Table 2 gives the correlation
coefficients calculated for all finger movement periods (see Section 2.6 for a description of
how these periods were determined) between actual and decoded flexion traces. The given
correlation coefficients represent the mean, minimum, and maximum correlation coefficients
calculated for a particular subject and finger and across all cross validation folds. When
averaged across subjects, the correlation coefficients range from 0.42–0.60 for the different
fingers. When averaged across fingers, the correlation coefficients range from 0.41–0.58 for
the different subjects. As reported in Table 2, the average decoding performance (i.e.,
correlation coefficient averaged across all subjects and fingers) was 0.52. We also computed
this average decoding performance for individual features, as well as for the set of all
frequency-based features. This resulted in 0.40 (LMP), 0.19 (8– 12 Hz), 0.25 (18–24 Hz),
0.45 (75–115 Hz), 0.40 (125–159 Hz), 0.33 (159–175 Hz), and 0.49 (all frequency features).
Furthermore, and in contrast to our previous study [36], the application of the CAR filter had
only a modest effect: e.g., for the LMP alone, we achieved 0.40/0.41 (with CAR/without
CAR, respectively); for all features, we achieved 0.52/0.54 (with CAR/without CAR,
respectively).

These results demonstrate that it is possible to accurately infer the time course of repeated,
rhythmic finger flexion using ECoG signals in humans. Results shown later in this paper
also show that these flexion patterns are highly specific to the moving finger. Furthermore,
for a particular subject and finger, the correlation coefficients only modestly varied across
cross-validation folds. This indicates that the decoding performance is robust during the
whole period of data collection. Fig. 7 shows examples for actual and decoded flexion
traces. Because the calculation of decoding parameters only involved the training data set,
but not the test data set, similar results can be expected in online experiments, at least for
durations similar to those in this study.

3.4. Decoding Finger Flexion for Different Flexion Speeds
While this study was not designed to systematically vary the speed of the finger flexions, the
subjects varied that speed substantially for different fingers and/or at different times (see
traces for the thumb and little fingers in Fig. 7). To study decoding at different flexion
speeds, we first estimated the speed for each movement period by calculating the period
from the onset of the movement (that was detected as described earlier in the paper) to the
offset of the first flexion (which was detected as the first time the flexion value fell below
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the same threshold that was used for detecting the onset). We then compiled the flexion
speeds from all subjects, fingers, and movement periods, and selected the flexion patterns
according to flexion speeds in three categories. These categories corresponded to the 0–10th,
45–55th, and 90–100th percentile of estimated flexion speeds. Fig. 8A–C shows the
averaged flexion traces (solid) and corresponding averaged decoded traces (dashed) for the
three different speed bins, respectively. These results demonstrate that the decoded traces
accurately track the flexion dynamics at different flexion speeds. They also show that the
brain signals precede the actual flexion by approximately 100 ms.

3.5. Optimal Decoding Offset
We also studied the effect of the decoding offset, i.e., the temporal offset of the 100 ms
window that was used for decoding the flexion of a particular finger at a particular time.
Unless otherwise noted, we used an offset of−50 ms for the analyses throughout the paper,
i.e., brain signals from a 100-ms window centered at 50 ms prior to time t was used to
decode finger flexion at time t. We evaluated the effect of that offset (−300, −250, 200,
−150, −100, −50, 0, +50 ms) on decoding performance by calculating the resulting
correlation coefficient r for a particular subject, finger, and cross validation fold. We then
averaged these correlation coefficients across subjects and cross validation folds. The color-
coded r values are shown in Fig. 9 for each finger. They show that for the different fingers,
decoding performance (i.e., the averaged value of r) peaked around −100 to −50 ms. (In this
figure, the values at −50 ms correspond to the values of r averaged across subjects in Table
2.) These results provide support for the hypothesis that the ECoG features we assessed were
related primarily to movement and not to sensory feedback produced by the moving fingers.

3.6. Information About Individual Fingers
We finally studied the amount of information that is captured in the ECoG about different
fingers, because the results shown up to this point (except for the finger-specific ECoG
responses shown in the Supplementary Figure) do not exclude the possibility that our
decoding results simply detected movement of any finger. We investigated this possibility in
two ways.

First, we determined the degree of interdependence of finger flexion for the actual and
decoded flexion, respectively. To do this, we calculated the correlation coefficient r for the
actual (i.e., behavioral) or decoded movement traces between all pairs of fingers. The results
are shown in confusion matrices in Fig. 10. Each of the color-coded squares gives, for the
indicated subject and for actual (top) or decoded (bottom) flexion, the correlation coefficient
r calculated for the whole time course of finger flexion for a particular combination of
fingers. The thumb and little finger correspond to the leftmost and right-most columns, and
to the top-most and bottom-most rows, respectively. If the actual or decoded movements of
the different fingers were completely independent of each other, one would expect a
correlation coefficient of 1 in the diagonal running from top-left to bottom-right, and a
correlation coefficient of 0 in all other cells. The results on top show that there was some
degree of interdependence between the actual movements of the different fingers, in
particular between index finger and middle finger and between ring finger and little finger.
The results for decoded flexion on the bottom show a similar pattern, although the degree of
interdependence of the decoded movements was modestly higher than that calculated for
actual movements.

Second, we also determined to what extent it is possible to determine from the ECoG signals
which finger was moving. We did this using a five-step procedure: 1) We first detected
movement onsets for each finger using the procedure described earlier in this paper, and
labeled the period from 2 s before to 2 s after movement onset as the movement period of
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that finger. 2) We then decoded flexion traces for each finger using the 50 ms offset used for
other analyses in this paper, and normalized the decoded traces for each finger by
subtracting each trace’s mean and dividing the result by the standard deviation. 3) We then
smoothed each trace using a zero delay averaging filter of width 500 ms. 4) We then
classified, at each time during each movement period, the smoothed decoded flexion values
into five finger categories by simply determining which of the five decoded flexion values
(i.e., the five values corresponding to the five fingers) was highest at that point in time. 5)
We finally determined classification accuracy by calculating the fraction of all trials in
which the actual and classified finger matched. The results are shown in Fig. 11. The
maximum classification accuracies (i.e., the classification accuracy at the best time for each
subject) were 90.6%, 89.9%, 76.4%, 68.1%, and 76.7% for each subject, respectively. The
average of those accuracies is 80.3% (accuracy due to chance is 20%). The best times were
0 ms, +150 ms, +50 ms, +0 ms, and +500 ms relative to movement onset, for each subject,
respectively. When we used the same common optimal offset for each subject (i.e., without
optimizing for each subject individually), the mean accuracy was 77.3% at +150 ms, and the
median accuracy was 76.4% at +50 ms relative to movement onset. The mean accuracy at 0
ms was 77.1%. When we did not smooth the decoded traces prior to classification, the mean
accuracy at 0 ms was 67.5%. In summary, our results show conclusive evidence that ECoG
signals hold substantial information about the time course of the flexion of each individual
finger.

4. Discussion
In this study, we showed that ECoG signals can be used to accurately decode the time course
of the flexion of individual fingers in humans. The information in the ECoG that was most
reflective of the movement preceded it by 50–100 ms. The results presented in this paper
also further support the findings of our previous study [36] — in particular, that the Local
Motor Potential (LMP) and amplitudes in the high gamma range hold substantial movement-
related information. This information allowed us to accurately decode the flexion of each
finger, even at different flexion speeds, using short windows of 100 ms. These results
provide further evidence to support the hypothesis that the movement information encoded
in ECoG signals exceeds that provided by EEG (see also Fig. 7 in [40]). Furthermore, our
results suggest that both the fidelity of movement-related information in ECoG and its
potential clinical practicality should position ECoG well for neuroprosthetic applications. In
particular, previous efforts to classify finger movements used activity recorded sequentially
from individual neurons (i.e., in successive recordings) in non-human primates [63, 64, 65,
66]. These studies demonstrated robust but only discrete decodings, i.e., inferring which
finger flexed or extended but not the temporal flexion patterns of each finger as we showed
here. The results in our present study are particularly appealing given that the patients in this
study were under the influence of a variety of external factors, and that the experiments did
not control for other relevant factors that may increase signal variance, such as eye position,
head position, posture, etc.

The successful decoding of finger movements achieved in this study depended substantially
on the LMP component and on amplitudes in gamma bands recorded primarily over hand-
related and other areas of motor cortex. This is similar to the findings reported in two recent
studies that decoded kinematic parameters related to hand movements using ECoG [36, 38].
In contrast to the cosine tuning reported for hand movements in humans using ECoG [36] or
EEG/MEG [40], in the present study we assessed the linear relationship of ECoG features
with finger flexion. We did this because auxiliary analyses demonstrated that a linear
function was better able to explain the relationship of ECoG features with finger flexion
compared to a cosine function or finger velocity.
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In this study, we found that gamma band activity differed markedly between movement of a
particular finger and rest in one or only a few electrodes (e.g., Fig. 5, Supplementary Figure
1). This is in contrast to the spatial distribution of the LMP feature that tended to be more
broad. These differences support the hypothesis that the LMP and amplitudes in gamma
bands are governed by different physiological processes. The information shown in Fig. 5 is
also different from the spatial distribution of the information related to the degree of finger
flexion shown in Fig. 6. This discrepancy suggests that the brain represents the general state
of finger movement (i.e., any flexion or rest) differently from the specific degree of flexion.
While the LMP component appears to be a different phenomenon from frequency-related
components (see Fig. 3, Fig. 5, and Fig. 6 in this paper, and Fig. 5 in [36]), the physiological
origin of the LMP component is still unclear. Thus, further studies are needed to determine
the origin of the LMP and its relationship to existing brain signal phenomena, in particular
to activity in the gamma band. While activity in the gamma band has been related to motor
or language function in several studies, there still exists considerable debate about its
physiological origin [74, 75].

In our experiments, subjects were cued to move only one finger at a time. Thus, aside from
residual movements of other fingers that were due to mechanical or neuromuscular coupling
[76, 77, 78], the subjects moved each finger in isolation. It is not clear whether the results
presented in the paper would generalize to more natural and completely self-paced
movements. Because ECoG detects mainly neuronal activity close to the cortical surface,
rather than subcortical structures or the spinal cord, it is likely that the performance of
decoding of particular parameters of movements will depend to what extent the cortex is
involved in preparing for and executing these movements. Thus, successful BCI- or motor-
related studies, and practical implementations derived from those studies, will depend on the
design of protocols that appropriately engage sizable areas of cortex.

The present paper confirms and significantly extends the results presented in recent studies
[32, 36, 39, 38], which demonstrated that ECoG holds information about position and
velocity of hand movements, by showing that it is possible to derive detailed information
about flexion of individual fingers in humans using ECoG signals. This information could
be used either in an open-loop fashion to provide a real-time assessment of actual or
potentially even imagined or intended movements, or in a closed-loop fashion to provide the
basis for a brain-computer interface system for communication and control.

In this study, we showed that recordings from electrodes with relatively coarse spacing (1
cm) in patients who are under the influence of medications and a variety of other external
influences can provide detailed information about highly specific aspects of motor actions in
relatively uncontrolled experiments. While such results are appealing, this situation is most
likely substantially limiting the potential information content and usefulness of the ECoG
platform for BCI purposes. Clinical application of ECoG-based BCI technology will require
optimization of several parameters for the BCI purpose and also evaluation of other
important questions. Such efforts should include: optimization of the inter-electrode distance
(there is evidence that much smaller distances may be optimal [79, 43]) and recording
location (i.e., subdural vs. epidural, different cortical locations); long-term durability effects
of subdural or epidural recordings; and the long-term training effects of BCI feedback.

In summary, the results shown in this paper provide further evidence that ECoG may
support BCI systems with finely constructed movements. Further research is needed to
determine whether ECoG also gives information about different fingers in more complex
and concurrent finger flexion patterns, and to determine the optimum for different
parameters such as the recording density. We anticipate that such studies will demonstrate
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that ECoG is a recording platform that combines high signal fidelity and robustness with
clinical practicality.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Estimated locations of recorded electrodes in the five subjects
Subject B’s grid was located on the right hemisphere. We projected this grid on the left
hemisphere. The brain template on the right highlights the location of the central sulcus and
Sylvian fissure, and also outlines relevant Brodmann areas.
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Figure 2. Example finger flexion
These traces show the behavioral flexion patterns for subject E and each of the five fingers
over the first two minutes of data collection. Flexion consisted of movements of individual
fingers, accompanied occasionally by minor flexion of other fingers. Horizontal bars give
time and vertical bars give units of standard deviation.
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Figure 3. Correlation of features
This figure shows the correlation coefficient r (color coded – see color bar), calculated for
all data between the LMP and amplitudes in different frequency bands. r is very low for the
LMP and amplitudes in different frequencies, and generally low for different frequencies.
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Figure 4. Example of ECoG features related to finger flexion in subject B
A: Example traces of the LMP (left) and high gamma (75–115Hz, right), corresponding to
the 20 locations indicated by the black rectangle shown in figure B. These traces show the
time course of ECoG (top traces) as well as the behavioral trace for thumb flexion (trace on
the bottom). The traces only show data for the movement periods, i.e., periods around thumb
movements (see scissors symbols). Dashed lines indicate beginning/ends of movement
periods. B: Locations of the electrodes on the grid shown on the 3D template brain model.
The locations that showed correlations with thumb flexion in A, i.e., channels 20 and 22, are
indicated with symbols. C: Magnification of the first three movement periods. The solid
traces on top and bottom show thumb flexion, and the dotted traces on top and bottom give
LMP and high gamma activity, respectively, at channel 20. The LMP and high gamma
activity are correlated with flexion of the thumb.
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Figure 5. Brain signal changes between rest and thumb movement for all subjects
Each column (A–E) gives data for the respective subject. Plots on top show brain signal
changes in frequencies between 0 and 200 Hz over time (horizontal axis from 600 ms prior
to 600 ms after movement onset). These changes are given in color-coded values of r2 (see
colorbars). Plots on the bottom show changes (expressed as r2 values) in the LMP feature
over time. Blue traces on the bottom right of each brain indicate the average actual thumb
flexion trace. Insets show magnifications of the areas shown by black rectangles. High
frequencies in the ECoG and the LMP give substantial information about the movement, and
some of this information appears to precede the actual movement.
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Figure 6. Relationship of brain signals with thumb flexion
This figure shows the spatial distribution of the confidence index ci for the LMP (top left) or
75–115 Hz high gamma band (top right), and for each subject and the LMP or high gamma
feature (ten brains on the bottom). The confidence indices are color coded (see colorbars).
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Figure 7. Examples for actual and decoded movement trajectories
This figure shows, for the best cross validation fold for each finger and for subject A, the
actual (solid) and decoded (dotted) finger flexion traces, as well as the respective correlation
coefficients r. These traces demonstrate the generally close concurrence between actual and
decoded finger flexion. They also show that this subject used different flexion rates for
different fingers and/or cross validation folds, and that the decoded traces reflect these
different rates. The horizontal bar gives time and the vertical bar gives units of standard
deviation.
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Figure 8. Average actual and decoded flexion traces for three different flexion speeds
The traces in A, B, and C show actual (blue solid) and decoded (red dashed) flexion traces,
averaged across all subjects and fingers, and corresponding to the 0–10th, 45–55th, and 90–
100th percentile of flexion speeds, respectively. Shaded bands indicate the standard error of
the mean. The minimum and maximum amplitudes of the average decoded traces were
scaled to match those of the actual traces to facilitate comparison. All traces begin 100 ms
prior to detected movement onsets (which are indicated with arrows). The decoded traces
are shifted back in time by the 50 ms offset used for decoding to highlight the fact that
cortical signals precede the movements.
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Figure 9. Correlation coefficients for different fingers and decoding offsets
Correlation coefficients r (color coded and averaged across subjects and cross validation
folds) for different decoding offsets and fingers. The highest correlation coefficients are
achieved when we used a 100 ms window that preceded the decoded flexion values by 50–
100 ms.
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Figure 10. Interdependence of actual and decoded finger flexion
Each of the ten figures shows color-coded correlation coefficients, calculated for actual and
decoded finger flexion time courses for the indicated subject across all finger combinations
(thumb: first row/column, little finger: last row/column).
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Figure 11. Discrete classification of finger movements
The top row shows the classification accuracy (i.e., the fraction of all finger movements that
were correctly classified) for each subject A-E as a function of time relative to movement
onset. Movement onset is marked by the dotted line. Accuracy due to chance (i.e., 20%) is
marked by the dashed line. The bottom row shows the confusion matrix of classification at
the time of the peak classification accuracy for each subject. In each matrix, each row
represents the finger that actually moved (from top to bottom: thumb, index, middle, ring,
and little finger). Each column represents the finger that we classified (from left to right:
thumb, index, middle, ring, and little finger). In each cell, the color indicates the fraction of
all movements of a particular finger that was assigned to the particular classified finger.
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