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Abstract

Information theory is a powerful tool to express principles to drive autonomous systems because it is domain invariant and
allows for an intuitive interpretation. This paper studies the use of the predictive information (PI), also called excess entropy
or effective measure complexity, of the sensorimotor process as a driving force to generate behavior. We study nonlinear
and nonstationary systems and introduce the time-local predicting information (TiPI) which allows us to derive exact results
together with explicit update rules for the parameters of the controller in the dynamical systems framework. In this way the
information principle, formulated at the level of behavior, is translated to the dynamics of the synapses. We underpin our
results with a number of case studies with high-dimensional robotic systems. We show the spontaneous cooperativity in a
complex physical system with decentralized control. Moreover, a jointly controlled humanoid robot develops a high
behavioral variety depending on its physics and the environment it is dynamically embedded into. The behavior can be
decomposed into a succession of low-dimensional modes that increasingly explore the behavior space. This is a promising
way to avoid the curse of dimensionality which hinders learning systems to scale well.
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Introduction

Autonomy is a puzzling phenomenon in nature and a major

challenge in the world of artifacts. A key feature of autonomy in

both natural and artificial systems is seen in the ability for

independent exploration [1]. In animals and humans, the ability to

modify its own pattern of activity is not only an indispensable trait

for adaptation and survival in new situations, it also provides a

learning system with novel information for improving its cognitive

capabilities, and it is essential for development. Efficient explora-

tion in high-dimensional spaces is a major challenge in building

learning systems. The famous exploration-exploitation trade-off

was extensively studied in the area of reinforcement learning [2].

In a Bayesian formulation this trade-off can be optimally solved

[3], however it is computationally intractable. A more conceptual

solution is to provide the agent with an intrinsic motivation [4,5]

for focusing on certain things and thus constraining the

exploration to a smaller space. To approach this problem in a

more fundamental way we consider mechanisms for goal-free

exploration of the dynamical properties of a physical system, e. g. a

robot. If the exploration is rooted in the agent in a self-determined

way, i. e. as a deterministic function of internal state variables and

not via a pseudo-random generator it has the chance to escape the

curse of dimensionality. Why? Because specific features of the

system such as constrains and other embodiment effects can be

exploited to reduce the search space. Thus an exploration strategy

taking the particular body and environment into account is vital

for building efficient learning algorithms for high-dimensional

robotic systems. But how can goal-free exploration be useful to

actually pursue goals? We show that a variety of coordinated

sensorimotor patterns are formed that may be used to quickly

construct more complex behaviors using a second level of learning.

It may also be used more directly in combination with

reinforcement learning where the typical random exploration is

substituted or augmented by the goal-free exploration leading

presumably to a large speedup.

The solution for such a general problem needs a core paradigm

in order to be relevant for a large class of systems. In recent years,

information theory has come into the focus of researchers

interested in a number of related issues ranging from quantifying

and better understanding autonomous systems [6–12] to questions

of spontaneity in biology and technical systems [13] to the self-

organization of robot behavior [14,15].

A systematic approach requires both a convenient definition

of the information measure and a robust, real time algorithm

for the maximization of that measure. This paper studies in

detail the use of the predictive information (PI) of a robot’s

sensorimotor process. The predictive information of a process

quantifies the total information of past experience that can be

used for predicting future events. Technically, it is defined as

the mutual information between the past and the future of the

time series. It has been argued [16] that predictive information,

also termed excess entropy [17] and effective measure

complexity [18], is the most natural complexity measure for

time series. By definition, predictive information of the sensor

process is high if the robot manages to produce a stream of

sensor values with high information content (in the Shannon

sense) by using actions that lead to predictable consequences. A

robot maximizing PI therefore is expected to show a high
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variety of behavior without becoming chaotic or purely random.

In this working regime, somewhere between order and chaos,

the robot will explore its behavioral spectrum in a self-

determined way in the sense discussed above.

This paper studies the control of robots by simple neural

networks whose parameters (synaptic strengths and threshold

values) are adapted on-line to maximize (a modified) PI of the

sensor process. These rules define a mechanism for behavioral

variability as a deterministic function formulated at the synaptic

level. For linear systems a number of features of the PI

maximization method have been demonstrated [14]. In

particular, it could be shown that the principle makes the

system to explore its behavior space in a systematic manner. In

a specific case, the PI maximization caused the controller of a

stochastic oscillator system to sweep through the space of

available frequencies. More importantly, if the world is hosting

a latent oscillation, the controller will learn by PI maximization

to go into resonance with this inherent mode of the world. This

is encouraging, since maximizing the PI means (at least in this

simple example) to recognize and amplify the latent modes of

the robotic system.

The present paper is devoted to the extension of the above

mentioned method to nonlinear systems with nonstationary

dynamics. This leads to a number of novel elements in the

present approach. Commonly information theoretic measures are

optimized in the stationary state. This is not adequate for a robot

in a self-determined process of behavioral development. This

paper develops a more appropriate measure for this purpose called

the time-local predictive information (TiPI) for general nonsta-

tionary processes by using a specific windowing technique and

conditioning. Moreover, the application of information theoretic

measures in robotics is often restricted to the case of a finite state-

action space with discrete actions and sensor values. Also these

restrictions are overcome in this paper so that it can be used

immediately in physical robots with high dimensional state-action

space. This will be demonstrated by examples with two robots in a

physically realistic simulation. The approach is seen to work from

scratch, i. e. without any knowledge about the robot, so that

everything has to be inferred from the sensor values alone. In

contrast to the linear case the nonlinearities and the nonstatio-

narity introduce a number of new phenomena, for instance the

self-switching dynamics in a simple hysteresis system and the

spontaneous cooperation of physically coupled systems. In high-

dimensional systems we observe behavioral patterns of reduced

dimensionality that are dependent on the body and the

environment of the robot.

Relation to Other Work
Finding general mechanisms that help robots and other systems

to more autonomy, is the topic of intensive recent research. The

approaches are widely scattered and follow many different routes

so that we give in the following just a few examples.

Information theoretic measures. Information theory has

been used recently in a number of approaches in robotics in order

(i) to understand how input information is structured by the

behavior [7,19] and (ii) to quantify the nature of information flows

inside the brain [8–10] and in behaving robots [11,12]. An

interesting information measure is the empowerment, quantifying

the amount of Shannon information that an agent can ‘‘inject

into’’ its sensor through the environment, affecting future actions

and future perceptions. Recently, empowerment has been

demonstrated to be a viable objective for the self-determined

development of behavior in the pole balancer problem and other

agents in continuous domains [20].

Driving exploration by maximizing PI can also be considered as

an alternative to the principle of homeokinesis as introduced in

[21,22] that has been applied successfully to a large number of

complex robotic systems, see [23–26] and the recent book [27].

Moreover, this principle has also been extended to form a basis for

a guided self-organization of behavior [27,28].

Intrinsic motivation. As mentioned above, the self-deter-

mined and self-directed exploration for embodied autonomous

agents is closely related to many recent efforts to equip the robot

with a motivation system producing internal reward signals for

reinforcement learning in pre-specified tasks. Pioneering work has

been done by Schmidhuber using the prediction progress as a

reward signal in order to make the robot curious for new

experiences [29–31]. Related ideas have been put forward in the

so called play ground experiment [32,33]. There have been also a

few proposals to autonomously form a hierarchy of competencies

using the prediction error of skill models [34] or more abstractly to

balance skills and challenges [35]. Predictive information can also

be used as an intrinsic motivation in reinforcement learning [36]

or additional fitness in evolutionary robotics [37].

Embodiment. The past two decades in robotics have seen

the emergence of a new trend of control in robotics which is rooted

more deeply in the dynamical systems approach to robotics using

continuous sensor and action variables. This approach yields more

natural movements of the robots and allows to exploit embodi-

ment effects in an effective way, see [38,39] for an excellent survey.

The approach described in the present paper is tightly coupled to

the ideas of exploiting the embodiment, since the development of

behavioral modes is entire dependent on the dynamical coupling

of the body, brain, and its environment.

Spontaneity. We would like to briefly discuss the implications

of using a self-determined and deterministic mechanism of

exploration to the understanding of variability in animal behavior.

Self-determined is understood here has ‘‘only based its own

internal laws’’. In the animal kingdom, there is increasing evidence

showing that animals from invertebrates to fish, birds, and

mammals are equipped with a surprising degree of variety in

response to external stimulation [40–43]. So far, it is not clear how

this behavioral variability is created. Ideas cover the whole range

from the quantum effects [44] (pure and inexorable randomness)

to thermal fluctuations at the molecular level to the assumption of

pure spontaneity [45], rooting the variability in the existence of

intrinsic, purely deterministic processes.

This paper shows that a pure spontaneity is enough to produce

behavioral variations, and as in animals, their exact source appears

‘‘indecipherable’’ from an observer point of view. If the variation

of behavior in animals is produced in a similar way, this would

bring new insights into the free will conundrum [13].

Methods

We start with the general expressions for the predictive

information (PI) and introduce a derived quantity called time-

local predictive information (TiPI) more suitable for the intended

treatment of nonstationary systems. Based on the specific choice of

the time windows we derive estimates of the TiPI for general

stochastic dynamical systems and give explicit expressions for the

special case of a Gaussian noise. The explicit expressions are used

for the derivation of the parameter dynamics of the controller

(exploration dynamics) obtained by gradient ascending the TiPI.

Besides giving the exploration dynamics as a batch rule we also

derive, in the sense of a stochastic gradient rule, the one-shot

gradient. The resulting combined dynamics (system plus explora-

tion dynamics) is a deterministic dynamical system, where the self-

Information Driven Self-Organization of Behaviors
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exploration of the system becomes a part of the strategy. These

general results are then applied to the case of the sensorimotor

loop and we discuss their Hebbian nature.

Predictive Information

The PI of a time discrete process Stf gb
t~a with values in Rn is

defined [16] as the mutual information between the past and the

future, relative to some instant of time aƒt0vb

I Sfuture; Spast

� �
~Sln

p sfuture,spast

� �
p spast

� �
p sfutureð Þ

T

~H Sfutureð Þ{H SfutureDSpast

� � ð1Þ

where the averaging is over the joint probability density

distribution p spast,sfuture

� �
with past : ~fa, . . . ,t0g and

future : ~ft0z1, . . . ,bg. In more detail, we use the (differential)

entropy H Sð Þ of a random variable S given by

H Sð Þ~{

ð
p sð Þ ln p sð Þds

where p sð Þ is the probability density distribution of the random

variable S. The conditional entropy H StDSt{1ð Þ is defined

accordingly

H StDSt{1ð Þ~{

ð ð
p stDst{1ð Þ ln p stDst{1ð Þdst p(st{1)dst{1

p stDst{1ð Þ being the conditional probability density distribution of

st given st{1. As is well known, in the case of continuous variables,

the individual entropy components H Sfutureð Þ, H SfutureDSpast

� �
may well be negative whereas the PI is always positive and will

exist even in cases where the individual entropies diverge. This is a

very favorable property deriving from the explicit scale invariance

of the PI [14].

The usefulness of the PI for the development of explorative

behaviors of autonomous robots has been discussed earlier, see

[14,46,47]. It was found in experiments with a coupled chain of

wheeled robots [47] that the PI of just a single sensor, one of the

wheel counters of an individual robot, already yields essential

information on the behavior of the robot chain. The PI turned out

to be maximal if the individual robots managed to cooperate so

that the chain as a whole could navigate effectively. This is

remarkable in that a one-dimensional sensor process can already

give essential information on the behavior of a very complex

physical object under real world conditions. These results give us

some encouragement to study the role of PI and other information

measures for specific sensor processes as is done in the present

paper. This paper continues these investigations for the case of

more general situations. In order to do so, we have to introduce

some specifications necessary for the development of a versatile

and stable algorithm realizing the increase of PI in the sensor

process at least approximately.

Let us start with simplifying eq. (1). If Stf gb
t~a is a Markov

process, see [46], the PI is given by the mutual information (MI)

between two successive time steps, i. e. instead of eq. (1) we have

I St; St{1ð Þ~Sln
p st,st{1ð Þ

p stð Þp st{1ð ÞT~H Stð Þ{H StDSt{1ð Þ ð2Þ

the averaging being done over the joint probability density

p st,st{1ð Þ. Actually, any realistic sensor process will only be in

exceptional cases purely Markovian. However, we can use the

simplified expression (2)–let us call it the one-step PI–also for

general sensor processes taking it as the definition of the

objective function driving the autonomous exploration dynamics

to be derived.

Nonstationarity and Time-local Predictive Information

(TiPI). Most applications done so far were striving for the

evaluation of the PI in a stationary state of the system. With our

robotic applications, this is neither necessary nor adequate. The

robot is to develop a variety of behavioral modes ideally in a open-

ended fashion, which will certainly not lead to a stationary

distribution of sensor values. The PI would change on the

timescale of the behavior. How can one obtain in this case the

probability distributions of p(st)? The solution we suggest is to

introduce a conditioning on an initial state in a moving time

window and thus obtain the distributions from our local model as

introduced below. More formally, let us consider the following

setting. Let t be the current instant of time and t be the length of a

time window t steps into the past. We study the process in that

window with a fixed starting state st{t so that all distributions in

eq. (2) are conditioned on state st{t. For instance, instead of p stð Þ
in eq. (2), we have to use

p stDst{tð Þ~
ð
� � �
ð

p st, . . . ,st{tz1Dst{tð Þdst{1 � � � dst{tz1 ð3Þ

and the related expression for p st,st{1Dst{tð Þ, where

p st, . . . ,st{tz1Dst{tð Þ is the joint probability distribution for the

process in the time window, conditioned on st{t. In the

Markovian case eq. (3) boils down to p stDst{tð Þ~
Ð
� � �Ð

p stDst{1ð Þ � � � p st{tz1Dst{tð Þdst{1 � � � dst{tz1. As to notation,

the conditional probabilities depend explicitly on time so that

p st’Dst’{1ð Þ is different from p st’’Dst’’{1ð Þ in general if t’=t’’, with

equality only in the stationary state. As a result we obtain the new

quantity, written in a short-hand notation as

I t St; St{1ð Þ : ~I St; St{1DSt{t~st{tð Þ ð4Þ

which we call time-local predictive information (TiPI). Note the

difference to the conditional mutual information where an

averaging over st{t would take place. Analogously we define the

time local entropy as

Ht Stð Þ : ~H StDSt{t~st{tð Þ ð5Þ

Estimating the TiPI
To evaluate the TiPI only the kernels have to be known which

can be sampled by the agent on the basis of the measured sensor

values. However, in order to get explicit update rules driving the

increase of the TiPI, these kernels have to be known as a function

of the parameters of the system, in particular those of the

controller. This can be done by learning the kernels as a function

of the parameters. A related approach, followed in this paper, is to

learn a model of the time series, i.e. learning a function

y : Rn?Rn acting as a time series predictor St~y St{1ð ÞzJ
with realization

st~y st{1ð Þzjt ð6Þ

for any time t, jt being the prediction error, also called the noise in

the following. y can be realized for instance by a neural network

Information Driven Self-Organization of Behaviors
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that can be trained with any of the standard supervised learning

techniques. A concrete example will be considered below, see eq.

(25). The relation to the kernel notation is obtained by observing

that

p stDst{1ð Þ~
ð

d st{y st{1ð Þ{jtð ÞpJ jtð Þdjt

~pJ st{y st{1ð Þð Þ
ð7Þ

where d xð Þ is the Dirac delta distribution and pJ jð Þ is the

probability density of the random variable J (prediction error)

which may depend on the state s itself (multiplicative noise).

The case of linear systems, where y sð Þ~Lszb with a constant

matrix L, has been treated in [14] revealing many interesting

properties of the PI. How can we translate the findings of the

linear systems to the case of nonlinear systems? As it turns out, the

nonlinearities introduce many difficulties into the evaluation of the

PI as it becomes clear already in a one-dimensional bistable system

as treated in [46]. Higher dimensional systems bring even more of

such difficulties so that we propose to consider the information

quantity on a new basis. The idea is to study the TiPI of the error

propagation dynamics in the stochastic dynamical system instead

of the process St itself.

Error propagation dynamics. Let us introduce a new

variable describing the deviation of the actual dynamics, eq. (6),

from the deterministic prediction in a certain time window. We

define for a time window starting at time t{t

dst’~st’{yt’{ t{tð Þ st{tð Þ ð8Þ

for any time t’ with t{tƒt’ƒt and y 0ð Þ sð Þ~s. As to notation, ds

denotes a single variable not to be confused with the Dirac

function. Intuitively dst’ captures how the prediction errors

occurred since the start of the time window are propagated up

to time t’. Figure 1 illustrates the transformed state and the

relevant distributions of the belonging process dSt. Interestingly

the TiPI on the process dS is equivalent to the one on the original

process S, see eq. (A5) in Text S1. The dynamics of the ds can be

approximated by linearization as

dst’~L st’{1ð Þdst’{1zjt’zO(EjtE
2) ð9Þ

using the Jacobian

Lij(s)~
Lyi(s)

Lsj

ð10Þ

Assuming the prediction errors (noise) j to be both small and

Gaussian we obtain an explicit expression for the TiPI on dS

It dSt : dSt{1ð Þ~ 1

2
lnDStD{

1

2
lnDDtD ð11Þ

where S~SdsdsTT is the covariance matrix of dS and D~SjjTT
is the covariance matrix of the noise. The derivation and further

details are in section A in Text S1. The results for linear systems in

[14] can be obtained from the general case considered here by

t??.

When looking at eq. (11) one sees that the entropies are

expressed in terms of covariance matrices. This is exact in the case

of Gaussian distributions. In the general case this may be

considered as an approximation to the true TiPI. Alternatively,

we can also consider eq. (11) as the definition of a new objective

function for any process if we agree to measure variability not in

terms of entropies but more directly in terms of the covariance

matrices.

The Exploration Dynamics
Our aim is the derivation of an algorithm driving the behavior

of the agent toward increasing TiPI. Let us assume that the

function y : Rn?Rn depends on a set of parameters h so that we

may write the dynamics as

st~y st{1,htð Þzjtz1 ð12Þ

For instance, if y is a neural network as introduced further

below, the parameter set h comprises just the synaptic weights and

threshold values of the neurons.

Gradient ascending the TiPI. Based on the TiPI, eq. (11), a

rule for the parameter dynamics is given by the gradient step to be

executed at each time t

Dht~e
LIt

Lh
~e

L
Lh

lnDStD ð13Þ

where e is the update rate and htz1~htzDht. The term ln DDD
from eq. (11) has been omitted assuming that j is essentially noise

which is not depending on the parameters of the controller. This is

justifiable in the case of parsimonious control as realized by the

low-complexity controller networks. These generate typically well

predictable (low noise) behaviors as shown in the applications

studied below.

In order to get more explicit expressions, let us consider the case

of very short time windows. With t~1 there is no learning signal

since S~D meaning that I t~0. So, t~2 is the most simple

nontrivial case. The parameter dynamics is given by

Dht~eduT
t

LL t{1ð Þ
Lh

dst{1 ð14Þ

where ds and the auxiliary vector du are given as

dst{1~st{1{y st{2ð Þ ð15Þ

Figure 1. The time window and the error propagation
dynamics used for calculating the TiPI, eq. (11). In principle,
the process is considered many times with always the same starting
value but different realizations of the noise j. Note that, when using the
one-shot gradients, only one realization is needed.
doi:10.1371/journal.pone.0063400.g001
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dst~st{y y st{2ð Þð Þ ð16Þ

dut~S{1
t dst ð17Þ

St~SdstdsT
t T ð18Þ

stipulating the noise is different from zero (though possibly

infinitesimal) and employing the self-averaging property of a

stochastic gradient, see below. The general parameter dynamics

for arbitrary t is derived in section B in Text S1. However, in the

applications described below, already the simple parameter

dynamics with t~2 will be seen to create most complex behaviors

of the considered physical robots.

In a nutshell, eq. (13) reveals already the main effect of TiPI

maximization: increasing DSD means increasing the norm of ds (in

the S-metric see eq. (A21) in Text S1). This is achieved by

increasing the amplification of small fluctuations in the sensori-

motor dynamics which is equivalent to increasing the instability of

the system dynamics, see also the more elaborate discussion in

[47].

Learning vs. exploration dynamics. Usually, updating the

parameters of a system according to a given objective is called

learning. In that sense, the gradient ascent on the TiPI defines a

learning dynamics. However, we would like to avoid this notion

here, since actually nothing is learnt. Instead by the interplay

between the system and the parameter dynamics, the combined

system never reaches a final behavior corresponding to the goal of

a learning process. Therefore we prefer the notion exploration

dynamics for the dynamics in the parameter space that is driven by

the TiPI maximization.

One-shot gradients. The formulas for the gradient (eqn. (14)

and (A21) in Text S1) were obtained by tacitly invoking the self-

averaging properties of the gradient, i. e. by simply replacing

SdsdsTT with dsdsT in eq. (A16) in Text S1. This still needs a little

discussion. Actually, the self-averaging is exactly valid only in the

limit of sufficiently small e, with e eventually being driven to zero

in a convenient way. However, our scenario is different. What we

are aiming at is the derivation of an intrinsic mechanism for the

self-determined and self-directed exploration using the TiPI and

related objectives. The essential point is that self-exploration is

driven by a deterministic function of the states (sensor values) of

the system itself.

Equation (14) obtained from the gradient of the TiPI fulfills

these aims very well–any change of the system parameters and

hence of the behavior is given in terms of the predecessor states in

the short time window. With finite (and often quite large) e eqs.

(14)–(18) are just a rough approximation of the original TiPI but,

in view of our goal, the one-shot nature of the gradient is favorable

as it supports the explorative nature of the exploration dynamics

generating interesting synergy effects.

Synergy of system and exploration dynamics. A further

central aspect of our approach is the interplay between the system

and the parameter dynamics driven by the TiPI maximization

process. In specific cases, the latter may show convergence as in

conventional approaches based on stationary states. An example is

given by the one-parameter system studied in [46] realizing

convergence to the so called effective bifurcation point. However,

with a richer parametrization and/or more complex systems,

instead of convergence, the combined system (state+parameter

dynamics) never comes to a steady state due to the intensive

interplay between the two dynamical components if e is kept finite.

An example will be given in the Results section.

Typically, the TiPI landscape permanently changes its shape

due to the fact that increasing the TiPI means in general a

destabilization of the system dynamics. If the latter is in an

attractor, increasing the TiPI destabilizes the attractor until it may

disappear altogether with a complete restructuring of the TiPI

landscape. This is but one of the possible scenarios where the

exploration dynamics engages into an intensive and persistent

interplay with the system dynamics. This interplay leads to many

synergistic effects between system and exploration dynamics and

makes the actual flavor of the method.

Self-directed search. The common approach to solve the

exploration–exploitation dilemma in learning problems is to use

some randomization of actions in order to get the necessary

exploration and then decrease the randomness to exploit the skills

acquired so far. This is prone to the curse of dimensionality if the

systems are gaining some complexity. Randomness can also be

introduced by using a deterministic policy with a random

component in the parameters, as quite successfully applied to

evolution strategies and reinforcement learning [48,49].

Our approach is also to use deterministic policies (given by the

function K ) but aims at making exploration part of the policy. So,

instead of relegating exploration to the obscure activities of a

random number generator, variation of actions should be

generated by the responses of the system itself. This replaces

randomness with spontaneity and is hoped (and will be demon-

strated) to restrict the search space automatically to the physically

relevant dimensions defined by the embodiment of the system.

Formally, we call a search self-directed if there exists a function

a so that the change in the parameters

Dht~a st, . . . ,st{t,htð Þ ð19Þ

is given as a deterministic function of the states in a certain time

window (of length t) and the parameter set h itself. In this paper, a
is given by the gradient of the predictive information in the one-

shot formulation.

In more general terms, we believe that randomization of actions

makes the agent heteronomous, its fate being determined by an

obscure (to him) procedure (the pseudo-random number genera-

tor) alien to the nature of its dynamics. The agent is autonomous

in the ‘genuine’ sense only if it varies its actions exclusively by its

own internal laws [50]. In our approach, according to eq. (19),

exploration is driven entirely by the dynamics of the system itself

so that exploration is coupled in an intimate way to the pattern of

behavior the robot is currently in. The danger might be that in this

way the exploration is restricted too much. As our experiments

show, this is not so for active motion patterns in high dimensional

systems. This fact can be attributed to the destabilization effect

incurred by the TiPI maximization, see above and [47]. For

stabilizing behaviors, however, the exploration may be too

restrictive.

The Sensorimotor Loop
Let us now specify the above expressions to the case of a

sensorimotor loop, in particular a neurally controlled robotic

system. The dynamical systems formulation is obtained now by

writing our predictor for the next sensor values as a function of

both the sensors and the actions so that

st~w st{1,at{1ð Þzjt ð20Þ
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where w represents the so-called forward model and jt is the

prediction error as before. As the next step, we consider the

controller also as a deterministic function K : Rn?Rm generating

actions (motor values) at [ Rm as a function of the sensor values

st [ Rn so that

at~K stð Þ ð21Þ

In the applications, K will be realized as a (feed-forward) neural

network. Using eq. (21) in eq. (20) we obtain the map y modeling

our sensor process as

y st{1ð Þ~w st{1,K st{1ð Þð Þ ð22Þ

In [14] a standard linear control system was studied where

K sð Þ~Cs, w s,að Þ~TszVa and y sð Þ~ TzVCð Þs. This paper

will consider a nonlinear generalization of that case in specific

robotic applications.

Exploration dynamics for neural control systems. In the

present setting, we assume that both the controller K and the

forward model w of our robot are realized by neural networks, the

controller being given by a single-layer neural network as

K sð Þ~g Cszhð Þ ð23Þ

the set of parameters h now given by C and h. In the concrete

applications to be given below, we specifically use gi zð Þ~ tanh zið Þ
(to be understood as a vector function so that g : Rn?Rn)

Moreover, the forward model w is given by a layer of linear

neurons, so that

w s,að Þ~VazTszb ð24Þ

The matrices V , T and the vector b represent the parametri-

zation of the forward model that is adapted on-line by a supervised

gradient procedure to minimize the prediction error jT j as

DV~gwjaT , DT~gwjsT , Db~gwj ð25Þ

In the applications, the learning rate gw is large such that the

low complexity of the model is compensated by a very fast

adaptation process.

In contrast to the forward model parameters, the controller

parameters are to be adapted to maximize the TiPI. For that the

map y (eq. (22)) is required which becomes

y sð Þ~Vg Cszhð ÞzTszb with Jacobian matrix

L~VG
0

zð ÞCzT ð26Þ

where z~Cszh is the postsynaptic potential and

G’(z)~diag½g’(z1), . . . ,g’(zm)� ð27Þ

is the diagonal matrix of the derivatives of the activation functions

for each control neuron.

In the applications given below, we are using the short-time

window, with the general exploration dynamics given by eq. (14).

The explicit exploration dynamics for this neural setting with

g(z)~ tanh (z) are given as

1

e
DCij~dmidsj{ciaisj ð28Þ

1

e
Dhi~{ciai ð29Þ

where all variables are time dependent and are at time t, except ds
which is at time t{1. The vector dm [ Rm is defined as

dmt~G
0
VT dut~G

0
VTS{1dst ð30Þ

(see eq. (17)), and the channel specific learning rates ci are

ci~2 Cdst{1ð Þidmi ð31Þ

The derivation and generalization to aribrary activation functions

are provided in section C in Text S1. The update rules for tw2
are given by a sum of such terms, with appropriate redefinitions of

the vector dm, see eq. (A20) in Text S1.

The Hebbian nature of the update rules. In order to

interpret these rules in more neural terms, we at first note that the

last term in eq. (28) is of an anti-Hebbian structure. In fact, it is

given by the product of the output value ai of neuron i times the

input sj into the j-th synapse of that neuron, the ci (which are

positive, as a rule) being interpreted as a neuron specific learning

rate. Moreover, we may also consider the term dmidsj as a kind of

Hebbian since it is again given by a product of values that are

present at the ports of the synapse j of neuron i. The factor dsj can

be considered as a signal directly feeding into the input side of the

synapse Cij . Moreover, dm given as dm~G
0
VT du is obtained by

using du as the vector of output errors in the y network and

propagating this error back to the layer of the motor neurons by

means of the standard backpropagation algorithm.

These results make the generalization to more complicated,

multi-layer networks straightforward. However already the simple

setting produces an overwhelming behavioral variety, see the case

studies below.

More intuitively the Hebbian term acts as a self-amplification

and increases the Lyapunov exponents. In the linear case [14] this

leads eventually to the divergence of the dynamics such that the PI

does not exist any longer. With the nonlinearities, the latter effect

is avoided, but the system is driven into the saturation region of the

motor neurons. However, the second term in eq. (28), by its anti-

Hebbian nature, is seen to counteract this tendency. The net effect

of both terms is to drive the motor neurons towards a working

regime where the reaction of the motors to the changes in sensor

values is maximal. This is understandable, given that maximum

entropy in the sensor values requires a high sensorial variety that

can be achieved by that strategy.

Results

We apply our theory to three case studies to illuminate the main

features. First a hysteresis systems is considered to exemplify the

consequences of nonstationarity and the resulting interplay

between the exploration dynamics and the system dynamics in a

nutshell. In section ‘‘Spontaneous cooperation with decentralized

control’’ a physical system of many degrees of freedom is
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controlled by independent controllers that spontaneously cooper-

ate. Finally in section ‘‘High dimensional case – the Humanoid ’’

we apply the method to a jointly controlled humanoid robot in

various situations to illustrate the exploration process in a high-

dimensional embodied system.

Hysteresis Systems
Nonstationary processes are the main target of our theory, made

accessible by the special windowing and averaging technique

presented in this paper for the first time. In order to work out the

consequences, let us consider an idealized situation where the

above derivations, in particular eqs. (14)–(18), are the exact update

rules for increasing the TiPI.

Let us consider a single neuron in an idealized sensorimotor

loop, where the sensor values are st~at{1zjt (the white

Gaussian noise j is added explicitly). This case corresponds to

the dynamical system

st~ tanh Cst{1zhð Þzjt ð32Þ

where now st [ R1. The system was studied earlier [47] in the

special case of h~0 and it was shown that the maximization of the

PI self-regulates the system parameter C towards a slightly

supercritical value (1vC%2). There, the system is at the so called

effective bifurcation point where it is bistable but still sensitive to

the noise.

Let us start with keeping C fixed at some supercritical value (e.

g. C~1:1) and concentrating on the behavior of the bistable

system as a function of the threshold value h. The interesting point

is that the system shows hysteresis. This can be demonstrated best

by rewriting the dynamics in state space as a gradient descent. Let

us introduce the postsynaptic potential zt~Cstzh and rewrite eq.

(32) in terms of zt as

Dzt~{
L

Lzt

U ztð Þzjtz1 ð33Þ

where Dzt~ztz1{zt and the potential is

U zð Þ~{C ln cosh z{hzz z2

2
(using L

Lz
ln cosh z~ tanh z). In that

picture, the hysteresis properties of the system are most easily

demonstrated by Fig. 2. This phenomenon can be related directly

to the destabilization effect of the exploration dynamics. In the

potential picture, stability is increasing with the well depth. Hence,

the exploration dynamics, aiming at the destabilization of the

system, is decreasing the depth of the well more and more until the

well disappears altogether, see Fig. 2, and the state switches to the

other well where the procedure restarts.

Deterministic self-induced hysteresis oscillation. Now

we show that in the one-dimensional case the parameter dynamics

is independent of white noise. This implies we can in the state

dynamics make the limit of vanishing noise strength and obtain a

fully deterministic system. Again we only consider the two-step

window (t~2). Using dst~jtzLdst{1~jtzLjt{1 (eq. (9)) we

find that the TiPI, according to eq. (A15) in Text S1

I t~
1

2
ln 1zL2
� �

is independent of the noise. Analogously to eqs. (28)–(31) we obtain

the update rules for C and h as the gradient ascent on It and thus

the full state-parameter dynamics (with DjD?0) is given by

st~g Ct{1st{1zht{1ð Þ ð34Þ

Ct~Ct{1zc 1=(2Ct{1){st{1at{1ð Þ ð35Þ

ht~ht{1{cst ð36Þ

with c~2L2=(1zL2).

Apart from the definition of c (that just modulates the speed of

the parameter dynamics), the extended dynamical system agrees in

the one-dimensional case with that derived from the principle of

homeokinesis, discussed in detail in [27]. Let us therefore only

briefly sketch the most salient features of the dynamics. Keeping C

fixed at some supercritical value, as above the most important

point is that, instead of converging towards a state of maximum

TiPI, the h dynamics drives the neuron through its hysteresis cycle

as shown in Fig. 2, which we call a self-induced hysteresis

oscillation, see Fig. 3 (A).

For the full dynamics (with eq. (35)) the results are given in Fig. 3

(B) showing that the feedback strength C in the loop converges

indeed toward the regime with the hysteresis oscillation. This

demonstrates that the latter is not an artifact present only under

the specific parametrization. In fact, we encounter this phenom-

enon in many applications with complex high-dimensional robotic

systems, see the experiments with the Armband below and many

examples treated in [27].

Interestingly this behavior is not restricted to simple hysteresis

systems but is of more general relevance. For instance, in two-

dimensional systems a second order hysteresis was observed,

corresponding to a sweep through the frequency space of the self-

induced oscillations [27]. It would be interesting to relate this fast

synaptic dynamics to the spike-timing-dependent plasticity [51] or

other plasticity rules [52] found in the brain.

About time windows. Before giving the applications to

embodied systems, let us have a few remarks on the special nature

of the time windowing technique as compared to the common

settings. Let us consider again the bistable system with the bias h as

the only parameter and with finite noise. Figure 4 depicts a typical

situation with h=0 so that the wells are of different depth. The

figure depicts the qualitative difference between the classical

attitude of considering information measures in very large time

windows, large enough for the process to reach total equilibrium,

as compared to our nonstationarity approach where the TiPI is

estimated on the basis of a comparatively short window. Note that

the time to stay in a well is exponentially increasing with the depth

of the well and decreasing exponentially with the strength of the

noise [53]. Mean first passage times can readily exceed physical

times (on the time scale of the behavior) by orders of magnitudes.

While in the former case convergence of the hysteresis

parameter h towards the equilibrium condition h~0 is reached,

there is no convergence in the nonstationary case. Instead, one

obtains a self-induced hysteresis oscillation. This is generic for a

large class of phenomena based on the synergy effects between

system and exploration dynamics which open new horizons for the

explorative capabilities of the agent. In the context of home-

okinesis, this phenomenon has already been investigated in many

applications, see [27]. This paper provides a new, information

theoretic basis and opens new horizons for applications as the

matrix inversions inherent to the homeokinesis approach are

avoided.
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Spontaneous Cooperation with Decentralized Control
Let us now give examples illustrating the specific properties of

the present approach. We start with an example of strongly

decentralized control where the TiPI driven parameter dynamics

leads to the emergence of collective modes. Earlier papers have

already demonstrated this phenomenon for a chain of passively

coupled mobile robots [15,46,47]. In the setting of [46,47], each

wheel was being controlled by a single neuron with a synapse of

strength C defining the feedback strength in each of the

sensorimotor loops. There was no bias. As it turned out, the TiPI

in the sensorimotor loop is maximal if the synaptic strength C is at

its critical value where the system is bistable but still reacts to the

external perturbations, i. e. the system is at its so-called effective

bifurcation point [27]. As compared to the present setting, these

results correspond to using a time window of infinite length,

stipulating the presence of a stationary state.

The situation is entirely different when using the short time

window and large update rates allowing for the synergy effects. In

experiments with the robot chain, we observe better cooperativity

with the hysteresis oscillations and better exploration capabilities.

The reason can be seen in the fact that the self-regulated bias

oscillations help the chain to better get out of impasse situations.

We do not give details here, since we will study in the following an

example that demonstrates the synergy effects even more

convincingly.

The Armband. The ARMBAND considered here is a compli-

cated physical object with 18 degrees of freedom, see Fig. 5. The

physics of the robot is simulated realistically in the LpzRobots

simulator [54]. The program source code for this and the next

simulation is available from [55]. Each joint is controlled by an

individual controller, a single neuron driven by TiPI maximiza-

tion, as with the robot chain treated in [47]. The controller

receives the measured joint angle or slider position and the output

Figure 2. The hysteresis cycle in the gradient picture. The diagrams show the stages of one hysteresis cycle starting from h~0 (A) with the
state at zw0 as represented by the sphere. Decreasing h creates the asymmetric situation (B). If h~{hc the saddle-node bifurcation happens, i. e.
both the maximum at z = 0 and the right minimum disappear so that the system shifts to the left minimum of the potential (C). Increasing h until
h~0 brings us back to the initial situation with the state shifted to the other well see (D,E). The diagrams (F) and (G) depict the switching from the
minimum at zv0 to the minimum at zw0 by increasing h. By decreasing h until h~0 the hysteresis cycle is finished, see (H,I).
doi:10.1371/journal.pone.0063400.g002

Figure 3. State and parameter dynamics in the one-dimensional system. (A) Only h dynamics (fixed C~1:2); the bias h oscillates around
zero and causes the state s to jump between the positive and negative fixed points. The TiPI is seen to increase steadily until it eventually drops back
when the state is jumping. (B) With full dynamics (C,h). C increases until it oscillates around its average at C&1:2 where the hysteresis cycle starts.
Parameters: h0~0:1, s0~0:8, C0~0 in (B), e~0:002.
doi:10.1371/journal.pone.0063400.g003

Information Driven Self-Organization of Behaviors

PLOS ONE | www.plosone.org 8 May 2013 | Volume 8 | Issue 5 | e63400



of the controller defines the target joint angle or target slider

position to be realized by the motor. The motors are implemented

as simulated servomotors in order to be as close to reality as

possible. Moreover, the forces are limited so that, due to the

interaction with obstacles or the entanglement of the system’s

different degrees of freedom, the true joint angle may differ

substantially from the target angle. These deviations drive the

interplay between system and exploration dynamics.

In the experiments, we use the controller given by eq. (23) and

the update rules for the parameter dynamics as given by eqs. (35)

and (36). The adaptive forward model is given by eq. (24) with

T~0 and the appropriate learning rules eq. (25). In order to

demonstrate the constitutive role of the synergy effect, we started

by studying the system with fixed C and h~0. In contrast to the

chain of mobile robots, with fixed parameters there is no

parameter regime where the Armband shows substantial locomo-

tion. This result suggests that, as compared to the chain of mobile

robots, the specific embodiment of the Armband is more

demanding for the emergence of the collective effect.

In order to assess the effects appropriately, note that potential

locomotion depends on the forces the motors are able to realize.

For instance, if the robot is strongly actuated, the command a~0

Figure 4. The probability density distributions with different time windows of the stochastic process in an asymmetric double well
potential. The mean first passage time Tf of switching between wells is one characteristic time constant of the process [53], Tf increasing
exponentially with the barrier height. If observing the process in a window of length T&Tf , the distribution of (A) will be observed. In that situation,
the TiPI is maximal if the wells are of equal depth (h~0). However, with windows of length T%Tf , the system state will be predominantly in one of
the wells generating the distributions shown in (B), (C). Gradient ascending the TiPI will decrease the well depth as long as the probability mass is still
concentrated in that well. This is what drives the hysteresis cycle depicted in Fig. 2.
doi:10.1371/journal.pone.0063400.g004

Figure 5. The Armband. The robot has 12 hinge and 6 slider joints, each actuated by a servo motor and equipped with a proprioceptive sensor
measuring the joint angle or slider length. The robot is strongly underactuated so that it can not take on a wheel like form where locomotion were
trivial.
doi:10.1371/journal.pone.0063400.g005
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for each of the motors drives each joint to its center position so that

the shape of the robot is nearly circular, locomotion readily taking

place under the influence of very weak external influences. In

order to avoid such trivial effects, we use an underactuated setting

so that gravitational or environmental forces are deforming the

robot substantially, see Fig. 5.

The situation changes drastically if the h dynamics is included.

As demonstrated by Fig. 6, substantial locomotion sets in only if e
is large enough so that the exploration dynamics is sufficiently fast

for the synergy effect to unfold. Also, as the experiments show, the

effect is stable for a very wide range of e and under varying

external conditions. It is also notable, that the Armband robot

shows a definite reaction to external influences. For instance,

obstacles in its path are either surmounted or cause the robot to

invert its velocity, see Fig. 7. The latter effect is observed in

particular in the underactuated regime defined above, so that the

reflection is not the result of the elastic collision but it is actively

controlled by the involvement of the exploration dynamics. The

role of the latter is also demonstrated by the fact that locomotion

stops as soon as the update rate e is put to zero, see Fig. 8 and the

corresponding video S1.

The ARMBAND has also been investigated recently using artificial

evolution for the controller [56], demonstrating convincingly the

usefulness of the evolution strategy for obtaining recurrent neural

networks that make the Armband roll into a given direction. There

are several differences to our approach, both conceptually and in

the results. While in the evolution strategy the fitness function was

designed for the specific task and many generations were necessary

to get the performance, in our approach the rolling modes are

emerging right away by themselves. Moreover, the modes are

sensitive to the environment, for instance by inverting velocity

upon collisions with a wall, they are flexible (changing to a

jumping behavior on several occasions) and resilient under widely

differing physical conditions. Interestingly, these behaviors are

achieved with an extremely simple neural controller, the

functionality of a recurrent network being substituted by the fast

synaptic dynamics.

High Dimensional case – the Humanoid
Let us now study the properties of the exploration dynamics in a

general (not decentralized) control task. We consider a humanoid

robot with 17 degrees of freedom. Each joint is driven by a

simulated servo motor, the motor values a [ R17 sent by the

controller are the target angles of the joints and sensor values

s [ R17 are the true, observed angles. This is the only knowledge

the robot has about its physical state.

The aim of this experiment is to investigate in how far the robot

develops behaviors with high variability so that it explores its

sensorimotor contingencies. Given that there is no externally

defined goal for the behavior development, will the robot develop

a high behavioral variety depending on its physics and the

environment it is dynamically embedded into?

That this happens indeed is demonstrated by the videos S2, S3,

S4 and S5. However, we want a more objective quantity to assess

the relation between body and behavior. We provide two different

measures for that purpose. One idea is to use the parameter

constellation of the controller itself for characterizing the

behavior–different behaviors should reflect in characteristic

parameter configurations of the controller. In order to study this

idea, we place the robot in different scenarios, see Fig. 9, always

starting with the same initial parameter configuration (using the

result of a preparatory learning phase in the bungee setting), letting

the robot move independently for 40 min physical time. Without

any additional noise, the dynamics is deterministic so that

variations are introduced by starting the robot in different poses,

i. e. in a straight upright position and in slightly tilted poses (0:5
0

and 5
0

slanted to the front). We then compared the parameter

values of the controller matrix C at each second (1 s) for all

simulations and calculated a hierarchical clustering reflecting the

differences between the C matrices. Figure 10 shows the resulting

dendrogram.

Obviously, there is a distinct grouping of the C matrices

according to the environment the robot is in and the behaviors

developing in the respective situation. Distances between the

groups are different, the most pronounced group corresponding to

the behavior in the pit situation. This seems plausible since the

constraints are most distinctive here, driving the robot to behaviors

that are markedly different from the situation with the bungee

setting, say, where all joints (extremities, hip, back) can move

much more freely. There is a second pronounced group–the robot

clinging to the high bar–whereas the distances between the C

matrices controlling the robot lying on the ground and hanging at

the bungee rope is less pronounced. However, by visual inspection

the emerging behaviors in the two latter situations appear quite

different (compare videos S2 and S3)–a finding that is not so clear

in the matrix distance method.

In order to get an additional measure we start from the idea that

the TiPI maximization method produces a series of behaviors that

are qualified by a high dynamical complexity generated in a

controlled way. The latter point means that the dimensionality of

the time series of the sensor values is much less than that of the

mechanical system – if the behavior of the robot is well controlled

(think of a walking pattern) a few master observables will be

sufficient to describe the dynamics of the mechanical system. We

have tried different methods from dynamical system theory for

finding the effective dimension of that time series without much

success. The reason was found to be in the strongly nonstationary

nature of the compound dynamics (system plus exploration

dynamics) making low dimensional behaviors to emerge and

disappear in a rapid sequence. So, in the long run the full space of

Figure 6. Role of the fast synaptic dynamics: depending on the
speed of the synaptic dynamics defined by e, the locomotion
properties are changing drastically. Depicted is the distance
traveled by the robot in 10 min simulated time on an empty plane. The
inset gives a close up view for low e, demonstrating that the locomotion
starts only if e exceeds a certain threshold value. Shown is the mean and
standard deviation of 10 runs each. Update frequency 25 Hz.
doi:10.1371/journal.pone.0063400.g006
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the dynamical system is visited so that globally a seemingly high

dimensional behavior is observed.

In order to cope with this nonstationary characteristic, we

developed a different method, splitting the whole time series into

chunks and using an elementary principal component analysis

(PCA) in order to define the effective dimension in each chunk: on

each chunk a PCA is performed and the number of principal

components required to capture 95% of the data’s variance is

plotted (mean and standard deviation for all chunks of the same

length). In order to avoid discretization artifacts we linearly

interpolate the required number of components to obtain a real

number.

The results presented in Fig. 11 corroborate the above

hypothesis on the dimensionality of the behaviors. In particular,

we observe the increase of the effective dimension if the chunk

length is increasing, mixing different low dimensional behaviors.

The latter point is made even more obvious in Fig. 12 depicting

the overlap between the behaviors in chunks at different times.

This overlap is large if the behaviors are essentially the same and

small if the behavior has changed in the time span between the

chunks. As the figure demonstrates, the overlap is indeed large for

short time spans, but behaviors can reemerge after some time.

Altogether, the results demonstrate that our TiPI maximization

method effectively explores the behavior space of high-dimension-

al robotic systems by exciting their low-dimensional modes,

avoiding in this way the curse of dimensionality.

Discussion

Can a robot develop its skills completely on its own, driven by

the sole objective to gain more and more information about its

body and its interaction with the world? This question raises

immediately further issues such as (i) what is the relevant

information for the robot and (ii) how can one find a convenient

update rule that realizes the gradient ascent on this information

measure. We have studied the predictive information of the stream

of sensor values as a tentative answer to the first question and,

based on that, could give exact answers to the second question for

simple cases. Earlier work was restricted to linear systems [14]. In

order to be applicable to actual robotic systems we extend it to the

case of nonlinear controllers and to nonstationary processes

leading to a new measure called TiPI (time-local predictive

information). Using several approximations we have been still able

to obtained analytical results. In this way we derived an explicit

exploration dynamics for the controller parameters based on an

information maximization principle, namely by maximizing the

TiPI using gradient ascent. For neural networks the gradient yields

a fast synaptic dynamics which is essentially local in nature.

Interestingly the TiPI landscape (on which the gradient is

calculated) continuously changes its shape due to the general

destabilization of the system dynamics inherent in maximizing the

TiPI. For instance if the system dynamics is in an attractor,

increasing the TiPI destabilizes the attractor until it may disappear

altogether with a complete restructuring of the TiPI landscape.

This is another reason why nonstationary processes have to be

handled and why no convergence of the parameter dynamics is

desired.

We studied a one-dimensional hysteresis system in order to work

out the consequences of the nonstationary. The parameter

dynamics leads to a slightly supercritical regime and additionally

a self-induced hysteresis oscillation emerges. This is a useful new

property as shown in the experiment with the Armband robot, a

high-dimensional robot with a complicated dynamics. Despite the

highly decentralized control–each joint is controlled individually–

the robot develops coherent and global pattern of behavior. This is

enabled by the continuous adaptation and spontaneous mutual

cooperation of the individual controllers (hysteresis elements). We

Figure 7. Regular locomotion pattern and interaction with the environment. Plotted are the center positions of the 6 rigid segments in
space for an interval of 40 sec. One line is highlighted for visibility. The trajectory starts while the robot is moving to the left (A) and is hitting the wall
(B) (black box) and locomotes to the right (C) showing a very regular pattern. Then it overcomes an obstacle (D) and hits the wall (E) and moves back
(F). The behavior is cyclic. Parameter: e~0:005.
doi:10.1371/journal.pone.0063400.g007

Figure 8. Armband robot surmounting an obstacle and inverting speed at a wall. Screen shots from the simulation for Fig. 7. The order is
row-wise from left to right. The last two pictures show the situation after switching off the parameter dynamics e~0 for a few seconds (the robots
stops) and enabling it again (starts moving).
doi:10.1371/journal.pone.0063400.g008
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find the effect to be very robust against the speed of the

exploration dynamics. Interestingly in the one-dimensional case

the update formulas are independent of white noise and we can

obtain an exploration dynamics in a fully deterministic system.

The new theoretical basis also allows for controlling complex

high-dimensional robotic systems. This is demonstrated by a series

of experiments with the Humanoid robot, now jointly controlled

by a single high-dimensional controller. Given that there is no

externally defined goal for the behavior development, will the

robot develop a high behavioral variety depending on its physics

and the environment it is dynamically embedded into? Our results

support a positive answer to this question. We quantify the

dimensionality and temporal structure of the behavior and find a

succession of low-dimensional modes that increasingly explore the

behavior space. Furthermore we show that environmental factors

influence the internal as well as behavioral development. Without

additional noise, the deterministic dynamics leads to an individual

development which depends decisively on the particular experi-

ences made during the lifetime.

The exploration dynamics can be viewed as a self-directed

search process, where the directions to explore are created from

the dynamics of the system itself. Without a random component

the changes of the parameters are deterministically given as a

function of the sensor values and internal parameters in a certain

time window. For an embodied system this means in particular

that constraints, responses and current knowledge of the dynam-

ical interaction with the environment can directly be used to

advance further exploration. Randomness is replaced with

spontaneity which we demonstrate to restrict the search space

automatically to the physically relevant dimensions. Its effective-

ness is shown in the Humanoid experiments and we argue that this

is a promising way to avoid the curse of dimensionality.

What is the relation of the parameter dynamics described here

to other work on maximizing information quantities in neural

systems? Maximizing the mutual information between input and

Figure 9. The Humanoid robot in four different scenarios. (A) Normal environment with flat ground. (B) The robot is hanging at a bungee like
spring. (C) The robot is attached to a high bar. (D) Robot is fallen into a narrow pit.
doi:10.1371/journal.pone.0063400.g009

Figure 10. Parameter similarity for the behavior in different
environments (Fig. 9). Plotted is the results of a hierarchical
clustering based on the difference between the parameters in each
of the simulations (averaged over time). For each of the four
environments there are three initial poses: 0

0
(straight upright), 0:5

0

and 5
0

slanted to the front. The parameters for runs in the same
environment are clustered together. This supports the observation that
the embodiment plays an essential role in the generation of behavior.
More importantly the physical conditions are reflected in the
parameters and are thus internalized. We used the squared norm of
the difference of the absolute values of the matrix elements. The
absolute values were used because a common structure in the
parameters are rotation matrices and there the same qualitative
behavior is obtained with inverted signs. Parameters: e~10{5 ,
g~0:005, update frequency 50 Hz.
doi:10.1371/journal.pone.0063400.g010

Figure 11. Dimensionality of behavior on different time scales.
Humanoid robot in bungee setup running 40 min with different control
settings. The sensor data is partitioned into chunks of a fixed length, the
graph depicting the effective dimension over the length of the chunks
for different settings. In order to test the method we start with a
uniformly distributed noise signal for motor commands (‘‘noise signal’’).
As expected the observed dimension is maximal. The sensor values
produced by that random controller show a lower dimension (‘‘noise
ctrl.’’) as is expected due to the low pass filtering property of the
mechanical system. All other cases are with the TiPI maximization
controller with different update rates e. In particular, the comparison
with the e~0 case demonstrates that the exploration dynamics
produces more complex behaviors than any fixed controller.
doi:10.1371/journal.pone.0063400.g011
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output of a neuron, known as InfoMax, yields a very similar

parameter dynamics [57]. Interestingly, when applied to a feed-

forward network an independent component analysis can be

performed. Also similar rules have been obtained in [58] where

the entropy of the output of a neuron was maximized under the

condition of a fixed average output firing-rate [58]. The resulting

dynamics is called intrinsic plasticity as it acts on the membrane

instead of on the synaptic level and it was shown to result in the

emergence of complex dynamical phenomena [59–62]. In [63,64]

a related dynamics is obtained at the synaptic level of a feedback

circuit realized by an autaptic (self) connection. In a recurrent

network of such neurons it was shown that any finite update rate (e
in our case) destroys all attractors, leading to intermittently

bursting behavior and self-organized chaos.

Our work differs in two aspects. On the one hand, we use the

information theoretical principle at the behavioral level of the

whole system by maximizing the TiPI on the full sensorimotor

loop, whereas they use it at the neuronal level. Nevertheless we

manage to root the information paradigm back to the level of the

synaptic dynamics of the involved neurons. On the other hand, as

a direct consequence of that approach, there is no need to specify

the average output activity of the neurons. Instead the latter is self-

regulating by the closed loop setting. Independent of the specific

realization, the general message is that these self-regulating

neurons realize a specific working regime where they are both

active and sensitive to influences of their environment. If

embedded into a feedback setting many interesting phenomena

are produced. Instead of studying them in internal (inside the

‘‘brain’’) recurrences, we embed such neurons into a feedback loop

with complex physical systems where the self-active and highly

responsive nature of these neurons produces similar phenomena at

the behavioral level.

In the current form, our approach is limited to the control of

robots where the sensorimotor dynamics can be, in its essence,

modeled by a simple feed-forward neural network. The parameter

dynamics can also be calculated for more complex controllers,

such as recurrent networks, which remains for future work. In this

study only proprioceptive sensors measuring joint angles have

been used. However, our newest experiences have shown that also

other sensors e. g. current sensors, acceleration sensor or velocity

sensors can be successfully integrated.

To conclude, information theory is a powerful tool to express

principles to drive autonomous systems because it is domain

invariant and allows for an intuitive interpretation. We present for

the first time, to our knowledge, a method linking information

theoretic quantities on the behavioral level (sensor values) to

explicit dynamical rules on the internal level (synaptic weights) in a

systematic way. This opens new horizons for the applicability of

information theory to the sensorimotor loop and autonomous

systems.

Supporting Information

Text S1 Appendix with derivations and technical detail.

(PDF)

Video S1 Armband robot starts to locomote and
overcomes obstacles. Each joint (hinge or slider) is individually

and independently controlled by a one-dimensional TiPI maxi-

mizing controller. The locomotions starts due to spontaneous

cooperation of the individual components and due to spontaneous

symmetry breaking (going to left or right). The text in the video

should say ‘‘Epsilon = 0.005’’. Parameters: (e~0:005, g~0:005).

(MP4)

Video S2 Humanoid robot on the ground. One high-

dimensional TiPI maximizing controller is used here (17 DoF).

The controller starts from a small unit initialization, causing the

robot to lay calmly. After an initial phase where the parameters

adjust to create some activity we observe smooth patterns of

behavior that patterns come and go with time. Within short time

intervals one sees several repetitions of one mode until it vanishes

and a new one emerges. Parameters: (epsilon = 0.0002, eta = 0.1).

(MP4)

Video S3 Humanoid robot hanging at a bungee. The

bungee is not visualized. It acts as a spring force to the upper body.

Its upper anchor point (visible as a yellow sphere at the end of the

clip) not fixed in x-y, but only in its height, so the humanoid can in

principle walk along the ground. See Video S2 for details. Note the

different patterns of behavior just because of the different physical

situation.

(MP4)

Video S4 Humanoid robot at a high bar. The hands of the

robot are attached to a high-bar, however they remain free to

rotate and move along the bar. See Video S2 for details. Note the

different patterns of behavior just because of the different physical

situation.

(MP4)

Video S5 Humanoid robot falling into a pit. See Video S2

for details. Note the different patterns of behavior just because of

the different physical situation.

(MP4)

Acknowledgments

The authors thank Nils Bertschinger, Eckehard Olbrich and Keyan Zahedi

for helpful discussions and comments.

Author Contributions

Conceived and designed the experiments: GM RD NA. Performed the

experiments: GM. Analyzed the data: GM RD. Wrote the paper: GM RD

NA.

Figure 12. Behavioral changes with time. Pairwise distances of
chunks with length 10 s. Distance is defined as the length of the vector
of maximal projections of the first 6 principal components.
doi:10.1371/journal.pone.0063400.g012

Information Driven Self-Organization of Behaviors

PLOS ONE | www.plosone.org 13 May 2013 | Volume 8 | Issue 5 | e63400



References

1. Boden MA (2008) Autonomy: What is it? Biosystems 91: 305–308.

2. Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press.

3. Duff MO (2002) Optimal learning: computational procedures for bayes-adaptive
markov decision processes. Ph.D. thesis, University of Massachusetts Amherst.

AAI3039353.

4. Schmidhuber J (1991) Curious model-building control systems. In: In Proc. Intl.
Joint Conf. on Neural Networks, Singapore. IEEE, 1458–1463.

5. Singh S, Lewis RL, Barto AG, Sorg J (2010) Intrinsically motivated
reinforcement learning: An evolutionary perspective. IEEE Trans on Auton

Ment Dev 2: 70–82.

6. Bertschinger N, Olbrich E, Ay N, Jost J (2008) Autonomy: An information
theoretic perspective. Biosystems 91: 331–345.

7. Lungarella M, Sporns O (2006) Mapping information ow in sensorimotor
networks. PLoS Comput Biol 2: e144.

8. Friston K (1995) Functional and effective connectivity in neuroimaging: A
synthesis. Human Brain Mapping 2: 56–78.

9. Sporns O, Tononi G (2002) Classes of network connectivity and dynamics.

Complexity 7: 2002.
10. Garofalo M, Nieus T, Massobrio P, Martinoia S (2009) Evaluation of the

performance of information theory-based methods and cross-correlation to
estimate the functional connectivity in cortical networks. PLoS ONE 4: e6482.

11. Williams PL, Beer RD (2010) Information dynamics of evolved agents. In:

Doncieux S, Girard B, Guillot A, Hallam J, Meyer JA, et al., editors, SAB.
Springer, volume 6226 of Lecture Notes in Computer Science, 38–49.

12. Schmidt NM, Hoffmann M, Nakajima K, Pfeifer R (2012) Bootstrapping
perception using information theory: case study in a quadruped robot running

on different grounds. Advances in Complex Systems, submitted.
13. Brembs B (2011) Towards a scientific concept of free will as a biological trait:

spontaneous actions and decision-making in invertebrates. Proc R Soc B 278:

930–939.
14. Ay N, Bernigau H, Der R, Prokopenko M (2012) Information driven self-

organization: The dynamical systems approach to autonomous robot behavior.
Theory Biosci 131: 161–179.

15. Zahedi K, Ay N, Der R (2010) Higher coordination with less control - A result of

information maximization in the sensorimotor loop. Adaptive Behavior 18: 338–355.
16. Bialek W, Nemenman I, Tishby N (2001) Predictability, complexity and

learning. Neural Computation 13: 2409.
17. Crutchfield JP, Young K (1989) Inferring statistical complexity. Phys Rev Lett

63: 105–108.
18. Grassberger P (1986) Toward a quantitative theory of self-generated complexity.

Int J Theor Phys 25: 907–938.

19. Lungarella M, Pegors T, Bulwinkle D, Sporns O (2005) Methods for quantifying the
informational structure of sensory and motor data. Neuroinformatics 3: 243–262.

20. Jung T, Polani D, Stone P (2011) Empowerment for continuous agent-
environment systems. Adaptive Behavior - Animals, Animats, Software Agents,

Robots, Adaptive Systems 19: 16–39.

21. Der R, Liebscher R (2002) True autonomy from self-organized adaptivity. In:
Proc. of EPSRC/BBSRC Intl. Workshop on Biologically Inspired Robotics. HP

Labs Bristol.
22. Der R (2001) Self-organized acquisition of situated behaviors. Theory in Biosci

120: 179–187.
23. Der R, Hesse F, Martius G (2006) Rocking stamper and jumping snake from a

dynamical system approach to artificial life. Adaptive Behavior 14: 105–115.

24. Der R, Hesse F, Martius G (2005) Learning to feel the physics of a body. In:
Proc. Intl. Conf. on Computational Intelligence for Modelling, Control and

Automation (CIMCA 06). Washington, DC, USA: IEEE Computer Society,
252–257.

25. Der R, Martius G, Hesse F (2006) Let it roll - emerging sensorimotor

coordination in a spherical robot. In: Rocha LM, Yaeger LS, Bedau MA,
Floreano D, Goldstone RL, et al., editors, Proc, Artificial Life X. Intl. Society for

Artificial Life, MIT Press, 192–198.
26. Der R, Martius G (2006) From motor babbling to purposive actions: Emerging

self-exploration in a dynamical systems approach to early robot development. In:

Nolfi S, Baldassarre G, Calabretta R, Hallam JCT, Marocco D, et al., editors,
From Animals to Animats 9 (SAB 2006). Springer, volume 4095 of LNCS, 406–

421.
27. Der R, Martius G (2012) The Playful Machine - Theoretical Foundation and

Practical Realization of Self-Organizing Robots. Springer.
28. Martius G, Herrmann JM, Der R (2007) Guided self-organisation for

autonomous robot development. In: Almeida e Costa F, Rocha L, Costa E,

Harvey I, Coutinho A, editors, Proc. Advances in Artificial Life, 9th European
Conf. (ECAL 2007). Springer, volume 4648 of LNCS, 766–775.

29. Schmidhuber J (1990) A possibility for implementing curiosity and boredom in
model-building neural controllers. In: From Animals to Animats (SAB 1991).

Cambridge, MA, USA: MIT Press, 222–227.

30. Storck J, Hochreiter S, Schmidhuber J (1995) Reinforcement driven information
acquisition in nondeterministic environments. In: Proceedings of the Interna-

tional Conference on Artificial Neural Networks. 159–164.
31. Schmidhuber J (2009) Driven by compression progress: A simple principle

explains essential aspects of subjective beauty, novelty, surprise, interestingness,

attention, curiosity, creativity, art, science, music, jokes. Anticipatory Behavior in

Adaptive Learning Systems : 48–76.

32. Kaplan F, Oudeyer PY (2004) Maximizing learning progress: An internal
reward system for development. Embodied Artificial Intelligence : 629–629.

33. Oudeyer PY, Kaplan F, Hafner V (2007) Intrinsic motivation systems for
autonomous mental development. Evolutionary Computation, IEEE Transac-

tions on 11: 265–286.

34. Barto AG (2004) Intrinsically motivated learning of hierarchical collections of
skills. In: Proceedings of 3rd Int. Conference Development Learn. San Diego,

CA, USA, 112–119.

35. Steels L (2004) The autotelic principle. Embodied Artificial Intelligence : 629–
629.

36. Zahedi K, Martius G, Ay N (2012) Predictive information in reinforcement

learning of embodied agents. In: Int. Workshop on Guided Self-Organization 5.
Abstract.

37. Prokopenko M, Gerasimov V, Tanev I (2006) Evolving spatiotemporal

coordination in a modular robotic system. In: Nolfi S, Baldassarre G, Calabretta
R, Hallam J, Marocco D, et al., editors, From Animals to Animats 9. Springer,

volume 4095 of LNCS, 558–569.

38. Pfeifer R, Bongard JC (2006) How the Body Shapes the Way We Think: A New
View of Intelligence. Cambridge, MA: MIT Press.

39. Pfeifer R, Lungarella M, Iida F (2007) Self-organization, embodiment, and

biologically inspired robotics. Science 318: 1088–1093.

40. Bekoff M, Byers JA, editors (1998) Animal Play: Evolutionary, Comparative and

Ecological Perspectives. Cambridge University Press.

41. Glickman S, Sroges R (1966) Curiosity in zoo animals. Behaviour : 151–188.
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