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Abstract
We apply recently developed inference methods based on general coalescent processes to DNA
sequence data obtained from various marine species. Several of these species are believed to
exhibit so-called shallow gene genealogies, potentially due to extreme reproductive behaviour, e.g.
via Hedgecock’s “reproduction sweepstakes”. Besides the data analysis, in particular the inference
of mutation rates and the estimation of the (real) time to the most recent common ancestor, we
briefly address the question whether the genealogies might be adequately described by so-called
Beta coalescents (as opposed to Kingman’s coalescent), allowing multiple mergers of genealogies.

The choice of the underlying coalescent model for the genealogy has drastic implications for the
estimation of the above quantities, in particular the real-time embedding of the genealogy.
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1. Introduction
Within the last decade, considerable attention has been turned to the explanation of the fact
that intra-species DNA sequence variation yields shallow gene genealogies resp. low ratio
between effective population size Ne and adult census size N in several marine species (see,
e.g., [A04], [H94], [H05], [TWG02], [WT03]), as well as to the theory of mathematical
models which may describe such genealogies in terms of so-called Λ-coalescents (see, e.g.,
[P99], [S99], [DK99], [MS01], [EW06], [BB08]).
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Indeed, Hedgecock [H94] proposes a mechanism to describe substantial variation of
reproductive success in marine species in terms of so-called “reproduction sweepstakes”, to
be won by highly successful individuals within each generation, i.e, a few or even a single
individual may replace a large fraction of the entire population. This requires great
individual fecundity and high mortality early in life as well as “sweepstake-like chances of
matching reproductive activity with oceanographic conditions conducive to gamete
maturation, fertilization, larval development, settlement and successful recruitment to the
adult spawning population”. As a result, Hedgecock claims that the variance in offspring
numbers may be orders of magnitudes higher than what standard binomial or Poisson
models predict, leading to a small Ne/N ratio. See also [HP11] for a recent overview.

However, if one tries to turn such a mechanism into a mathematical population model, it
turns out that in order to make sense for large populations, sweepstakes whose size are a
positive fraction of the present population cannot be too frequent, in fact, the probability of
such an event in a given generation must approach zero for large population sizes.
Otherwise, the model would predict vanishing genetic variability, in contrast to the
empirical observations (as already suggested by Árnason in [A04]).

To circumvent such trivialities, we first discuss two rigorous mathematical population
models in the classical “Cannings’ framework” ([C74], [C75]) that incorporate extreme
reproductive events (due to Eldon and Wakeley [EW06] and Schweinsberg [S03]), which
can be considered as simple models of Hedgecock’s sweepstakes, but still lead to non-
vanishing variability. A classification result due to Möhle and Sagitov ([MS01]) then yields
the required timescales for large population size, in a way that sweepstakes neither dominate
(leading to vanishing genetic variability) nor become negligible.

It is important to note that the required time-scaling is mostly “non-classical” (i.e., unlike the
Wright-Fisher model and its relatives, not a linear function of the model’s census population
size) hence will also affect the scaling of the mutation rates and make the concept of the so-
called (Kingman-) coalescent effective population size discussed in [SKK+05] void, since
the existence of the latter depends on a linear change in time-scale.

The resulting limiting ancestral processes embedded in our population models (with extreme
reproduction due to sweepstake-like behaviour) coincide with special cases of the so-called
Λ-coalescents, i.e. exchangeable coalescents, which allow multiple collisions of lineages
(extending the merely binary collisions in the Kingman-coalescent setup), but not
simultaneous multiple collisions. Such processes were introduced and studied by Pitman
[P99] and Sagitov [S99] and include the classical Kingman-coalescent as a special case.
However, the class of Λ-coalescents is vast, in particular allowing for any type of probability
distributions on the set of (random) sweepstakes sizes. An important pair of questions in
each concrete scenario therefore is: What is the “right” distribution on sweepstakes sizes,
what is the right timescale? In [EW06], Eldon and Wakeley discuss a simple model, in
which sweepstake sizes are always the same fixed positive fraction of the population size.
They then fit their model, using a maximum-likelihood method based on the number of
segregating sites and total number of mutations, to mitochondrial data from Pacific Oysters
(Crassostrea gigas), taken from [BBB94], with the result that the maximum-likelihood
estimator for the fixed sweepstakes size is 8% of the living population.

To our knowledge, this was the first time that a Λ-coalescent based model has been
calibrated to real data. However, there are a few issues that should be discussed. From the
modeling perspective, there is no reason why there should be a fixed sweepstakes size. Still,
it is certainly infeasible to infer from the full (non-parametric) class of Λ-coalescents.
Parametric subclasses, which describe “realistic” mechanisms, would therefore be of interest
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(we use certain so-called “Beta-coalescents”, cf. e.g. [BB08], [BBC+05], see Section 2.1 and
Section 4.3 for a discussion of this class of coalescents). Another important point is the
adequacy of the equilibrium population assumption underlying the coalescent model used in
[EW06]. As pointed out in [BBB94], the pacific oyster data are taken from a population
which had only recently been introduced from Japan to Canada. The shallow genealogy
might therefore also be explained by the presence of a relatively recent population
bottleneck.

In the present article, we analyse several datasets obtained from Atlantic Cod (Gadus
morhua), taken from geographically separated locations, under the Beta-coalescent model,
taking the full information provided by the infinitely-many sites model into account (as
opposed to [EW06] where the authors use summary statistics based only on the number of
segregating sites and the total number of mutations).

As a result we report that in many cases, a neutral panmictic Kingman-based scenario can be
rejected. Further, our maximum-likelihood estimators for the parameters of the Beta-
coalescents and mutation rates are presented, as well as an estimated real-time embedding of
the genealogy and in particular the expected time to the most recent common ancestor given
the data. We finally discuss the question whether there is evidence for a sweepstake-based
scenario in these datasets and propose and calibrate a potential candidate for the distribution
of sweepstake sizes.

2. Methods
2.1. Exceptional genealogies and exchangeable coalescents

Since the early 80ies, models based on the Kingman coalescent have been successfully used
to describe the genealogy of many biological populations. One of their distinguishing
features is, together with exchange-ability, that only binary collisions are allowed. That is, at
most two ancestral lineages may coalesce at a time (exchangeability meaning that all pairs
of lineages are treated equal).

However, it turns out that many species seem to exhibit “exceptional genealogies”, for
example “shallow genealogies”, (cf. e.g., [A04], [H94], [H05], [TWG02], [WT03]), which
may be appropriately described by more general exchangeable coalescents, the so-called Λ-
coalescents, which allow multiple collisions of ancestral lineages. Indeed, under a Lambda-
coalescent, given a sample of size n, each k-tuple of ancestral lineages (where 2 ≤ k ≤ n) is
merging to form a single lineage at rate λn,k, where

(1)

for some finite measure Λ on the unit interval [0, 1], see [P99] or [S99]. Note that the family
of Lambda-coalescents is rather large, and in particular cannot be parametrised by finitely-
many real variables. Important examples include Λ = δ0 (Kingman’s coalescent) and Λ = δ1
(star-shaped genealogies). Here, we denote by δy the probability measure on [0, 1] with a
unit point mass in y ∈ [0, 1]. Note that this means that (for continuous functions f)

(2)

From (1) and (2), one readily obtains
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in the Kingman case and

in the star-shaped case. A little more generally, a single point mass at ψ ∈ (0, 1), say Λ =
cψ2δψ, c > 0, yields

(3)

This has a simple interpretation via independent Bernoulli trials with individual success
probability that determines which lineages participate in a given merger event. Also,
forwards in time, it has a simple interpretation for the corresponding population model,
namely, that on a macroscopic time-scale, at rate c > 0 a fraction of 100% of the living
population is replaced by the offspring of single ancestor (by the strong law of large
numbers). Such macroscopic reproduction events will be called “extreme reproductive
behaviour”, and lead to multiple collisions in the genealogy. See, e.g., [BB09] for further
details and references.

Of course, from a modelling point of view a restriction to a fixed fraction ψ appears
unnatural, and the general case can be interpreted as a mixture over ψ’s. There are of course
many possibility, and later, we will mainly be concerned with so-called Beta-coalescents, in
particular the case where Λ has a Beta(2−α, α)-density, i.e.

for some α ∈ (1, 2) (where Γ denotes Euler’s Gamma function). Even though this is not
integrable for α = 2, the transition rates then correspond to the classical Kingman coalescent,
which can in this way be included into the Beta(2−α, α)-class, and intuitively smaller α
corresponds to stronger skew in offspring distributions. This class of multiple merger
coalescents is mathematically distinguished (revealing a close connection to α-stable
branching processes, see [BBC+05]); furthermore, many large-sample properties are
determined by the shape of Λ near 0 (e.g. [BBL11]), by varying α we obtain a “natural”
representative for each regularity index at 0. Finally, the Beta(2 −α, α)-coalescents appear as
limiting genealogies for a “natural” class of reproduction models derived from a branching
mechanism with “heavy tails”, see Section 2.3 below.

2.2. Population models with highly skewed offspring distributions leading to exceptional
genealogies

We follow a classical framework of population genetics and regard neutral, non-overlapping
discrete-generation population models with exchangeable offspring distribution, that is,
Cannings models, see [C74], [C75]. Consider a (haploid) population of fixed size N, let t ∈
ℕ denote the t-th generation. Let ν(t) ≔ denote the vector of offspring replacing the N
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individuals in the t-th generation, where  is the number of children of individual k. We
assume that the random vectors ν(t), with t ∈ ℕ, are independent and identically distributed,

and furthermore that, for fixed t, the random variables  are exchangeable. We

write  when speaking about distributional properties in a single generation, where t is
irrelevant. Note that exchangeability and constant population size force that the expected
number of offspring of each individual i is one, i.e. νi] = 1. Let

(4)

(this is the probability that two randomly drawn individuals from the same generation are
siblings). Note that the numerator equals the variance of the offspring distribution, i.e.

 and, of course, is independent of i due to exchangeability. A famous result

by Kingman [K82] shows that if  as N → ∞ (and suitable higher moment
bounds hold), then the genealogy of a sample of size n taken from the limiting population
(time-changed by 1/cN) will be given by Kingman’s n-coalescent.

In [MS01], extending Kingman’s original result, Möhle and Sagitov provide the necessary
and sufficient criteria so that a limiting Cannings population model has a non-trivial
genealogy given by a Λ-coalescent. In particular, if we consider the population model on the
time scale 1/cN, then the limiting genealogy will be governed by a Λ-coalescent iff

• cN → 0, as N → ∞,

• for all y ∈ (0, 1) with Λ ({y}) = 0, we have

(5)

• and finally, for i ≠ j, ν1(ν1 − 1) ν2(ν2 − 1)]/(N2cN) → 0 as N → ∞.

Condition (5) shows how the distribution of the individual offspring numbers determines the
measure Λ from (1) that governs the transition rates in the coalescent. Indeed, (5) can be
interpreted as

It in particular forces the offspring distribution to be “highly” skewed, i.e. there must be
reproduction events where the number of offspring is of the same order as the total

population size, which implies that the variance  of ν1 blows up as N gets large. Note that
this condition also implies that these extreme reproductive events need to happen on the
time-scale 1/cN, hence cannot be too frequent (an effect that has been pointed out,
informally, in the introduction and also already in [A04]).

2.3. Examples for models with extreme reproductive behaviour
Several classes of Cannings models have been considered recently in the literature in this
context. For example, in [EW06], Eldon and Wakeley discuss a model of size N where, in
each generation, exactly one uniformly chosen individual reproduces and becomes parent of
a fixed (non-random) positive fraction of the population, leading to a measure with an atom
in (0,1].
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If one is interested in a model with variable (random) sweepstakes sizes, one might consider
Schweinsberg’s ([S03]) model, which leads naturally to Beta-coalescent based genealogies
and is related to α-stable branching processes for some α ∈ (1, 2]. Again, consider a haploid
population of size N. Reproduction is assumed to happen in two steps. First, each individual

spawns (independently)  offspring, according to a probability distribution with a power
law tail-behaviour, i.e.

(6)

so that the amount of potential offspring has infinite variance. We denote the resulting

vector of (potential) offspring by . Note that the components do not (yet)
sum up to N, but to some random Ñ typically much larger than N. Hence, in a second step,
N individuals are chosen uniformly at random from the Ñ potential offspring particles, so

that we obtain the new offspring vector ) where  denotes the number

of individuals drawn from the  potential children of parent k.

This model has some resemblance of so-called “type-III survivorship”: high fertility leads to
excessive amount of offspring, corresponding to the first reproduction step, whereas high
mortality early in life is modeled in the second step.

2.4. Inference methods
Choosing a suitable limit of a Cannings population model (e.g. one of the models above)
determines an explicit probabilistic mechanism for the ancestral process, i.e. the underlying
class of Λ-coalescents. Still, one needs to calibrate the corresponding parameters to the
observed DNA sample in questions, thus inferring “evolutionary parameters” like the
mutation rate. We pursue a maximum-likelihood approach based on the full sample
information. We assume that mutations occur according to the infinite-sites model, i.e., each
new mutation hits a novel site.

A general probabilistic mechanism of obtaining DNA samples from a coalescent tree –
which is our model for the gene genealogy of the ancestral limit process of our population
models under consideration – is described in detail in [BBS11]. Here, we provide a quick
overview. To obtain a sample of size n, first run an n-Λ-coalescent to obtain a rooted
coalescent tree. On this rooted tree with n leaves (numbered from 1 to n), place mutations
along the branches at rate r to obtain a gene genealogy (here, r is the scaled mutation rate).
Then, label these mutations randomly: Given there are s mutations in total, attach uniformly
at random the labels from 1,…,s to these mutations. An observed genetic type x is then
given by the sequence of labels of mutations following its path backwards from a leaf to the
root. When there are d different types, we enumerate them randomly, from 1,…, d. Note that
d ≤ s, since each type has at least one unique mutation. We then let [t, n] = [(x1,…xd), (,1,…
nd)] denote the pair consisting of the observed unordered d-tuple of types t and their
respective multiplicities n. Note that [t, n] equivalently describes a tree, commonly referred
to as a genetree. We will denote the distribution of such a data set or tree, depending on Λ
and mutation rate r, by ℙΛ,r.

We may then compute the likelihood of observed data [t, n] under the “parameter” ϑ = (Λ,
r), i.e. ℙϑ([t, n]) ≔ ℙΛ,r([t, n]) recursively, conditioning on the last event in the coalescent
history, see [BBS11, Section 1.3]. Such a recursionmay, for small sample sizes with few
mutations, be solved numerically. However, for more complex samples, Monte-Carlo
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methods, for example Importance Sampling, need to be employed. Such methods are being
discussed in detail in [BBS11] and implemented in the program MetaGeneTree.1

3. Analysis of DNA sequence data
3.1. Description of underlying datasets

The Pacific Oysters dataset presented in [BBB94] was obtained as the result of a restriction-
enzyme digest of mitochondrial DNA taken from 159 Pacific oysters (Crassostrea gigas)
from British Columbia. This digest can (in an ad hoc fashion) be interpreted as sequence
information resulting in 49 segregating sites or positions, where an enzyme either cuts or
leaves the DNA-molecule intact, depending on the allele present. This pattern was then
manually edited to resolve violations of the infinitely many sites model, resulting in the
exclusion of four samples and five sites, see Appendix A for details. This dataset has also
been analysed in [EW06], where the authors already pointed out the underlying genealogy
might not be adequately modelled by Kingman’s coalescent.

The second set of DNA sequence data was discussed in [A04]. There, Árnason combined
several datasets, published in other works, from a 250 bp region of the mitochondrial
cytochrome b gene of the Atlantic cod (Gadus morhua). In [A04], he provided a discussion
of the whole combined dataset which unfortunately turned out to be too large to be treated
by our exact likelihood methods. For this reason we analysed the smaller component
datasets described in [AP96, APP98, APKS00, CM91, CSHW95, PC93, SA03] separately.
As Árnason pointed out these samples stem from various geographic locations throughout
the Atlantic. In our analysis, we choose the most abundant type to represent the ancestral
type, and we also consider summing out over all possible ancestral types. Again, some of the
samples violated the assumptions of the infinitely many sites model. To cope with this, we
considered the combined dataset of [A04] and introduced a consistent pattern of parallel
mutations to resolve all violations (again, see Appendix A for details). This procedure lead
to a dataset that corresponds to the phylogenetic maximum parsimony network from Figure
2 of [A04, p. 1875]. We then analysed the respective subsamples specified in the different
publications. Table 1 and Table 2 show some characteristics of the datasets, and we refer to
Appendix A for a more detailed description.

3.2. Rejection of the “Kingman hypothesis”?
In several datasets, in particular the one discussed in [BBB94], standard tests reject the
“Kingman hypothesis”, indicating that the genealogies underlying the observed datasets
might not be adequately described by a Kingman-coalescent. In particular, we consider
Tajima’s D and Fu & Li’s D in each case. Recall that for a sample of n sequences, Tajima’s
D (see [T89]) is based on the normalized difference between the mean number of pairwise
differences Δn and the weighted number of segregating sites Sn. In a neutral, Kingman-
coalescent based scenario, D should be approximately 0. Small values of D indicate shallow
genealogies, large values indicate long internal branches. Another standard test statistic is Fu
& Li’s D (see [FL93]). Again, the test statistic is based on a standardized variable which is
the difference between the number of mutations on external branches ηe, and the number of
mutations on internal branches ηi, multiplied by a weighting factor. Values for approximate
“confidence intervals” (CIs) for each D can be found in Table 2 of [FL93].

Table 1 and Table 2 show the observed values for each D and the corresponding 95%
confidence intervals for the Pacific Oyster and Atlantic Cod datasets, respectively. Since

1Version 0.1.2, available from http://metagenetree.sourceforge.net
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both are always negative for all datasets, there is a consistent, sometimes rather weak,
sometimes significant (marked by an asterisk) indication of a “shallow” genealogy.

3.3. Likelihood analysis
Figures 3 and 4 in Appendix B contain the likelihood surfaces for our pair of parameters (r,
α), that is, the coalescent time mutation rate and the parameter of the underlying Beta-
coalescent. Both the rooted and unrooted tree cases are presented, where in the former case
we assumed the most frequent type to be ancestral. The results were obtained with the tool
MetaGeneTree using the methods introduced in [BBS11] and [BB08], see Section 2.4. The
surfaces were calculated on a discrete grid and the position of the maximum of the surface
reported.

Table 3 shows the maximum likelihood estimate for the Pacific Oyster dataset. The surface
was obtained on a discrete grid with spacing (0.2,0.05). For each gridpoint the likelihood
was estimated by performing 108 independent runs of importance sampling using the
proposal distribution [BBS11, Definition 2.11]. This proved sufficient to get an estimated
relative error around 0.02. Note that our maximum likelihood estimate α̂ = 1.2 agrees well
with a recently obtained estimate by [E11] of α̂ = 1.203 for the same dataset using methods
based on the site frequency spectrum.

The column called “rooted” in Table 4 shows the maximum likelihood estimates for the
Atlantic cod datasets. The grid-spacing was (0.1,0.05), and all datasets except [CSHW95]
could be analysed using the exact recursive formula. For the latter dataset we employed
importance sampling with proposal distribution [BBS11, Definition 2.11] using driving
values to estimate the likelihood on several gridpoints from a single run of the importance
sampling, as detailed in [BBS11, Appendix A.3]. The grid-spacing for the driving values
was chosen as (0.2,0.1) and we again used 108 independent runs. We calculated the
likelihood for each true gridpoint whose euclidean distance is less then (0.4,0.2) of the
respective driving value. After combining the results, this proved sufficient to estimate the
likelihood for each true gridpoint with an estimated relative error of approximately 0.01.

In the column titled “unrooted” we present the arg-maxima of the likelihood surfaces
obtained by summing the likelihoods of all different samples obtained by choosing a
different type to be the ancestral one (thus the likelihood for an unrooted genetree),
following the methods introduced in [GT95, Section 2.1].

The maximum likelihood estimates for the tree-shape parameter α for both datasets range
from 1.25 to 1.65. Recalling that α = 2 corresponds to Kingman’s coalescent, these results
indicate consistently that the data is better explained by a genealogy allowing for multiple
mergers than by a Kingman-based genealogy. We will briefly discuss possible explanations
for this evidence of shallow genealogies in the next section. Again our estimates agree with
the estimates of α̂ ≈ 1.55 in [E11] for the full dataset.

Note that the datasets used here contain no apriori-information about the ancestral type, so
the likelihood of the unrooted trees should be used for estimation. However, as seen in
Figures 3 and 4, the position of the maximum does not differ severely in both analyses. A
closer inspection of the calculations reveals that the sum of probabilities of the different
rooted trees is dominated by the probability of the tree with the most frequent type ancestral.
Thus the root used in the “rooted”-case appears to be the most plausible choice. The only
exception is given by dataset [PC93], where the sum is dominated by two summands, one of
them being the tree with the root chosen due to abundance. The second tree, however, was
not obviously set apart from the rest.
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4. Discussion
4.1. Possible biological causes for shallow genealogies

The presence of “Hedgecock’s reproduction sweepstakes” is only one possible cause for
violations of the Kingman framework produced by shallow genealogies. We will (non-
exhaustively) address some effects that could account for the observed degree and pattern of
variability here (following a discussion of Árnason in [A04, pp. 1882]). Apart from a recent
population bottleneck for the Pacific Oyster data, the variability could be caused by
selection, either acting directly on the observed part of the genome or in the “background”,
the presence of frequent selective sweeps or geographical subdivision (resulting e.g. from
glaciation events).

The observed mutations were synonymous or functionally equivalent replacements [A04,
pp. 1882]. Thus, Árnason argues against direct selective effects as follows: Selection acting
on RNA products etc. would be weak purifying selection, not positive selection required to
explain the observed pattern; furthermore, it seems rather unconceivable “that by selecting at
random a 250-bp fragment of a 16-kb chromosome one finds several selected sites and even
balanced polymorphisms due to selection by the cellular machinery.”

Concerning indirect selection acting on the mitochondrial genome, [A04, p. 1883] writes:
“[T]here might be frequent selective sweeps of mitochondrial variation, which through
linkage have brought haplotypes to high frequencies.” Indeed, thinking e.g. of [DS04,
DS05], recurrent selective sweeps could be a mechanism explaining multiple mergers in
genealogies. [A04]’s answer is: “This explanation can account for the data but the main
difficulty is to explain why there would be so much adaptive evolution going on for
mitochondrial activity in cod.” Here a comparison of the mitochondrial genome and/or its
protein products over several fish species might reveal that much is conserved, possibly
arguing against frequent [and recent] selective sweeps.

Regarding the possibility of Population structure, either resulting from the population
splitting into various subgroups in different refuges during the ice age(s) or due to local
adaptations (which are linked to, but not visible in the observed region of the genome),
resulting in overall balancing selection, [A04, p. 1883] writes: “The shallowness of the
genealogy is evidence against these explanations.” He points to the divergence observed in
[P01] to “calibrate” what shallowness means for the cod. Furthermore, concerning local
refuges, Árnason argues that under this hypothesis, due to physical distance, one would
expect the Baltic cod to have very different type configurations from the North Atlantic cod,
which is not the case.

Finally, Árnason identifies a “sweepstake”-like mechanism as the most plausible cause, and
as discussed above, population models with Beta-coalescent based genealogies are
compatible with this explanation. If one believes in such a mechanism, this has significant
implications for the estimation of parameters and the real-time embedding of various
quantities, see Section 4.2.

The overview article of Hedgecock and Pudovkin [HP11] provides a further, more detailed
discussion of the concept of “Sweepstakes reproductive success” (SRS) and of evidence for
its presence in marine populations, together with a thorough literature review. Hedgecock
and Pudovkin conclude that the “development of statistical tools to help decide between
different coalescent models and to draw inferences about demographic and genetic
parameters of interest” are welcome. In a similar spirit, [A04, p. 1883] writes “Studies of
temporal variation are called for to test it and better resolve the differences between
historical and contemporary factors influencing variance in offspring number and effective
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population sizes.” We will come back to these points asking for statistical studies in Section
4.3 below.

4.2. Age of the most recent common ancestor
Assuming that the Beta-coalescent and the estimated parameter values present a reasonable
approximation to the real population mechanisms under consideration, we calibrate our
models on the Atlantic cod data, using the method described in [GT94, Section 6] adapted to
Λ-coalescents, see [BBS11], Appendix A.4. The maximum likelihood estimates from Table
4 can be used to estimate the time to the most recent common ancestor (TMRCA) in
coalescent-time units conditioned on the observed data. For comparison, we also estimated
the time to the most recent common ancestor assuming that the Kingman coalescent is the
appropriate model for the genealogy and using the corresponding estimate for the mutation
rate at α = 2. In both cases, we estimated the value of the cumulative distribution function on
a discrete grid with spacing 0.1 ranging from 0.3 to 4.0 using 108 independent runs of the
Markov chain. The two columns in the middle of Table 5 and Table 6 show the
approximation of the expected value based on the empirical distribution function, as well as
the corresponding 95%-credibility interval assuming the Beta-coalescent respectively
Kingman prior for the genealogy. For this we interpolated the distribution function using
cubic splines in Mathematica 7.0 [W07] and reported the respective 0.025- and 0.975-
quantiles. Independent replicates indicate that the variance due to the Monte Carlo method is
negligible, data not shown.

To embed these values into real time we use Árnason’s estimate ([A04, p.1873]) for the
mutation/substitution rate of the mitochondrial DNA for the Atlantic cod µ ̂ = 3.86 × 10−8/
site/year. Since we consider a stretch of 250 bp in the analysis of the Atlantic cod data, the
substitution rate for this stretch is given by µ̂ = 9.65 × 10−6/year. For the real time
embedding of the coalescent time note that µ̂ ≈ #mut./year and r̂ ≈ #mut./coal.-time-unit.
Thus the coalescent time can be transformed into real time by the relation

The last two columns of Table 5 and Table 6 show the real time embeddings (in kya) of the
time to the most recent common ancestor and the corresponding credibility intervals for the
different samples, in the Beta respectively Kingman case. Some cumulative distribution
functions are shown in Figure 1. We are not aware of any other estimates of TMRCA for the
presented Atlantic cod datasets in the literature, but it would be interesting to compare our
results with results obtained by other methods.

More importantly, our results show that the choice of the prior distribution for the genealogy
has a severe impact on the estimation of TMRCA. The estimates under the Kingman
coalescent are approximately 50% higher on average. This shows that, when estimating
evolutionary parameters, it is crucial to verify the validity of Kingman’s coalescent as an
appropriate model for the underlying neutral genealogy.

4.3. Further issues: Model-selection, allele-frequencies and statistical properties
It is a natural question to ask, if one finds that Kingman’s coalescent is not a suitable
approximation, e.g. due to the the presence of Hedgecock’s “sweepstakes reproductive
success” (SRS), which particular Λ-coalescents are of biological relevance. In order to do
this, one needs to determine the distribution of the relative sizes of these reproduction
sweepstakes to be won. This quantity typically depends in nontrivial ways on the offspring
distribution of the species in question, but also on many other (ecological and demographic)
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factors which cannot be derived from simple assumptions from the outset (e.g. the
geography of the habitat).

In [EW06], Eldon and Wakeley derived and used (to fit to data from [BBB94]) Λ-
coalescents of the simple form Λ = αψ, thus positing a fixed relative sweepstake size ψ ∈ (0,
1], see Section 2.1 for an interpretation. This class has the advantages of conceptual
simplicity and that it depends only on one real parameter. However, Eldon and Wakeley’s
model raises the question why SRS should always be a fixed fraction of size ψ of the total
population. As Hedgecock and Pudovkin point out: “It should come as no surprise, then, that
just as recruitment success in marine fisheries fluctuates greatly, so too may severity of SRS
fluctuate” ([HP11], p973).

In order to overcome this objection, while still keeping the statistical advantages of a class
of coalescents parametrised by a single parameter, we chose the class of Beta(2−α,α)
coalescents. They arise naturally as scaling limits of branching-type populations models,
where each individual reproduces independently (subject to preservation of the total
population size) and offspring numbers are heavy-tailed with a power-law decay, see (6) and
the subsequent discussion, in particular the relation to “type-III-survivorship”.

Note that our scenario, motivated by Schweinsberg’s model, considers infrequent
reproduction sweepstakes. This, together with a certain amount of independence between
reproductive events and subexponential tail distributions, makes it highly unlikely to
observe several “sweepstakes winners” within one generation (hence ruling out Ξ-coalescent
like behaviour): Typically, if a family of the order of the total population size is produced,
the amount of offspring of the most successful individual dominates the number of offspring
of the second-most successful individual, thus ruling out, at least for large populations, the
emergence of simultaneous multiple mergers.

However, in other scenarios, other Λ-coalescents might become relevant. Examples include
Durrett and Schweinsberg’s models of recurrent selective sweeps [DS05] mentioned above.
The presence of externally induced recurrent severe bottlenecks might even yield Ξ-
coalescent based genealogies, admitting simultaneous multiple merger coalescents [BBM
+09]. Often, as in the bottleneck scenario, simultaneous multiple mergers require drastic
(externally induced) changes in the environment, which we do not consider here.

Of course, stochastic fluctuations in the ocean environment (see [HP11], p973), could
potentially cause such bottlenecks. It will be an objective of future research to test whether
deviations from Kingman’s coalescent seem to be induced predominantly by independent
heavy-tailed reproduction, or by external stochastic fluctuations. However, such an analysis
is clearly out of scope of this expository paper (in particular, there is a high risk of
overfitting within the vast class of Ξ-coalescents).

Still, a way to assess the adequacy of the underlying coalescent models is to compare how
well these models may be fitted to functions of the observed data such as frequency spectra.
Indeed, in a recent presentation2, Schweinsberg compared minimal-least-squares fits of the
observed site frequency spectrum of the full atlantic cod dataset from [A04] (sample size n =
1278) to the expectation in Beta(2 −α, α)-models (using an asymptotically exact formula for
the expected site frequency spectrum for the Beta(2−α,α)-case). The quality of the fit for the
Beta-coalescent, with an estimated optimal α = 1.43, is striking and much better than for the
Kingman-coalescent, making a strong point in favour of the use of Beta-coalescent models
(the fit for the pacific oyster dataset from [BBB94] mentioned in the same presentation is

2Slides available at http://math.ucsd.edu/~jschwein/LambdaSurvey.pdf, see Example 2.
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worse, however, as already mentioned above, in this case the population history suggests a
recent severe bottleneck, which is not literally compatible with any of the coalescent models
considered here).

It is a very interesting question in how far the DNA sample data considered here allows a
“retrospective” assessment of “sweepstake sizes” distributions, in particular whether a fixed
sweepstake size ψ ∈ (0, 1] as in the models considered by Eldon and Wakely in [EW06]
appears more or less plausible than the “random” one that is implicit in the Beta(2 −α, α)-
models.

In preliminary computations, we computed likelihood values for the some of the component
data sets considered here with Λ as in (3), varying ψ on a grid in (0, 1]. The maximal
likelihood values, attained at ψ’s between 0.04 and 0.07, were sometimes comparable and
sometimes one to two orders of magnitude smaller than those for the Beta(2−α, α)-
coalescents (data not shown). In addition, we used the simulation algorithm described in
[BB08] to estimate the expected site frequency spectrum under a coalescent with Λ as in (3)
with n = 1278; the fit to the observed frequency spectrum of the total sample described in
[A04] appeared much worse than that derived from the Beta(2−α, α)-coalescent described
by Schweinsberg (data not shown). While this suggests that “non-fixed sweepstake sizes”
might be indeed a more reasonable model, it also indicates that larger sample sizes and
presumably also multi-locus data sets would be required for a reliable answer. This is
beyond the scope of the present work.

Finally, it is still a largely open question to assess the statistical properties of the estimator
employed here, which is based on methods described in [BBS11]. Some considerations in
this direction can be found in [S09].
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Appendix A. Detailed description of the datasets
We now describe the datasets analyzed in this paper in more detail. The datasets together
with the scripts for handling the analysis are available from the authors upon request.

The input for our method has to be a valid genetree (cf. Section 2.4) under the infinitely-
many-sites model, noting that DNA sequence data can only be transformed into this data
structure if they satisfy the “four-point” condition [BB08, Equation (10)]. We now provide
details on how we dealt with occasional violations of this condition in the datasets that we
analysed.

Appendix A.1. Pacific Oyster dataset ([BBB94])
The dataset was taken from [BBB94], where the authors obtained the data as the result of a
restriction-enzyme digest of mitochondrial DNA taken from 155 Pacific oysters (Crassostrea
gigas) from British Columbia. The authors reported the fragment sizes resulting from 9
different enzymes in their Table 2 [BBB94, pp. 1612–1613].

We translated these lists of fragment length into pseudo-sequence data for every enzyme.
Such a pseudo sequence is a list of zeros and ones for every reported type, specifying the
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presence or absence of a restriction enzyme binding site. The choice whether 1 denotes the
presence of a binding site and 0 the absence or vice versa is determined uniquely once we
specify an ancestral type later. Note that in [BBB94, Table 2] the authors report a type ‘C’
for the restriction enzyme ‘HincII’, however, this type is not reported in [BBB94, Table 1],
so we omitted this type ‘C’ for the subsequent analysis.

Table 1 of [BBB94, page 1610] shows how the different observed haplotypes are composed
of the sub-haplotypes, along with the respective abundance of a given type in the respective
sub-populations. Note that in [BBB94, Table 1] type ‘HT32’ reports a sub-type ‘F’ for the
enzyme ‘HAEII’, but this sub-type ‘F’ does not occur in the respective [BBB94, Table 2],
thus we treated this sub-type as ‘E’ in the subsequent analysis.

We chose the most abundant type “PS2” to be ancestral, thus uniquely specifying which
pattern of presence/absence of restriction sites corresponds to the all-zero pseudo-sequence.
To remedy the violations of the infinitely-many-sites model present in the dataset, we
deleted the sites for ‘HindIII.5’, ‘HaeIII.12’, ‘AvaII.1’, ‘HaeIII.11’, ‘HaeII.6’, and removed
the types ‘HS45’, ‘PS10’, ‘HS44’, ‘DB40’. Note that these steps eliminate the only
difference between PS1 and PS2, so that ultimately PS1 and PS2 are taken to be ancestral.
After these steps, the data can be converted into a valid genetree as described in Section 2.4.

Appendix A.2. Atlantic Cod dataset(compiled in [A04])
The Atlantic Cod dataset is based on DNA sequence data taken from a 250 bp stretch of the
mitochondrial cytochrome b gene of the Atlantic cod (Gadus morhua). In the numbering of
the sites from [JB96], this stretch ranges from site 14,459 to site 14,708 (included). In
[A04], Árnason took several cod datasets from different publications, combined them and
provided an analysis of the whole dataset. However, since this combined dataset is too big to
be treated by our method for computing likelihoods based on the full information, we
analysed certain samples separately. As Árnason pointed out, the samples stem from various
localities throughout the Atlantic, ranging from Newfoundland [CM91], [PC93] &
[CSHW95], Greenland [APKS00], the Faroe Islands [SA03], and Norway [AP96] to the
Baltic Sea [APP98].

The DNA sequence data of the different types present in the different samples can be found
in Figure 1 on page 1874 in [A04]. The composition of the sample from [AP96] is {A: 35,
E: 25, G: 14, D: 14, NI: 4, B: 2, C: 2, F: 1, GI: 1, DI: 1, BI: 1}, the sample from [APP98] is
{E: 62, A: 19, G: 12, D: 6, DI: 3, H: 2, ES: 1, DK: 1, C: 1, EJ: 1, NI: 1}, the sample from
[APKS00] is {A: 48, D: 6, E: 8, G: 7, C: 1, NI: 1, MI: 1, LI: 2, S: 1, PI: 1, GJ: 1, ED: 1}, the
sample from [CM91] is {A: 36, B: 2, C: 2, D: 1, E: 4, F: 1, G: 4, H: 1, I: 1, J: 1, K: 1, L: 1},
the sample from [CSHW95] is {A: 201, B: 1, C: 2, D: 7, E: 4, H: 3, J: 2, N: 4, O: 1, P: 1, S:
3, T: 1, X: 2, Y: 2, Z: 1, a: 1}, the sample from [PC93] is {A: 84, G: 6, E: 4, P: 1, X: 1, U: 2,
N: 2, M: 1, C: 1, J: 1}, and the sample from [SA03] is {A: 26, E: 13, D: 11, G: 10, MI: 3, H:
2, NI: 1, C: 1, GJ: 1, EY: 1, EX: 1, EL: 1, EK: 1, DO: 1, DL: 1}.

From [APKS00] we took the Greenland subsample and we restricted the sample from
[APP98] to the Baltic and transition area. In [SA03], the authors provide the DNA sequence
data of a larger 566 bp stretch from which we only took the information of the 250 bp
fragment in question. Furthermore, in [CSHW95], the authors report the type ‘R’ which
differs from the type ‘A’ only outside of the 250 bp segment we are considering. Thus we
count this type as an ‘A’ type.

Since the full dataset from Figure 1 on page 1874 in [A04] contains violations of the
infinitely-many-sites model, we solved these violations by introducing a consistent pattern
of parallel mutations. This procedure replaced each mutation violating the infinitely-many-

Steinrücken et al. Page 15

Theor Popul Biol. Author manuscript; available in PMC 2014 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



sites model by a certain number of mutations that were attributed to the different types in a
non-violating pattern. The complete modified dataset with all parallel mutations is given in
Figure 2.

We then obtained the subsamples corresponding to the different publications by choosing
the corresponding types in the corresponding quantities from this violation-free dataset, and
then converted them into genetrees. We chose ‘A’ as the ancestral type for each dataset.

Appendix B. Likelihood surfaces
The log10-likelihood surfaces for the cod and oyster datasets in the rooted case are shown in
Figure 3, whereas Figure 4 shows the log10-likelihood surfaces for the cod datasets in the
unrooted case.
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Figure 1.
Distribution functions for the time to the most recent common ancestor of the sample, given
the data, for three of the cod data sets, in the Beta- and Kingman-case. (a) The Beta-case,
where we used the inferred parameter α̂ from Table 4 as the underlying parameter. (b) The
Kingman-case, where we used an underlying α = 2, as indicated in the legend.
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Figure 2.
Árnason’s dataset with violations of the IMS model resolved through parallel mutations.
Here ‘o’ denotes the original mutations (as in Árnason’s dataset), whereas ‘ p’ denotes the
putative parallel mutations.
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Figure 3.
Log10-Likelihood surfaces for cod and oyster datasets. The argmax is indicated by a dot.
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Figure 4.
Log10-Likelihood surfaces for unrooted cod datasets. The argmax is indicated by a dot.
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Table 3

Estimate for r and α for the [BBB94] Pacific Oyster dataset, with the most abundant type considered ancestral.

Ref. Location (r̂, α̂)

[BBB94] British Columbia (1.2, 1.15)
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Table 4

Maximum likelihood estimates for the Atlantic cod datasets, for the “rooted” genetrees (most abundant type
ancestral) and for the “unrooted” genetrees (summing over all possibilities of choosing ancestral types).

(r̂, α̂)

Ref. Location rooted unrooted

[AP96] Norway (0.7, 1.65) (0.7, 1.65)

[APP98] Baltic/ trans. area (0.6, 1.55) (0.5, 1.45)

[APKS00] Greenland subsample (0.7, 1.5) (0.7, 1.5)

[CM91] Norway/ Newfoundland (0.8, 1.4) (0.7, 1.35)

[CSHW95] Newfoundland (0.6, 1.5) (0.6, 1.45)

[PC93] Newfoundland (0.6, 1.4) (0.6, 1.4)

[SA03] Faroe Islands (0.7, 1.3) (0.7, 1.3)
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Table 5

Estimates for TMRCA given the different datasets assuming the Beta-coalescent as the true underlying model.
The respective estimated mean is given together with the corresponding credibility interval (CI), both in

coalescent time units and embedded in real time, based on (r̂, α̂) from Table 4.

coal. time real time (in kya)

Ref. est. mean CI est. mean CI

[AP96] 1.59 [0.70, 3.07] 115.5 [50.9, 222.8]

[APP98] 1.82 [0.82, 3.47] 113.1 [51.0, 215.5]

[APKS00] 1.60 [0.68, 3.11] 116.0 [49.0, 225.7]

[CM91] 1.38 [0.55, 2.76] 114.8 [45.2, 229.0]

[CSHW95] 1.52 [0.55, 3.11] 94.7 [34.5, 193.1]

[PC93] 1.86 [0.75, 3.66] 115.5 [46.4, 227.6]

[SA03] 1.72 [0.77, 3.25] 124.6 [55.6, 235.9]
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Table 6

Estimates for TMRCA given the different datasets assuming Kingman’s coalescent. The respective estimated
mean is given together with the corresponding credibility interval (CI), both in coalescent time units and
embedded in real time.

coal. time real time (in kya)

Ref. est. mean CI est. mean CI

[AP96] 1.19 [0.58, 2.22] 148.0 [72.7, 276.3]

[APP98] 1.29 [0.63, 2.41] 147.1 [71.6, 274.4]

[APKS00] 1.05 [0.51, 1.96] 151.7 [74.3, 284.3]

[CM91] 0.90 [0.45, 1.67] 158.0 [78.6, 293.4]

[CSHW95] 0.86 [0.43, 1.61] 151.8 [75.5, 284.2]

[PC93] 1.12 [0.53, 2.12] 162.8 [77.5, 307.6]

[SA03] 0.95 [0.49, 1.69] 186.7 [97.4, 333.6]
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