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Most animals from flies to humans count on circadian clocks to synchronize their physiology and behaviors. Daily light cycles are well
known environmental cues for setting circadian rhythms. Warmer and cooler temperatures that mimic day and night are also effective in
entraining circadian activity in most animals. Even vertebrate organisms can be induced to show circadian responses through exposure
to temperature cycles. In poikilothermic animals such as Drosophila, temperature differences of only 2–3°C are sufficient to synchronize
locomotor rhythms. However, the molecular sensors that participate in temperature regulation of circadian activity in fruit flies or other
animals are enigmatic. It is also unclear whether such detectors are limited to the periphery or may be in the central brain. Here, we
showed that Drosophila TRPA1 (transient receptor potential cation channel A1) was necessary for normal activity patterns during
temperature cycles. The trpA1 gene was expressed in a subset of pacemaker neurons in the central brain. In response to temperature
entrainment, loss of trpA1 impaired activity, and altered expression of the circadian clock protein period (Per) in a subset of pacemaker
neurons. These findings underscore a role for a thermoTRP in temperature regulation that extends beyond avoidance of noxious or
suboptimal temperatures.

Introduction
Circadian rhythms are self-sustained molecular oscillations,
which adjust to environmental changes, such as daily oscillations
in light intensities (Reppert and Weaver, 2002; Allada and
Chung, 2010; Hardin, 2011; Kwon et al., 2011; Peschel and
Helfrich-Forster, 2011). Day/night cycles enable animals to reg-
ulate innate behaviors, such as activity patterns. In standard lab-
oratory strains of the fruit fly, Drosophila melanogaster, the
animals display activity peaks at dawn and dusk. Once their activity is
entrained by the light fluctuations, the flies show anticipatory behav-
ior, which is increased movement before the times that the lights are
turned on and off. Another feature of entrainment is that the animals
sustain their cyclic behavior in constant darkness.

Over the last 30 years, there has been enormous progress in
unraveling the molecular mechanisms underlying the Drosophila
light-driven clock (Allada and Chung, 2010; Hardin, 2011;

Peschel and Helfrich-Forster, 2011). Light input requires the blue
light photoreceptor cryptochrome (Cry), which functions cell-
autonomously in pacemaker neurons in the central brain (Emery
et al., 1998, 2000; Stanewsky et al., 1998; Krishnan et al., 2001).
Changes in circadian activity are controlled by an internal clock
that depends on several clock genes and proteins, such as period
(Per), which cycle in concentration and in spatial distribution
over the circadian cycle in the pacemaker neurons (Konopka and
Benzer, 1971; Bargiello et al., 1984; Reddy et al., 1984; Baylies et
al., 1987; Siwicki et al., 1988; Zwiebel et al., 1991; Hardin et al.,
1992; Curtin et al., 1995).

In addition to light, which is considered to be the strongest
Zeitgeber (given time; ZT), it has been long-known that temper-
ature cycles can also synchronize locomotor rhythms in both
vertebrate and invertebrate organisms (Roberts, 1962; Helfrich,
1986; Wheeler et al., 1993; Glaser and Stanewsky, 2005, 2007;
Boothroyd et al., 2007; Dubruille and Emery, 2008; Buhr et al.,
2010; van der Linden et al., 2010). Peripheral neurons participate
in temperature entrainment (Glaser and Stanewsky, 2005;
Sehadova et al., 2009). In addition, a subset of central pacemaker
neurons also contribute to temperature-induced synchroniza-
tion of locomotor activity and these cells depend on input from
the peripheral tissues (Yoshii et al., 2005; Busza et al., 2007;
Miyasako et al., 2007; Picot et al., 2009; Sehadova et al., 2009).
However, we do not know whether central pacemaker neurons
express temperature sensors that function in temperature en-
trainment.

Members of the TRP family of cations comprise a well estab-
lished class of temperature detectors (Ramsey et al., 2006;
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Venkatachalam and Montell, 2007; Damann et al., 2008). Among
these channels is Drosophila TRPA1, which functions in the
avoidance of noxious tastants (Kang et al., 2010; Kim et al., 2010),
insect repellents (Kim et al., 2010), excessively bright light (Xiang
et al., 2010), and uncomfortably warm and slightly suboptimal
temperatures (Viswanath et al., 2003; Rosenzweig et al., 2005;
Kwon et al., 2008; Neely et al., 2011; Shen et al., 2011; Kang et al.,
2012; Zhong et al., 2012). Here, we identified a role for Drosophila
trpA1 in temperature synchronization of circadian activity. trpA1
was expressed and functioned in a subset of pacemaker neurons
in the brain. These data provide evidence that a subset of pace-
maker neurons contribute to temperature synchronization of
circadian activity through functioning cell-autonomously in
temperature sensation.

Materials and Methods
Fly stocks. We previously described the generation of the trpA11 (Kwon et
al., 2008) and trpA1GAL4 (Kim et al., 2010), which we deposited at the
Bloomington Stock Center. Both trpA1 mutants were backcrossed into a
w1118 background for five generations. The w1118 strain was used as
the wild-type control. The tim-GAL4 and cry-GAL4 were contributed
by A. Seghal (University of Pennsylvania, Philadelphia, PA) and M.
Roshbash (Brandeis University, Waltham, MA), respectively. The
w1118 and the UAS-mCD8::GFP flies were from the Bloomington
Stock Center.

Immunohistochemistry. Immunostainings of adult brains were per-
formed as previously described (Lee et al., 2009), except for the addition
of the pre-fix step to prepare the data shown in Figures 2, 3, and 6. Briefly,
we isolated flies at ZT9 or ZT21 after 5 or 6 d of temperature entrainment
(18 h 29°C/6 h 18°C) as mentioned in the figure legends, and fixed the
whole flies for 1–2 h with 4% paraformaldehyde in phosphate buffer with
0.1% Triton X-100. We dissected the brains and postfixed them on ice for
45 min by inserting them in 24-well cell culture cluster plates (Costar)
containing 940 �l of fix buffer (0.1 M PIPES, pH 6.9, 1 mM EGTA, 1%
Triton X-100, 2 mM MgSO4, 150 mM NaCl) and 60 �l of 37% formalde-
hyde. To perform the immunostainings shown in Figure 4, we used 3- to
7-d-old flies that were entrained using light/dark cycles for 3–5 d. We
then dissected the brains at ZT23 and fixed them without a pre-fix. The
tissues were washed three times (1� PBS, 0.2% saponin) and blocked
overnight at 4°C with 1 ml of Blocking Buffer (1� PBS, 0.2% saponin, 5
mg/ml BSA). The tissues were incubated with the primary antibodies for
24 h at 4°C, washed three times, blocked for 15 min and incubated with
the secondary antibodies (Alexa Fluor 488 and Alexa Fluor 568, 1:200;
Invitrogen) for 4 h at 4°C, and washed three times. The tissues were
transferred into 1.25� PDA solution (37.5% glycerol, 187.5 mM NaCl,
62.5 mM Tris, pH 8.8) and viewed by confocal microscopy (Carl Zeiss
LSM510). Primary antibodies were used at the following dilutions:
mouse anti-GFP (1:1000, Invitrogen), rabbit anti-GFP (1:1000, Santa
Cruz Biotechnology), mouse anti-�-GAL (1:1000, Promega), and rat
anti-Per (1:1500; gift from A. Seghal and M. Wu).

Behavioral assays. For circadian locomotor behavior, we used the Dro-
sophila Activity Monitoring (DAM) system (TriKinetics), which auto-
matically records activity every time a fly crosses an infrared beam.
Three- to 7-d-old flies were loaded into tubes that had 1% agarose and
5% sucrose food at one end. We entrained the flies to light/dark (LD)
cycles for 3–5 d at 25° or 18°C before changing to the next conditions,
such as darkness only (16°, 18°, 25°, or 29°C) or thermophase/cryophase
(TC) cycles as indicated in the figures.

The TC entrainments in Figures 1 and 7 were performed as follows.
The flies were entrained initially using 12 h light/12 h dark cycles for 4 d
at 18°C, followed by 7 d of 18 h thermophase (29°C) and 6 h cryophase
(18°C) cycles in constant darkness. The thermophase cycles were ad-
vanced 8 h relative to the previous LD cycle. After temperature entrain-
ment, the flies were kept at 18°C in the dark (free run).

To perform the TC entrainment experiments shown in Figure 5 (an-
tiphase experiments), the flies were entrained using 12 h LD cycles for 3 d
at 25°C followed by 6 d of 12 h thermophase (25°C) and 12 h cryophase

(16°C) TC cycles in constant darkness. The warm and cold phases were
antiphase to the previous LD cycle, such that the first thermophase co-
incided with the time when the last night cycle during the LD cycle would
have occurred. After the temperature entrainment, the flies were main-
tained at 25°C for the free running analysis.

Data analyses were performed using ClockLab in conjunction with
MatLab, after collecting each file using 30 min bins. To determine the
period and Fast Fourier Transfer (FFT) values, we analyzed the data
obtained during the free runs (d 2–7) using � 2 periodograms and batch
analysis. If the � FFT was not 0.042 (which corresponded to a 24 h
period), the FFT values for the individual files were calculated manually.
If the value of the FFT was �0.05, this indicated that �5% of the power
was at that frequency and considered rhythmic. If the values for the FFT
were �0.03, the flies were considered arrhythmic. If the values were
between 0.05 and 0.03, the rhythmicities were considered to be
borderline.

Results
Loss of trpA1 altered activity during temperature
entrainment of circadian rhythm
The Drosophila TRPA1 channel is a candidate for sensing thermal
cycles that affect activity rhythms because it participates in ther-
motaxis (Rosenzweig et al., 2005; Kwon et al., 2008) and is di-
rectly activated in a range (�24°C) (Viswanath et al., 2003) that
functions in temperature synchronization of circadian rhythms
(18°–29°C). This is in contrast to two other thermally-activated
Drosophila TRP channels, Pyrexia and Painless, which are acti-
vated directly by temperatures with much higher thresholds
(40°C and 42°C, respectively) (Tracey et al., 2003; Lee et al.,
2005). To determine whether loss of the TRPA1 channel affected
activity patterns during temperature entrainment, we analyzed
trpA1 mutants using the DAM system (Chiu et al., 2010). Before
assaying circadian activity set by TC cycles, we first examined
activity entrained by 12 h LD cycles at a constant temperature
(25°C). The trpA1� controls (w1118; referred to as wild-type) have
activity peaks at “lights-on” (ZT0) and “lights-off” (ZT12; Fig.
1A) (Allada and Chung, 2010). Flies increase their activity before
the morning (lights on) or evening (lights off). This is called
“morning anticipation” and “evening anticipation” and is a hall-
mark of circadian entrainment (Fig. 1A) (Allada and Chung,
2010). The evening anticipation displayed by trpA1 mutants dur-
ing the LD cycles was similar to the wild-type control (Fig. 1A–C).
The trpA1 flies also displayed morning anticipation, although it
appeared to be reduced slightly (Fig. 1A–C). After allowing the
flies to free run in constant darkness (DD), the morning (dawn)
and evening (dusk) peaks remained, and the periodicities were
similar to wild-type (Fig. 1A–C; Table 1). During the DD cycles,
there also appeared to be reduced morning anticipation in trpA1
mutants (Fig. 1A–C). Thus, with the exception of a reduction in
morning anticipation, the trpA1 flies behaved similarly to wild-
type during the LD cycle and during the DD free run.

To address whether loss of trpA1 impaired temperature
synchronization of circadian activity, we switched from a LD
cycle at 18°C, to constant darkness and used thermophase
(29°C; simulates day) and cryophase (18°C, simulates night)
cycles (Busza et al., 2007). To clearly resolve the morning and
evening peaks, we initiated the first thermophase cycle 4 h into
the final night cycle. We used 18 and 6 h TC cycles, which help
separate the morning and evening peaks (Busza et al., 2007).
Using this paradigm, wild-type flies reestablish morning and
evening peaks within �3 d, including pronounced evening
anticipation (Fig. 1 D, G, red and blue arrows on TC day 3,
which was day 7 overall; note that except for day 1, each day of
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activity is shown on two lines to facilitate comparisons with
the previous and following days).

Both trpA1 alleles (trpA1GAL4 and trpA11) (Kwon et al., 2008;
Kim et al., 2010) displayed differences from wild-type during the
TC cycles. During the first TC cycle the trpA1 mutants exhibited
double peaks (Fig. 1E,F, two red arrows on TC day 1, overall day

5). The second peak approximately coincided with the original
morning peak established during the LD entrainment, suggesting
that this peak persisted. In addition, the morning peaks during
the TC cycles were reduced (Fig. 1D–I). The evening activity
exhibited by the mutant flies initiated slightly earlier than wild-
type (advanced activity), and was broader (Fig. 1D–I). During

Figure 1. Actograms using LD and TC entrainment. A–C, Average activities of male flies on day 4 under LD conditions (12 h light/dark cycles at 25°C), and day 1 under constant darkness (free run
at 25°C). ZT times are indicated. The white, black, and gray bars represent day, night, and subjective day, respectively. A, w1118. B, trpA1GAL4. C, trpA11. D–F, J, K, Average normalized activities for
the indicated genotypes. Flies were maintained for 4 d at 18°C �12 h light/dark cycles (LD 18°C) and entrained for 7 d under constant darkness using 18 h (29°C) thermophases/6 h (18°C) cryophases
(TC dark). The flies were then kept at a constant temperature (18°C) in the dark (free run 18°C). Except for overall days 1 and 17, the daily activities are presented on two lines. The top white and black
bars indicate LD cycles. The bottom red and blue bars indicate TC cycles. The red and blue shading indicates warm and cool phases, respectively. D, w1118. The red and blue arrows on overall day 7
(TC day 3) indicate examples of morning and evening activities, respectively. E, trpA1GAL4. F, trpA11. The two arrows on overall day 5 (TC day 1) indicate small double peaks. G–I, Activities from TC
day 3 (overall day 7) from D–F, respectively. G, w1118. H, trpA1GAL4. I, trpA11. J, UAS-hid/�;cry-GAL4/�. Asterisks indicate smaller and broader evening activities. K, UAS-hid/�;cry-GAL4,trpA11/
trpA11. L, M, Activities from TC day 3 (overall day 7) from J and K, respectively. N, Periods between evening activity peaks from D–F. The error bars represent SEM. The asterisks indicate significant
differences from wild-type (*p � 0.05, **p � 0.01) based on ANOVA and the Scheffé post hoc test.
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the TC cycles the trpA1 mutants required an additional day com-
pared with wild-type to establish a constant period between the
evening activity peaks (Fig. 1N). By TC day 2, wild-type displayed
a period comparable to that during LD4 (Fig. 1N; TC2, 23.67 �
0.07; LD4, 23.90 � 0.00). However, the trpA1 mutants did not
exhibit a similar period until TC day 3 (Fig. 1N; trpA1GAL4,
23.68 � 0.09; trpA11, 23.53 � 0.17).

Because trpA1 mutants still have rhythmic activity induced by
temperature entrainment, we tested whether the effect of remov-
ing trpA1 would be enhanced by genetically ablating a subset of
pacemaker neurons. In the Drosophila brain there are �150 pace-
maker neurons. In addition to six lateral posterior neurons
(LPNs), the other pacemaker neurons sort into two major groups
(Allada and Chung, 2010). These include the lateral neurons (LNs),
which are located in the anterior cortex between the central brain
and optic lobe, and the dorsal neurons (DNs) situated in the cortex

associated with the dorsal protocerebrum. The LNs are divided into
five small and four large ventrolateral neurons (s-LNvs and l-LNvs,
respectively) and six dorsolateral neurons (LNds) in each hemi-
sphere. There are also three groups of DNs (DN1, DN2, and DN3).
Several pacemaker neurons have been suggested to participate in
temperature entrainment of circadian rhythms. These include LNvs
(Busza et al., 2007), DN1s (Zhang et al., 2010), DN2s (Busza et al.,
2007; Picot et al., 2009), and LPNs (Busza et al., 2007; Yoshii et al.,
2009). In addition, the concentration of Per in LPNs changes
strongly in response to TC cycles but not to LD cycles (Busza et al.,
2007). With the exception of the LPNs and DN2s, most pacemaker
neurons including the LNvs, LNds, and some DN1s and DN3s are
removed by expressing the proapoptotic gene UAS-hid under the
control of the cry-GAL4 (Busza et al., 2007). Therefore, we compared
temperature entrainment of circadian activity in UAS-hid;cry-GAL4
flies in the presence or absence of the trpA11 mutation. As previously

Table 1. Circadian rhythmicity

Genotype Entrain condition Entrain temp (°C) Free run (°C) n Rhy (%) Period (h) FFT

Wild-type LD 25 25 77 95 23.93 � 0.03 0.15 � 0.01
trpA1GAL4 LD 25 25 59 90 23.90 � 0.04 0.17 � 0.01
trpA1GAL4/� LD 25 25 16 100 23.83 � 0.02 0.21 � 0.02
trpA11 LD 25 25 32 94 23.63 � 0.05 0.15 � 0.01
Wild-type LD 29 29 16 100 23.69 � 0.06 0.15 � 0.01
trpA1GAL4 LD 29 29 16 100 23.66 � 0.05 0.14 � 0.01
trpA1GAL4/� LD 29 29 15 100 23.68 � 0.03 0.14 � 0.01
Wild-type TC 25/16 25 45 93 23.66 � 0.08 0.15 � 0.01
trpA11 TC 25/16 25 45 96 23.28 � 0.04* 0.13 � 0.01
trpA1GAL4 TC 25/16 25 36 83 23.11 � 0.08* 0.10 � 0.01
trpA1GAL4/trpA11 TC 25/16 25 31 100 23.36 � 0.07* 0.15 � 0.01
UAS-trpA1-A;trpA1GAL4 TC 25/16 25 28 96 23.64 � 0.04 0.22 � 0.01
UAS-trpA1-A;trpA11 TC 25/16 25 29 97 23.19 � 0.07* 0.08 � 0.01
tim-GAL4/�;trpA11 TC 25/16 25 16 81 23.32 � 0.12* 0.10 � 0.01
tim-GAL4/UAS-trpA1-A; trpA11 TC 25/16 25 16 88 24.12 � 0.09 0.15 � 0.02
trpA1GAL4/� TC 25/16 25 16 100 23.71 � 0.06 0.20 � 0.02

The flies were exposed to either LD or TC using a 12/12 h paradigm. Data are shown as the period and FFT values (�SEM) after the LD or TC cycles during days 2–7 of the free runs.

*p � 0.05, significant differences from wild-type using ANOVA and the Scheffé post hoc tests. Rhy, Rhythmicity.

Table 2. Circadian rhythmicity

Genotype Entrain temp (°C) Free run (°C) n Rhy (%) Period (h) FFT

Wild-type 29/18 18 29 86 23.52 � 0.07 0.11 � 0.01
trpA11 29/18 18 30 90 23.32 � 0.07 0.15 � 0.01
trpA1GAL4 29/18 18 30 80 23.48 � 0.14 0.13 � 0.01
UAS-hid/cry-GAL4 29/18 18 32 41 27.12 � 1.15 0.19 � 0.01
UAS-hid/cry-GAL4;trpA11 29/18 18 32 6 23.00 � 0.90 0.08 � 0.02
per01 29/18 18 31 23 26.50 � 1.64 0.05 � 0.01
UAS-trpA1-A /cry-GAL4;trpA11 29/18 18 16 94 22.03 � 0.13 0.09 � 0.01
UAS-trpA1-B/�;trpA11 29/18 18 32 97 23.73 � 0.09 0.20 � 0.01
tim-GAL4/�;trpA11 29/18 18 32 88 24.14 � 0.38 0.20 � 0.01
UAS-trpA1-B /tim-GAL4;trpA11 29/18 18 17 100 23.90 � 0.10 0.19 � 0.01
Wild-type 29/18 29 15 73 23.33 � 0.25 0.09 � 0.01
trpA11 29/18 29 16 100 22.68 � 0.11* 0.10 � 0.01
trpA1GAL4 29/18 29 15 67 22.72 � 0.09* 0.08 � 0.01
per01 29/18 29 16 0
UAS-hid/cry-GAL4 29/18 29 16 38 22.94 � 0.19 0.08 � 0.01
UAS-hid/cry-GAL4;trpA11 29/18 29 16 6 22.9 1 0.122 1

Wild-type 25/16 16 16 75 23.16 � 0.20 0.07 � 0.01
trpA11 25/16 16 16 100 21.88 � 0.26* 0.07 � 0.01
UAS-trpA1-A;trpA11 25/16 16 16 81 21.78 � 0.54* 0.07 � 0.01
UAS-trpA1-A /tim-GAL4;trpA11 25/16 16 15 93 22.56 � 0.21 0.08 � 0.01
UAS-trpA1-A /cry-GAL4;trpA11 25/16 16 16 69 22.31 � 0.14* 0.05 � 0.01
per01 25/16 16 16 0

The flies were entrained under 18 h thermophase/6 h cryophase conditions and either 29°/18°C or 25°/16°C TC cycles. The free runs were performed at either 18° or 29°C. The period and FFT values (�SEM) are based on the free runs (days
2–7).

*p � 0.05, significant differences from wild-type, based on ANOVA and the Scheffé post hoc tests. 1No error bars are presented because only one UAS-hid/cry-GAL4;trpA11 fly showed rhythmicity.

Lee and Montell • TRPA1 and Temperature Control of Circadian Rhythm J. Neurosci., April 17, 2013 • 33(16):6716 – 6725 • 6719



described, during a LD cycle, the UAS-hid;cry-GAL4 flies were miss-
ing the usual morning and evening peaks of activity, except for brief
startle responses when the lights were turned on and off (Stoleru et
al., 2004; Busza et al., 2007) (Fig. 1J). When these flies were switched
to a TC cycle, they displayed two broad peaks (Fig. 1J,L) (Busza et al.,
2007). During the free run at 18°C, 41% of the flies displayed rhyth-
micity (Table 2).

Of significance here, when we combined the trpA11 mutation
with the UAS-hid;cry-GAL4 transgenes, the activity peaks during
the TC cycles were virtually eliminated, and the flies were nearly
arrhythmic during the free runs (6% rhythmicity) (Fig. 1K,M;
Table 2). We obtained similar results when switched from the TC
cycles to a free run using a constant thermophase (29°C) instead
of cryophase (Table 2). Because introduction of the trpA1 muta-
tion into the sensitized UAS-hid;cry-GAL4 background virtually

eliminated the activity peaks during the TC cycles, and caused the
flies to lose nearly all rhythmicity during the free runs, TRPA1
appears to contribute to TC entrainment of circadian rhythm.
Even without the sensitized background (UAS-hid;cry-GAL4),
loss of trpA1 alone shortened the periodicity during the 29°C free
run following 29°/18° TC cycles (18/6 h phases) (Table 2), and
during the 16°C free run following 25°/16°C cycles (18/6 h
phases) (Table 2).

Increased variation in Per expression in trpA11

In wild-type pacemaker neurons, the concentration of the clock
protein Period (Per) (Konopka and Benzer, 1971; Citri et al.,
1987) oscillates during the circadian cycle (Siwicki et al., 1988;
Yoshii et al., 2005; Allada and Chung, 2010). Per is high at ZT21
(middle of the night) and ZT3 (early morning), and low at ZT9

Figure 2. Relative Per levels during a TC cycle at ZT21 and ZT9. Three- to 7-d-old flies were entrained under a TC cycle (29°/18°C) for 6 d and dissected either at ZT21 or ZT9, and stained with
anti-Per. The genotypes are indicated. More than 10 hemispheres were examined per genotype. The upper and bottom are anterior and posterior views, respectively. The diagrams represent adult
brains. The boxes indicate the brain regions shown. The positions of the clusters of pacemaker neurons are presented. A–D, ZT21. E–H, ZT9. Scale bars, 50 �m.
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(middle of the day) and ZT15 (late afternoon (Figs. 2A,E, 3A–G).
The pacemaker neurons in the trpA1 mutants displayed oscilla-
tions in Per, but the patterns of the oscillations and concentra-
tions of Per among pacemaker neurons were more variable in
trpA11, especially in combination with UAS-hid;cry-GAL4. The
Per intensities and oscillations in trpA11 brains were similar
to wild-type in some pacemaker neurons (e.g., l-LNvs, Figs.
2A,B,E,F, 3B). At ZT9, when Per expression was relatively low in
wild-type, Per was elevated in some trpA11 and UAS-hid;cry-
GAL4,trpA11 pacemaker neurons (e.g., s-LNvs and LNds, Figs.
2E,F, 3D,E; or DN3, Figs. 2H, 3G). Per expression also tended to
be lower at ZT21 in trpA11 LPNs, DN1s, and DN2s, although the
differences were not statistically significant using ANOVA (Figs.
2A,B, 3A,C,F). However, in a UAS-hid;cry-GAL4;trpA11 back-
ground, Per was virtually undetectable in LPNs at ZT21 (Figs. 2D,
3A), and showed only mild oscillations in Per expression in mul-

tiple pacemaker neurons (e.g., LPNs, DN1s, and especially DN3s,
Fig. 3A,C,G).

We also examined the subcellular localization of Per. In wild-
type pacemaker neurons, with the exception of the l-LNvs, Per
was primarily in the cytosol at ZT9, and in the nucleus at ZT21
(Figs. 2A,E, 3H). However, we occasionally detected Per nuclear
localization in l-LNvs earlier than s-LNvs (Fig. 3H). At ZT9, Per
was distributed in both the cytosol and nucleus of l-LNvs, and
primarily in the cytosol of s-LNvs (Figs. 2E, 3H). The subcellular
distribution of Per was similar in the mutant pacemaker neurons;
however, Per expression in trpA11 tended to be higher and more
variable than in wild-type at ZT9 (Figs. 2E,F, 3H). This suggests
that the oscillation of Per in trpA11 was slightly advanced, consis-
tent with the behavioral results (Table 2).

Expression of trpA1 in pacemaker neurons contributes to
temperature synchronization of locomotor activity
Peripheral neurons participate in temperature entrainment of
circadian rhythm (Sehadova et al., 2009). Thus, TRPA1 could
promote TC control of circadian activity either by functioning in
peripheral neurons that send axons to pacemaker neurons,
and/or by acting in pacemaker neurons. To address this question,
we first examined the presumptive expression pattern of trpA1
using a GAL4 reporter that we inserted previously at the position
of the endogenous trpA1 translation initiation site (Kim et al.,
2010) in combination with a UAS-nuclear::lacZ::GFP. The trpA1
reporter was expressed in many pacemaker neurons, which
also expressed Per (Fig. 4). These included all three LPNs (Fig.
4A), and 1–3 neurons in other groups of pacemaker neurons
(Fig. 4B–E).

To address whether trpA1 has a role in pacemaker neurons for
temperature synchronization of activity rhythms (29°/18°C TC
cycles), we set out to perform rescue experiments with a trans-
gene that expressed TRPA1-A (Kwon et al., 2010). However, this
greatly reduced viability due to activation of the TRPA1 channel
at 29°C (Viswanath et al., 2003). Therefore, we used lower tem-
peratures for the TC cycles (25° and 16°C), which had no adverse
effects on viability. We entrained the flies with a LD cycle, and
initiated the first cryophase (simulates night) when the light cycle
would have initiated, as previously described (Glaser and
Stanewsky, 2005). This “antiphase paradigm” causes wild-type
flies to display a robust single peak in the middle of the thermo-
phase (Glaser and Stanewsky, 2005) (Fig. 5A). During the subse-
quent free running period at 25°C, the single peak during the
thermophase persisted for many days (Fig. 5A).

Using the lower TC temperatures (25°/16°C), the trpA1 mu-
tant phenotype was relatively subtle, indicating that TRPA1 was
more important for temperature controlled circadian activity us-
ing higher thermophase conditions (29°C). Nevertheless, there
were two differences from wild-type, which we used to test for
rescue. First, during the first 4 d of the TC cycles, trpA11, or
UAS-trpA1-A;trpA11 flies exhibited additional activity near the
end of the cryophase cycle, which corresponded approximately
with the former evening period under the LD cycles (Fig. 5B,C,
red asterisks). Second, during the free run, the circadian cycle was
slightly shorter in trpA11 and trpA1GAL4 (23.28 � 0.04 and
23.11 � 0.08, respectively) (Table 1) than in w1118 (23.66 � 0.08;
Table 1). To test for rescue, we expressed UAS-trpA1-A under the
control of the tim-GAL4, which was expressed in pacemaker neu-
rons (Dubruille and Emery, 2008). The extra peaks in the UAS-
trpA1-A;trpA11 control flies during days 2– 4 of the TC cycles
(Fig. 5C, asterisks) were diminished or eliminated (Fig. 5D), and
the length of the circadian cycle during the free run was similar to

Figure 3. Quantification of Per oscillations in clock neurons. Three- to 7-d-old flies were
entrained under a TC cycle (29°/18°C) for 5 d. The brains were then dissected at ZT3, ZT9, ZT15,
or ZT21 and stained with anti-Per. A–G, The genotypes and the types of pacemaker neurons are
indicated. Data are not indicated for Per levels in l-LNvs, s-LNvs, and LNds since these pacemaker
neurons are eliminated in UAS-hid/cry-GAL4;trpA11 (Busza et al., 2007). We confirmed this
finding by immunostaining with anti-Per and anti-PDF (data not shown), the latter of which
labels only l-LNvs and s-LNvs in wild-type (Renn et al., 1999). The fluorescence intensities were
quantified using MacBiophotonics ImageJ software using 3D reconstruction images (10 –27
brain hemispheres per sample). The formula for the relative intensity ( I) is I � 100(S � B)/B,
where S is the fluorescence intensity and B is the background intensity of the region adjacent to
the pacemaker neuron (Picot et al., 2009). The error bars indicate SEM. The asterisks indicate
significant differences from wild-type (*p � 0.05, **p � 0.01) based on ANOVA and the
Scheffé post hoc tests. H, Colabeling with anti-Per (green) and anti-PDF (red) from w1118 and
trpA11 l-LNvs, and s-LNvs at ZT9 and ZT21.
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wild-type (Table 1). We confirmed that the tim-GAL4 was ex-
pressed in LPNs, as the tim-GAL4/UAS-nlacZ::GFP was coex-
pressed with the Per protein (Fig. 6A–C). We also rescued the
trpA1GAL4 mutant phenotype using the UAS-trpA1-A;trpA1GAL4

transgenes (Fig. 5E,F; Table 1). Moreover, we performed the
lower TC temperatures (25°/16°C) using the 18/6 h paradigm
that we used with the higher temperature TC cycles (29°/18°C).
Under these latter conditions, the main difference from wild-type
was that the periodicity was shorter (wild-type, 23.16 � 0.20;
trpA11, 21.88 � 0.26) (Table 2). The rescue of this phenotype by
expression of UAS-trpA1-A under control of the tim-GAL4 was
statistically significant, whereas the suppression resulting from
expression of UAS-trpA1-A under control of the cry-GAL4 was
not (Table 2).

Recently it was reported that TRPA1 is expressed as at least four
isoforms, two of which (TRPA1-B and TRPA1-C) are not activated
directly by elevated temperatures (Kang et al., 2012; Zhong et al.,
2012). Therefore, to address whether or not TRPA1 might be a direct
thermosensor in pacemaker neurons, we expressed UAS-TRPA1-B
in trpA11 mutant animals pacemaker neurons under the control of
the tim-GAL4, and used the 16 h 29° and 8 h 18°C TC paradigm

described above. We found that introduction of TRPA1-B in pace-
maker neurons (UAS-trpA1-B/tim-GAL4;trpA11) restored the
morning peak (Fig. 7C), which was reduced in trpA1 mutant control
flies (Fig. 7A,B). In addition, expression of TRPA1-B in pacemaker
neurons reduced the advanced evening activity, and decreased the
mid-thermophase activity displayed by the trpA11 mutant animals
(Fig. 7A–C). Using this TC paradigm, wild-type flies were capable of
establishing the same periodicity between the evening peaks on TC2,
as was displayed on LD4 (Figs. 1N, 7D, LD4, 23.49�0.09; TC2,
23.41 � 0.09). The trpA1 mutant flies required an additional day,
and did not show a periodicity similar to LD4 until TC3 (Figs. 1N,
7D, UAS-trpA1-B/�;trpA11 and tim-GAL4/�;trpA11: LD4, 23.72 �
0.05 and 23.73 � 0.04, respectively; TC2, 23.01 � 0.16 and 22.76 �
0.14, respectively; TC3, 23.53 � 0.11 and 23.45 � 0.09, respectively).
However, the rescue flies (UAS-trpA1-B/tim-GAL4;trpA11) showed
a periodicity comparable to LD4 on TC2 (Fig. 7D, LD4, 23.75 �
0.07; TC2, 23.90 � 0.00).

Figure 4. Coexpression of the trpA1-reporter and Per in pacemaker neurons. Brains from 3-
to 7-d-old UAS-nlacZ::GFP/�;trpA1GAL4/� flies immunostained with anti-�-GAL and anti-Per
at ZT23 during LD cycles. The right panels are the merged images. A, LPN. B, LNv. C, LNd. These
3D images were reconstituted from confocal stacks. D, DN1 and 2. E, DN3. The arrowheads
indicate colabeling of Per and the trpA1 reporter. Scale bar, 10 �m.

Figure 5. Suppression of the trpA1 phenotype by expression of the wild-type trpA1 trans-
gene in pacemaker neurons. Average actograms using flies that were entrained to 12 h light/
dark cycles for 3 d at 25°C followed by 6 d of 12 h thermophase (25°C) and 12 h cryophase (16°C)
cycles in constant darkness. The warm and cool cycles, which simulate day and night, were the
reverse phase from the night and day during the LD cycles (antiphase paradigm). After the
temperature entrainment, the flies were kept at 25°C (free run). The white and black bars at the
top indicate the LD cycles and the red and blue bars at the bottom indicate the TC cycles. The
thermophases and cryophases are highlighted on the actograms with red and blue boxes,
respectively. Asterisks indicate sustained peaks that were not detected in the w1118 actogram.
A, w1118. B, trpA11. C, UAS-trpA1-A;trpA11. D, UAS-trpA1-A /tim-GAL4;trpA11. E, trpA1GAL4. F,
UAS-trpA1-A;trpA1GAL4.
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Discussion
Temperature entrainment of the central clock depends at least in
part on peripheral sensory neurons, and on the phospholipase C
(PLC) encoded by norpA, and a novel glutamate-rich protein

referred to Nocte (Glaser and Stanewsky,
2005; Sehadova et al., 2009). However, it
was unclear whether TC synchronization
of the circadian clock depends exclusively
on temperature sensation in peripheral neu-
rons or whether there exist one or more sen-
sors in the pacemaker neurons that
promotes temperature-controlled activity
patterns. Here, we conclude that a subset of
central pacemaker neurons functions cell-
autonomously in temperature synchroniza-
tion of circadian rhythm, and that TRPA1
contributes to this behavior.

TRPA1 may not function in all pace-
maker neurons since it appeared to be ex-
pressed in just a subset of these cells. The
LPNs would appear to constitute one class
of pacemaker neurons in which trpA1 is
functionally important since trpA1 was ex-
pressed in all thee LPNs, and flies with intact
LPNs but not other pacemaker neurons
(UAS-hid;cry-GAL4) were still capable of
TC entrainment of circadian rhythms.
Moreover, entrainment was eliminated if
the UAS-hid;cry-GAL4 transgenes were
combined with a trpA1 mutation. These
data are consistent with previous studies
suggesting that the LPNs contribute to tem-
perature control of circadian rhythm (Busza
et al., 2007; Yoshii et al., 2009). The TRPA1
channel may also function in other pace-
maker neurons since the trpA1 reporter was
expressed in at least one neuron in most

clusters of pacemaker neurons, including LNvs, DN1s, and DN2s,
which have also been proposed to contribute to TC entrainment
(Busza et al., 2007; Picot et al., 2009; Zhang et al., 2010). We suggest
that the trpA1-expressing neuron in each cluster might be the central
core sensory neuron that responds to temperature changes, and me-
diates TC sensitivity in other neurons within the clusters.

In addition to affecting TC-induced activity patterns, muta-
tion of trpA1 also impacted on TC-dependent cycling of Per ex-
pression in some pacemaker neurons. Thus, although central
brain neurons are not capable of undergoing TC entrainment in
the absence of peripheral input (Sehadova et al., 2009), it appears
that a temperature sensor in pacemaker neurons promotes nor-
mal fluctuations in Per expression. Because we observed altera-
tions in Per cycling in just a subset of pacemaker neurons, it
appears that the central neurons are not uniformly sensitive to
responding to temperature in a cell autonomous manner.

It has been proposed that separate sets of central neurons are
the most critical for light and temperature entrainment, and cry-
negative neurons may be the more important temperature sen-
sors (Busza et al., 2007; Miyasako et al., 2007; Picot et al., 2009;
Sehadova et al., 2009). Such specialization may limit temperature
interference with light entrainment (Sehadova et al., 2009). In
this context, it is worth noting that some trpA1-positive central
neurons were cry negative. For example, the trpA1 reporter was
expressed in three LNds (Fig. 4C), and that cry was expressed in
only three of six LNds. The Mai179-GAL4 is expressed in the
three Cry-positive LNd cells (Grima et al., 2004; Picot et al.,
2007), and five of six LNd cells were labeled with both reporters
(Fig. 6D–F), indicating that at least two trpA1-positive cells did
not overlap with the Cry-positive LNd cells.

Figure 6. Testing for coexpression of anti-Per with reporters in LPNs and LNds. A–C, The tim-GAL4 reporter was expressed in
LPNs. A brain was dissected from UAS-nlacZ::GFP/tim-GAL4 flies at ZT21, after the flies were exposed to 18 h thermophase (29°C)/6
h cryophase (18°C) cycles in the dark for 6 d. The brain was stained with anti-Per and anti-GFP. A, anti-Per (red). The arrows point
to LPN neurons that were Per positive. B, anti-GFP (green). C, The merged image from A and B. D–F, Colabeling with anti-Per (red)
and anti-GFP (green) from UAS-mCD8::GFP/Mai179-GAL4;trpA1GAL4/� flies at ZT21 after entraining flies under TC cycles for 6 d in
the dark. D, anti-Per (red). A total of six LNds are labeled. The arrows point to LNds that were Per and GFP positive in merged image
in F. E, Anti-GFP (green). F, The merged image from D and E. Scale bar, 10 �m.

Figure 7. Suppression of the trpA1 phenotype by expression of the trpA1-B isoform in pacemaker
neurons. Flies were maintained and entrained using the same paradigm as in Figure 1D–K. A–C,
Average activities of male flies on TC day 3 (overall day 7) for the indicated genotypes. D, Periods between
evening activity peaks from LD4 to TC5. The error bars represent SEMs. The asterisks indicate significant dif-
ferencesfromwild-type(*p�0.05,**p�0.01)basedonANOVAandtheScheffé post hoctest.
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TRPA1 contributes to temperature control of circadian
rhythm, but does not appear to be a direct temperature sensor in
pacemaker neurons for two reasons. First, loss of TRPA1 impairs
25°/16°C TC cycles, and these temperatures are below the ther-
mal threshold for activation of TRPA1, which is �27°C. Second,
introduction of a temperature-insensitive TRPA1 isoform
(TRPA1-B) (Kang et al., 2012; Zhong et al., 2012) in trpA1 mu-
tant flies restored the morning peaks during 29°/18°C TC cycles,
reduced the advanced evening activity, decreased the mid ther-
mophase activity of the mutants and eliminated the need for one
additional day to establish a constant period between the evening
activity peaks. These data suggest that TRPA1 might function
downstream of another temperature sensor. Although the iden-
tity of the thermosensor remains to be identified, the activity of
TRPA1 might be coupled to the PLC that is encoded by norpA.
This is plausible because NORPA contributes to this temperature
entrainment pathway (Glaser and Stanewsky, 2005), and TRPA1
acts downstream of NORPA to promote temperature sensation
in larvae (Kwon et al., 2008).

TRPA1 cannot define the only pathway that contributes to
temperature synchronization of circadian rhythm because muta-
tion of trpA1 alone had a modest effect, although when combined
with the UAS-hid;cry-GAL4 transgenes, temperature entrain-
ment was eliminated. If a second cation channel promotes TC
synchronization, it may not belong to the TRP superfamily, be-
cause no other Drosophila TRP appears to be activated by envi-
ronmental temperatures in the range that functions in control of
circadian rhythms. Given that input from peripheral tissues, such
as chordotonal organs, impacts on temperature entrainment
(Sehadova et al., 2009), we suggest that thermal sensors exist in
both central pacemakers and in peripheral neurons to synchro-
nize activity by TC cycles. It is also plausible that additional ther-
mosensory input is mediated through central brain cells that are
not pacemaker neurons. Nevertheless, because TRPA1 is one
channel that promotes temperature control of circadian rhythm,
our findings demonstrate that the roles of a thermoTRP in a
poikilothermic organism are not limited to the avoidance of un-
desirable temperatures.
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