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Abstract
Context—There are no effective pharmacotherapies for stimulant dependence but there are many
plausible targets for development of novel therapeutics. We hypothesized that dopamine-related
targets are relevant for treatment of stimulant dependence, and there will likely be individual
differences in response to dopaminergic challenges.

Objective—To measure behavioral and brain functional markers of drug-related attentional bias
in stimulant-dependent individuals studied repeatedly after short-term dosing with dopamine D2/
D3 receptor antagonist and agonist challenges.

Design—Randomized, double-blind, placebo-controlled, parallel-groups, crossover design using
pharmacological functional magnetic resonance imaging.

Setting—Clinical research unit (GlaxoSmithKline) and local community in Cambridge, England.

Participants—Stimulant-dependent individuals (n=18) and healthy volunteers (n=18).

Interventions—Amisulpride (400 mg), pramipexole dihydrochloride (0.5 mg), or placebo were
administered in counterbalanced order at each of 3 repeated testing sessions.
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Main Outcome Measures—Attentional bias for stimulant-related words was measured during
functional magnetic resonance imaging by a drug-word Stroop paradigm; trait impulsivity and
compulsivity of dependence were assessed at baseline by questionnaire.

Results—Drug users demonstrated significant attentional bias for drug-related words, which was
correlated with greater activation of the left prefrontal and right cerebellar cortex. Attentional bias
was greater in people with highly compulsive patterns of stimulant abuse; the effects of
dopaminergic challenges on attentional interference and related frontocerebellar activation were
different between high- and low-compulsivity subgroups.

Conclusions—Greater attentional bias for and greater prefrontal activation by stimulant-related
words constitute a candidate neurocognitive marker for dependence. Individual differences in
compulsivity of stimulant dependence had significant effects on attentional bias, its brain
functional representation, and its short-term modulation by dopaminergic challenges.

CHRONIC STIMULANT DRUG abuse is associated with major adverse health, social, legal, and economic
consequences.1-3 Yet the pharmacological and psychological treatments available for
stimulant dependence are characterized by high dropout and relapse rates.4-6 There is a clear
need to improve treatment efficacy for the growing number of stimulant-dependent
individuals.3

Advances in neuroimaging research have contributed to a better understanding of the
neurobiological basis of stimulant dependence and have indicated some plausible targets for
pharmacological intervention. On the hypothesis that stimulant dependence may be
associated with a loss of “top-down” inhibitory control over lower-level reward
processing,7,8 several studies have investigated brain and behavioral responses to tasks, such
as the color-word Stroop paradigm, that entail attentional control to override an automatic
but incorrect response tendency.9-18 In studies of stimulant dependence, a drug-related
version of the Stroop test has been used to measure the degree of involuntary attention, or
attentional bias, toward drug-related words compared with neutral words.19-23 The increased
salience of drug-related cues, as measured by attentional bias in drug-word Stroop
paradigms, is thought to contribute to the maintenance of drug-taking behavior7,24 and has
demonstrated predictive value for the risk of relapse.12,21,25-27

The exact neurochemical mechanisms underpinning attentional bias to drug-related stimuli
in stimulant-dependent individuals (SDIs) are unknown, but attentional bias on the Stroop
paradigm is responsive to dopaminergic modulation.28-30 Dopamine is generally released in
response to reward-predicting or salient events31-33 and also in response to drug-related cues
in drug-dependent individuals.34,35 Accumulating evidence indicates that striatal dopamine
systems are disrupted in stimulant dependence.36-38 For example, studies using raclopride
positron emission tomography have shown that SDIs have a significantly lower binding
potential of striatal dopamine D2 receptors,39-41 which has usually been interpreted as a
marker of reduced postsynaptic receptor density.42 Reduced striatal dopamine receptor
density appears to be directly related to decreased metabolic activity in the orbitofrontal
cortex,39,40 a brain area implicated in compulsive behavior and craving.43

Collectively, these studies suggest that attentional bias predisposing to stimulant dependence
could be related to abnormal dopamine transmission and could therefore be treated by drugs
targeting dopamine receptors. There are rationales for both dopamine agonist and antagonist
drugs, and both have been tried, but the findings are inconsistent,5,44-47 in most cases
providing no more than weak evidence for therapeutic efficacy. One possible explanation for
this discrepancy between the theoretical strength of the target and the apparent lack of
clinical benefit is that stimulant dependence is a heterogeneous syndrome. There are
important psychological dimensions of difference between individuals, which may modulate
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their response to treatment and attenuate the power of clinical trials involving small numbers
of psychologically undifferentiated SDIs. Two psychological dimensions of particular
interest in this respect are impulsivity and compulsivity: both are known to be abnormal in
SDIs compared with nondependent people,24,48-50 and both have been linked to
dopaminergic mechanisms.51-54Impulsivity can be defined as loss of inhibitory control over
the response to rewarding or distracting stimuli and may play a role as both a cause and a
consequence of substance abuse55,56; compulsivity is defined as persistence or perseverance
of behavior in the absence of reward or despite punishment and may be particularly
important in the maintenance of drug-taking habits.54 Both impulsivity and drug-related
compulsivity have been linked with alterations in the dopamine system52,57,58 and are
thought to account for the variability of dopaminergic drug effects in SDIs.51

Herein, we tested 2 hypothetical predictions: (1) attentional bias for drug-related cues, and
related brain activation, would be abnormal in people with stimulant dependence and (2) the
effects of dopaminergic challenge drugs on attentional bias and related brain systems would
be influenced by individual differences in impulsivity and compulsivity among a group of
SDIs. We conducted a double-blind, placebo-controlled, pharmacological functional
magnetic resonance imaging (fMRI) study to evaluate the effects on drug-word Stroop task
performance of single doses of a dopamine D2/D3 receptor agonist (pramipexole
dihydrochloride, 0.5 mg) and a D2/D3 antagonist (amisulpride, 400 mg) administered in a
within-subjects crossover design to SDIs and healthy comparison volunteers.

METHODS
PARTICIPANTS

Thirty-six right-handed volunteers participated in this study: 18 individuals with a chronic
history of stimulant drug abuse, satisfying the DSM-IV-TR59 criteria for dependence on
either crack cocaine (n=5), cocaine (n=5), or amphetamines (n=8) and 18 matched healthy
controls. Stimulant-dependent individuals were non–treatment seeking and recruited from
the local community. Prior to study enrolment, all participants had a satisfactory medical
review and were screened for any other current Axis I psychiatric disorder using the
Structured Clinical Interview for the DSM-IV-TR Axis I Disorders.60 Participants were
excluded on the basis of any current Axis I psychiatric disorder, other than substance
dependence in SDIs. Participants were also screened for normal appearance of structural
MRI scans (http://www.neuroscience.cam.ac.uk/directory/profile.php?ke220). All
volunteers provided written informed consent and received monetary compensation for
participation. The study was approved by the Cambridge Research Ethics Committee
(REC06/Q0108/130; principal investigator, T.W.R.).

SHORT-TERM DOPAMINERGIC DRUG TREATMENTS
Amisulpride is a selective antagonist at the dopamine D2/D3 receptors. We administered a
single oral dose of 400 mg of amisulpride; no serious adverse events were reported.
Pramipexole is a selective agonist at the dopamine D2/D3 receptors61; we administered a
single oral dose of 1.5 mg of pramipexole dihydrochloride to the first 6 participants enrolled
in the study (3 SDIs, 3 nondependent volunteers). However, this dose of pramipexole was
poorly tolerated in the 3 nondependent volunteers, who were unable to perform the tasks at
this treatment session because of nausea, vomiting, sweating, and tiredness. Subsequently,
the dose of pramipexole dihydrochloride was reduced to 0.5 mg orally for all participants
(ie, for 18 controls [including the 3 volunteers who did not tolerate the higher dose] and 15
SDIs). All participants were also administered 30 mg of domperidone orally at each
treatment session to prevent emetic effects of dopamine receptor agonism (http://
www.neuroscience.cam.ac.uk/directory/profile.php?ke220).
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BASELINE ASSESSMENTS
All participants completed the Barratt Impulsiveness Scale as a measure of self-reported
impulsivity. In SDIs, drug-related compulsivity was assessed using the Obsessive
Compulsive Drug Use Scale,62,63 an equivalent to the Yale-Brown Obsessive Compulsive
Scale64 of symptom severity in obsessive-compulsive disorder. The Obsessive Compulsive
Drug Use Scale measures the amount of time, interference, and distress caused by stimulant-
related thoughts or urges and the efforts to resist them. Obsessive-compulsive tendencies in
controls were assessed by the Yale-Brown Obsessive Compulsive Scale (http://
www.neuroscience.cam.ac.uk/directory/profile.php?ke220).

ATTENTIONAL CONTROL TASKS
We used 2 versions of the Stroop task as tests of attentional control, based on the paradigm
used by Compton et al,65 in which participants were asked to indicate the font color of a
word displayed on the screen using a 4-button box. Each button corresponded to 1 of 4
possible font colors: red, blue, yellow, or green. The drug-word Stroop task involved 2 lists
of target words: 16 amphetamine-related and 16 cocaine-related words. Both lists were
matched with a list of 16 neutral words with regard to length and frequency. Equivalent to
the drug-word version, the color-word Stroop task also involved 2 lists of color words, each
including 8 distinct color words that were presented twice per block. Each color word was
always displayed in a font color incongruent with its meaning. Both lists of color words
were matched with neutral words for length and frequency (http://
www.neuroscience.cam.ac.uk/directory/profile.php?ke220).

Both the drug-word and the color-word Stroop tasks were presented as a blocked periodic
paradigm during fMRI (Figure 1). This design was chosen because interference effects in
emotional Stroop paradigms are thought to rely on a slow disengagement process66 that
generalizes to drug-related words,67 and the block design has therefore been the method of
choice in many prior studies investigating attentional interference in an emotional
context.65,68-70 For each word trial, the interstimulus interval was 2.2 seconds, including the
presentation of a fixation cross for 0.3 second followed by the presentation of a word for 1.9
seconds, during which time the participants had to register a response by button press. Each
block of words lasted 35.2 seconds, and 2 blocks of each word type were followed by a 38-
second fixation block (Figure 1). The order of the words within each block was randomized
and the order of the blocks was counterbalanced across participants and testing sessions. The
allocation of the font colors to the words was randomized; each of the 4 colors occurred
equally often in each word category. All participants were trained on the task prior to each
scanning session with a practice run of at least 1 color-word block and 1 block of different
neutral words to familiarize themselves with the task and to minimize practice effects. Acute
Stroop task–induced stimulant cravings were measured immediately before and after the
Stroop task by asking the following question: “How would you rate your current state of
craving on a scale from 0 to 100?”

Task performance was measured in terms of accuracy and latency of response to each trial.
Attentional bias for drug-related words was quantified by an interference score, calculated
for each individual as the median latency of correct responses to the drug-related words
minus the median latency of correct responses to the neutral words. Likewise, attentional
interference in the color-word Stroop task was calculated as the median latency of correct
responses to color words minus the median latency of correct responses to neutral words.
The median is generally more robust than the mean as a measure of central location in small
samples; however, the mean interference scores were also calculated for comparative
purposes (Table 1 and Table 2).
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ACQUISITION OF fMRI DATA
Whole-brain fMRI data were acquired at the Wolfson Brain Imaging Centre, University of
Cambridge, Cambridge, England, using a Siemens Magnetom Tim Trio whole-body scanner
operating at 3 T(Siemens Medical Solutions, Erlangen, Germany). During the performance
of each Stroop task, 32 transaxial sections of gradient echo, echoplanar imaging data
depicting blood oxygen level–dependent contrast were acquired parallel to the
intercommissural line with the following parameters: repetition time=2000 milliseconds,
echo time=30 milliseconds, flip angle=78°, slice thickness=3 mm plus 0.75-mm interslice
gap, image matrix size=64×64, and within-plane voxel dimensions=3.0 mm×3.0 mm. Prior
to data analysis, the first 5 echoplanar images were discarded to account for T1 equilibration
effects.

ANALYSIS OF DEMOGRAPHIC, PSYCHOMETRIC, AND BEHAVIORAL DATA
Using data from both groups, attentional interference scores, error, and craving data were
each analyzed separately using a repeated-measures analysis of covariance (ANCOVA)
model with drug treatment (3 levels: placebo, amisulpride, and pramipexole) as the within-
subject factor and group (2 levels: nondependent volunteers and SDIs) as the between-
subject factor. Using data from the patient group only, attentional interference was also
analyzed using a repeated-measures ANCOVA model with drug treatment (3 levels:
placebo, amisulpride, and pramipexole) as the within-subject factor and compulsivity
subgroup (2 levels: high and low) as the between-subject factor. In all analyses of attentional
interference scores, only data on correctly performed trials were included. To control for
group differences in depressive mood, education, and dose of pramipexole, we included the
Beck Depression Inventory scores, years of education, and plasma levels of pramipexole as
covariates in all analyses involving SDIs and controls; the subgroup analyses (involving
SDIs only) included plasma levels of pramipexole as a covariate. Statistical tests were
conducted using SPSS (version 13; SPSS Inc, Chicago, Illinois) and were reported as
significant if P<.05.

ANALYSIS OF fMRI DATA
Details of the fMRI data analysis procedures are briefly summarized herein (full details,
http://www.neuroscience.cam.ac.uk/directory/profile.php?ke220). We first identified by
whole-brain analysis those brain regions where functional activation was specifically related
to the contrast of drug-related vs neutral words and strongly correlated with the behavioral
measure of attentional interference (as defined earlier). At each voxel of these behaviorally
relevant frontal and cerebellar regions, we tested the factorial effects of diagnostic group and
dopaminergic drug challenge by ANCOVA using all data on both groups. Finally, we also
tested each voxel of this frontocerebellar system to investigate factorial effects of
compulsivity (high or low) and dopaminergic drug challenge by ANCOVA in the patient
group only. These anatomically focused factorial analyses of the fMRI data are formally
analogous to parallel factorial analyses of behavioral data on attentional interference
(described earlier).

All data sets from both Stroop tasks for SDIs and controls under all drug conditions were
initially preprocessed to correct for effects of subject motion, differential slice timing, and
differences in global means.72-74 At the first single-subject level of analysis, a time series
regression model specified 2 key contrasts between correctly performed trials: (1) drug-
related words vs neutral words in the drug-word blocks and (2) color words vs neutral words
in the color-word blocks. These contrasts are equivalent to those used to generate attentional
interference scores in the behavioral data and are therefore most specific to the cognitive
control processes of interest. This design matrix, convolved with a hemodynamic response
function,75 was regressed at each voxel onto the corrected time series. The resulting maps of
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the model coefficients normalized by their standard errors for each individual were mapped
into the standard space of the Montreal Neurological Institute echo-planar imaging template
by linear affine transformation to obtain a group activation map. These activation maps
included all participants under all drug treatments to identify brain regions that were
significantly activated by contrast 1 (drug-word Stroop task) and by contrast 2 (color-word
Stroop task) using a permutation test on spatial statistics (http://
www.neuroscience.cam.ac.uk/directory/profile.php?ke220).

We used the activation map of the drug-word Stroop task contrast to define a mask (shown
as red voxels in Figure 2) and regressed the median attentional interference score for each
individual on the individual activation statistics at each voxel in this mask. This procedure
identified a set of voxels that were both generically activated by the task and significantly
associated with variability in attentional interference (shown as yellow voxels in Figure 2).
The mean activation statistic over all voxels associated with attentional interference was
calculated for each participant and used as a dependent variable in ANCOVA models that
tested the effects of group, drug, and drug×group interaction on brain activation in these
regions. The same regional activation statistics were also used as dependent variables in
ANCOVA models that tested the effects of subgroup (eg, high or low compulsivity), drug,
and drug×subgroup interaction on brain activation.

RESULTS
BASELINE IMPULSIVITY, COMPULSIVITY, AND MOOD

As expected from previous research,49 SDIs reported significantly higher levels of
impulsivity on the Barratt Impulsiveness Scale than controls. Stimulant-dependent
individuals also generally reported high levels of compulsivity of stimulant abuse on the
Obsessive Compulsive Drug Use Scale, whereas healthy controls did not show strong
obsessive-compulsive traits, as assessed by the Yale-Brown Obsessive Compulsive Scale
(Table 3). Although participants with clinical depression were excluded from the study,
SDIs reported higher scores on depressive mood, as assessed at baseline by the
Montgomery-Asberg Depression Rating Scale77 and corroborated by serial scores on the
Beck Depression Inventory–II71 before each treatment session (F2,34=21.50; P<.001).

SUBJECTIVE EFFECTS OF DRUG TREATMENT
Dopaminergic challenge drugs had no significant effects on subjective alertness,
contentedness, or calmness scales. There were also no significant group differences or
drug×group interactions on any of these measures (http://www.neuroscience.cam.ac.uk/
directory/profile.php?ke220). There was no evidence for induction of craving by
performance of the drug-word Stroop task and no effect of dopaminergic challenge drugs on
self-reported craving.

BEHAVIORAL DATA FOR THE STROOP TASKS
In the drug-word Stroop paradigm, SDIs showed a marked attentional bias toward drug-
related cues compared with controls (Figure 2A). Thus, across all 3 short-term treatment
conditions, SDIs demonstrated significantly longer latency than controls in correctly
identifying the font colors of drug-related words compared with their responses to neutral
words (Table 1). Drug users did not make more errors on the drug-word Stroop task than
controls. The significant drug×group interaction for accuracy was driven by controls who
showed a tendency to make fewer errors while taking amisulpride relative to placebo
(F1,14=3.48; P=.08). On the color-word Stroop paradigm, no main effect of group and no
drug×group interaction were identified (Table 1).
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fMRI DATA FOR THE DRUG-WORD AND COLOR-WORD STROOP TASKS
The brain regions activated by drug words (relative to neutral words) included the left
ventral and dorsal prefrontal cortex and precentral cortex; anterior cingulate, medial
prefrontal, and premotor cortex; posterior cingulate and medial posterior parietal cortex;
bilateral middle and inferior temporal cortex; left thalamus and caudate nucleus; and right
cerebellum (Table 4 and http://www.neuroscience.cam.ac.uk/directory/profile.php?ke220).
Within this pattern of brain activation, attentional bias for drug words was most strongly
associated with greater activation of the left ventral prefrontal cortex (Montreal Neurological
Institute coordinates [x, y, z] in millimeters: −46, 26, 12; −44, 22, −8; and −40, 6, 30) and
right cerebellum (x, y, z: 22, −80, −40) (Figure 2B and C). We fitted an ANCOVA model to
test for significant main and interactive effects of group and dopaminergic drug challenge on
these regions of activation. Only the effect of group was significant: SDIs had greater task-
related activation of the left ventral prefrontal cortex and right cerebellum compared with
controls (F1,31=6.40; P<.05) (Figure 2D and http://www.neuroscience.cam.ac.uk/directory/
profile.php?ke220).

In the color-word Stroop task, the only brain area activated in all participants was the left
cerebellum (x, y, z: −4, −46, −40) (Table 5). We did not find a significant relationship with
attentional interference scores in this locus of activation and therefore did not investigate it
any further.

EFFECTS OF IMPULSIVITY AND COMPULSIVITY ON STIMULANT DEPENDENCE
To investigate possible effects of individual differences in baseline measurements of
impulsivity on drug-related attentional bias, we divided the SDIs into low- and high-
impulsivity subgroups by a median split on their total Barratt Impulsiveness Scale scores.
The high- and low-impulsivity subgroups were not significantly different on any other
demographic or clinical variables (http://www.neuroscience.cam.ac.uk/directory/
profile.php?ke220). There were no significant differences between impulsivity subgroups in
latency or accuracy of response to the drug-word Stroop test and there were no significant
drug×impulsivity subgroup interactions (Table 2).

Likewise, we also divided the SDIs into high- and low-compulsivity subgroups by a median
split on their total Obsessive Compulsive Drug Use Scale scores; the compulsivity
subgroups were not significantly different on any other baseline variables (http://
www.neuroscience.cam.ac.uk/directory/profile.php?ke220). However, there was a
significant subgroup effect on attentional interference during the drug-word Stroop test; the
high-compulsivity subgroup demonstrated significantly greater attentional bias to drug-
related related words (Figure 3A) (Table 2). There was also a significant drug×compulsivity
subgroup interaction whereby the dopaminergic agents had markedly different effects on
attentional bias in high- and low-compulsivity subgroups. Post hoc analysis indicated that
this interaction was due to different effects of pramipexole in the 2 subgroups: low-
compulsivity SDIs showed no attentional bias, whereas in high-compulsivity SDIs, response
latencies for drug-related words were increased (F1,15=9.80; P<.05).

The effects of compulsivity on attentional bias for drug-related words were followed up by
an analysis of subgroup effects on brain activation in the frontocerebellar regions previously
defined. We found a significant drug×compulsivity subgroup interaction on brain activation
in the left ventral prefrontal cortex and right cerebellum (F2,30=3.36; P<.05) (Figure 3B).
Post hoc analysis showed that this interaction also was mainly driven by pramipexole, which
caused a significant reduction in frontocerebellar activation compared with placebo in the
low-compulsivity subgroup (t8=2.34; P<.05) and the opposite effect of increased prefrontal
activation, in the high-compulsivity subgroup (t8=−0.77; P>.05).
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COMMENT
Using 2 versions of the Stroop paradigm for testing attentional control, we confirmed that
SDIs had significantly greater attentional bias in favor of drug-related cues,20,21,23,63,80

reflected in greater attentional interference scores on the drug-word Stroop test (Figure 2A).
Moreover, this impairment of attentional control in people with stimulant dependence was
specific to drug-related cues and did not generalize to their performance on the color-word
Stroop task. Thus, it seems that there is a clinically relevant impairment of attentional
control in stimulant dependence21 that does not simply reflect the global impairment in
attentional function that has been associated with stimulant dependence.81,82

We were also able to show, using fMRI, that greater attentional bias for drug-related words
was associated with greater activation of the right cerebellum, a brain area that is implicated
in Stroop task interference control,83-86 and the left ventral prefrontal cortex or inferior
frontal gyrus, a brain area that is implicated in the retrieval of semantic knowledge87-89 and
the processing of word meaning.90-92 This neurocognitive association was demonstrated by
the contrast between SDIs and controls: SDIs had significantly greater frontocerebellar
activation (Figure 2D) as well as significantly greater attentional interference scores (Figure
2A) and attentional interference was positively correlated with frontocerebellar activation
over all subjects in both groups (Figure 2C). Although abnormal inferior frontal gyrus
activation during the disorder-related Stroop paradigm has been identified in various groups
of psychiatric patients,68,69,93 overactivation of left inferior frontal gyrus when identifying
font colors of drug-related words might be specific for stimulant dependence. Left inferior
frontal gyrus overactivation in stimulant users has also been reported in response to cocaine-
related videos94 or imagery95 relative to neutral cues or when a stimulant drug was
administered unexpectedly.96

COMPULSIVITY OF DRUG ABUSE AND FRONTOCEREBELLAR SYSTEMS
We also found that SDIs with a highly compulsive pattern of stimulant drug abuse generally
had greater attentional bias for drug-related words (Figure 3A). Moreover, the high- and
low-compulsivity subgroups differed markedly in their response to single-dose challenges of
pramipexole and amisulpride: most saliently, pramipexole increased attentional interference
and frontocerebellar activation in highly compulsive SDIs, whereas in low-compulsivity
SDIs, pramipexole had the opposite effect, tending to reduce or “normalize” attentional
interference and frontocerebellar activation. How can we explain the different effects of
these drugs on attentional interference and related brain activation in high- and low-
compulsivity subgroups of SDIs?

At a mechanistic level, the normalizing effect of pramipexole on attentional bias and related
frontocerebellar systems in low-compulsive SDIs could be achieved by 1 of 2 main actions.
If there is relatively deficient striatal dopamine neurotransmission in this subgroup,
consistent with findings recently reviewed by Narendran and Martinez,97 that impairs the
function of the associated corticostriatal “loops,” the dopamine D2/D3 agonist could restore
normal function via its postsynaptic action.98 Alternatively, given that the SDIs were not in
a withdrawal state, it is conceivable that they were exhibiting upregulation of striatal
dopamine neurotransmission at the synapse and that the relatively low dose of the dopamine
agonist restored normal functioning by its presynaptic action at dopamine D2
autoreceptors.99,100 However, the D2/D3 receptor antagonist, amisulpride, generally had
opposite effects to those of pramipexole, perhaps favoring the former hypothesis.

Clearly, neither of these hypotheses could account for the opposite effects of pramipexole in
the high-compulsivity subgroup. One hypothesis that might explain this is that highly
compulsive individuals have developed a dopamine receptor sensitivity that could lead to an
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exaggerated and pathological response to pramipexole. Similar observations of postsynaptic
supersensitivity have been described in patients with Parkinson disease who compulsively
overdose their dopamine agonist medication.58 The consistent finding of reduced D2/D3
receptor binding in stimulant dependence36,38,97,101 argues against this interpretation.
However, recent preclinical studies have demonstrated that a long-term regimen of
amphetamine exposure does lead to an increase in activation of the high-affinity state of
striatal D2 receptors.102 Regardless of these considerations, it is evident that heterogeneity in
response to dopaminergic agents clearly has to be taken into account when interpreting the
studies of dopamine neurotransmission in stimulant abusers and indeed may help to resolve
some of the inconsistencies in the field.97

THERAPEUTIC IMPLICATIONS
One general therapeutic implication of these results is that dopaminergic drugs might have
value in controlling the attentional bias toward stimulant-related cues that has previously
been shown to predict relapse following a period of abstinence.21 For example,
dopaminergic agents could reduce the risk of attentional capture by relapse-provoking cues
and thereby promote maintenance of abstinence. The observation that we did not find a
relationship between attentional bias and self-reported craving may not be unusual given
that many aspects of compulsive drug taking occur through automatic or habitual
processes.54,103,104 Our data further suggest that the therapeutic effects of dopaminergic
drugs could be strongly influenced by the baseline compulsivity of stimulant drug use
(which can vary considerably within a group homogenously defined as satisfying DSM-IV
criteria for stimulant drug dependence). This finding also has potential implications for early
clinical trial design in the development of new candidate therapeutics for stimulant
dependence: greater statistical power for tests of therapeutic efficacy might be achieved by
sampling psychologically stratified, eg, high- or low-compulsivity, groups of patients.

METHODOLOGICAL ISSUES
Strengths of the study include the balanced, gparallel-groups, crossover design; the use of
psychological test paradigms theoretically focused on cognitive mechanisms of special
relevance to drug dependence; the choice of pharmacologically contrasting dopaminergic
challenge drugs; and the well-characterized group of stimulant users. Weaknesses of the
study include modest sample size, which has probably constrained the statistical power of
the experiment, although the repeated-measures design generated 108 (36×3) behavioral and
neuroimaging observations to assess factorial effects of interest. This is a large number of
observations by comparison with other neuroimaging studies of stimulant dependence. The
dose of pramipexole dihydrochloride was reduced during the course of the experiment, from
1.5 mg to 0.5 mg, because of the occurrence of adverse effects at the starting dose. This
difference in dose was associated with proportional changes in pharmacokinetic measures of
exposure, which were subsequently included as covariates in ANCOVA models to control
for any effects of dose on behavioral or brain functional differences between groups.

Although SDIs were carefully selected according to eligibility criteria that excluded
comorbid Axis I disorders and alcohol and opiate dependence, there was still a degree of
heterogeneity within the SDI group in terms of their stimulant drug of choice (cocaine or
amphetamine) and its source (3 amphetamine users were prescribed amphetamine for harm
reduction). This clinical heterogeneity motivates our analysis of individual differences in
compulsivity and impulsivity of drug use; however, it also presents a constraint on the
generalizability of our results. The observation that high- and low-compulsivity SDIs did not
differ in terms of drug-taking histories or clinical symptoms may seem surprising but similar
observations have been made with regard to craving in the presence of drug-related cues,
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which seems not to be reflected in clinical or demographic variables but in biological
differences of cue-induced dopamine release in the striatum.35

In relation to the cognitive tests, one may argue that a lack of familiarity of drug words in
controls may have affected the results. This seems unlikely since previous research has
shown that the interference effect for the drug-word Stroop task is specific to drug-
dependent individuals and independent from the familiarity of words.105,106 It is still not
clear whether drug-related compulsivity is similar to compulsive behavior observed in
patients with obsessive-compulsive disorder, a disorder that has also been associated with
dopamine dysfunction.107-109 In our healthy controls, however, the Yale-Brown Obsessive
Compulsive Scale has been shown to be insensitive for obsessive-compulsive behaviors at a
subclinical level. Further studies may consider using other measures such as the Padua
Inventory,110 which assesses the spectrum rather than the severity of obsessive-compulsive
symptoms. Moreover, behavioral measures of compulsivity in stimulant dependence need to
be developed to validate the individual differences in compulsivity of drug use measured
herein by a self-report instrument (Obsessive Compulsive Drug Use Scale). For example,
future studies of SDIs might usefully also include more general cognitive measures of
attentional set shifting or reversal learning as more objective markers of compulsive
perseveration.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic of the Stroop paradigms. A, In the drug-word Stroop task, participants were
asked to identify the font colors of the drug-related words and the neutral words. B, In the
color-word Stroop task, participants were asked to identify the font colors of the color words
and the neutral words. C, Blocks of drug-related words, color words (which were always
incongruent with their font color), and neutral words were interspersed with blocks of
fixation for task presentation during functional magnetic resonance imaging.
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Figure 2.
Behavioral performance during the drug-word Stroop paradigm and task-related activation
of a frontocerebellar system associated with attentional bias for drug words (in all
participants). A, Drug users showed a significant attentional bias for drug-related words, as
reflected in higher attentional interference scores compared with the healthy comparison
volunteers. Attentional bias was measured by each volunteer’s median response latency of
correctly identified colors of drug-related words minus the median response latency of
correctly identified colors of matched neutral words. Pramipexole was given as pramipexole
dihydrochloride. B, The red voxels indicate brain regions activated by the contrast between
drug-related words and neutral words; yellow voxels indicate brain regions within this
system where activation was positively correlated with attentional interference scores on the
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drug-word Stroop task. C, Scatterplot of median attentional interference score (y-axis) vs
functional activation of the brain regions associated with attentional bias for drug words (x-
axis), which are the left ventral prefrontal cortex (Montreal Neurological Institute
coordinates [x, y, z] in millimeters: −46, 26, 12; −44, 22, −8; and −40, 6, 30) and right
cerebellum (22, −80, −40). The spatial coordinates refer to the peak voxel where the effect
size is greatest. BOLD indicates blood oxygen level dependent. D, Comparison of mean
task-related (BOLD) activation in brain regions associated with attentional bias between
stimulant-dependent individuals and healthy volunteers. Stimulant users show overactivation
in the left ventral prefrontal cortex and right cerebellum compared with controls.
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Figure 3.
Behavioral performance and task-related activation of a frontocerebellar system during the
drug-word Stroop task in high- and low-compulsivity drug users. Pramipexole was given as
pramipexole dihydrochloride. A, High-compulsivity drug users showed a different profile in
response to short-term dopaminergic treatment compared with low-compulsivity drug users,
as reflected in greater attentional bias for drug-related words relative to neutral words.
Attentional bias was measured by each volunteer’s median response latency of correctly
identified colors of drug-related words minus the median response latency of correctly
identified colors of matched neutral words. B, Dopaminergic drug effects on the left
prefrontal cortex during the drug-word Stroop task are modulated by compulsivity of
stimulant dependence. Box plots show functional activation associated with attentional bias
for drug-related words in the left prefrontal cortex (Montreal Neurological Institute
coordinates [x, y, z] in millimeters: −46, 26, 12; −44, 22, −8; and −40, 6, 30) and right
cerebellum (22, −80, −40) in high- and low-compulsivity subgroups, indicating differential
effects of pramipexole. The spatial coordinates refer to the peak voxel where the effect size
is greatest.
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Table 1

Task Performance on the Drug-Word Stroop and Color-Word Stroop Tests in Stimulant-Dependent
Individuals and Healthy Comparison Volunteersa

Dependent Variable Effect df F P Value

Drug-word Stroop task

 Attentional interference score (median latency) Drug 2, 62 1.75 .18

Drug×group 2, 62 0.28 .97

Group 1, 31 10.87 .02a

 Attentional interference score (mean latency) Drug 2, 62 1.24 .30

Drug×group 2, 62 0.27 .77

Group 1, 31 10.87 .002a

 Error rate, % Drug 2, 62 1.32 .27

Drug×group 2, 62 4.04 .02a

Group 1, 31 3.82 .06

Color-word Stroop task

 Attentional interference score (median latency) Drug 2, 62 6.14 .004a

Drug×group 2, 62 0.74 .48

Group 1, 31 0.24 .63

 Attentional interference score (mean latency) Drug 2, 60 3.08 .053

Drug×group 2, 60 0.86 .43

Group 1, 30 0.01 .94

 Error rate, % Drug 2, 62 0.05 .96

Drug×group 2, 62 1.19 .31

Group 1, 31 3.01 .09

Abbreviation: BDI-II, Beck Depression Inventory–II.71

a
Analysis of covariance modeling of factorial effects on attentional interference and accuracy (covariates: BDI-II total scores, years of education,

and plasma levels of pramipexole dihydrochloride).

b
Significant.
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Table 2

Task Performance on the Drug-Word Stroop Test in High- and Low-Compulsivity and High- and Low-
Impulsivity Subgroups of Stimulant-Dependent Individualsa

Dependent Variable on Drug-Word Stroop Task Effect df F P Value

Compulsivity

 Attentional interference score (median latency) Drug 2, 30 1.97 .16

Drug×group 2, 30 4.35 .02b

Group 1, 15 7.84 .01b

 Attentional interference score (mean latency) Drug 2, 30 3.23 .053

Drug×group 2, 30 5.55 .009b

Group 1, 15 9.14 .009b

 Error rate, % Drug 1.5, 22.1 1.42 .24

Drug×group 1.5, 22.1 0.38 .71

Group 1, 15 2.07 .17

Impulsivity

 Attentional interference score (median latency) Drug 2, 30 1.42 .26

Drug×group 2, 30 1.36 .27

Group 1, 15 1.27 .28

 Attentional interference score (mean latency) Drug 2, 30 2.44 .11

Drug×group 2, 30 1.94 .16

Group 1, 15 1.39 .26

 Error rate, % Drug 1.5, 21.8 1.79 .20

Drug×group 1.5, 21.8 1.44 .25

Group 1, 15 0.20 .66

a
Analysis of covariance modeling of factorial effects on attentional interference and accuracy (covariate: plasma levels of pramipexole

dihydrochloride).

b
Significant.

Arch Gen Psychiatry. Author manuscript; available in PMC 2013 May 28.



 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

Ersche et al. Page 23

Table 3

Demographic, Psychological, and Baseline Personality Measures for the Groups of 18 Stimulant-Dependent
Individuals and 18 Healthy Volunteers

Mean (SD) [range]

Group Healthy Comparison Volunteers Stimulant-Dependent Individuals F df P Value

Age, y 32.7 (6.9) 34.3 (7.2) 0.47 1, 34 .498

Sex ratio (male:female) 15:3 15:3 a a >.99

Ethnic ratio (white:Afro Caribbean)b 17:1 16:2 a a >.99

Employment ratio (employed:unemployed) 17:1 9:9 a a .007

Verbal intelligence quotient (NART) 108.4 (6.0) 109.0 (8.1) 0.55 1, 34 .82

Education, y 12.4 (1.8) 11.2 (1.0) 6.85 1, 34 .01

BIS-11 total score 62.0 (7.2) 82.0 (9.5) 50.4 1, 34 >.001

MADRS total score 0.9 (2.4) 5.6 (8.2) 5.49 1, 34 .03

BDI-II total score 1.1 (2.4) 9.3 (11.1) 9.50 1, 34 .004

YBOCS total score 0.1 (0.5)

OCDUS total score 26.5 (7.9)

Duration of stimulant abuse, y 11.7 (7.4) [2-26]

Frequency of stimulant abuse, d/wk 5.4 (2.0)

Age at onset of stimulant abuse, y 20.5 (5.4) [14-35]

Abbreviations: BDI-II, Beck Depression Inventory–II71; BIS-11, Barratt Impulsiveness Scale76; MADRS, Montgomery-Asberg Depression

Rating Scale77; NART, National Adult Reading Test78; OCDUS, Obsessive Compulsive Drug Use Scale62; YBOCS, Yale-Brown Obsessive

Compulsive Scale.64

a
Fisher exact test.

b
Ethnicity was recorded according to the standard practices of the study funder and sponsor. Ethnic background was neither an inclusion nor an

exclusion criterion.
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Table 4

Brain Regions Differentially Activated During the Drug-Word Stroop Task in Drug Users and Healthy
Volunteers, Irrespective of Drug Treatment

Size
(Voxel)

Max Fa x, y, z Max
Coordinates, mmb

AAL Regions

Regions Associated With Greater Activation During Indication of Font Color of Drug-Related Words vs Neutral Words

1030 44.67 −46, 42, −12 Bilateral inferior frontal gyrus (orbital, opercula, and triangular parts), left middle frontal gyrus
 (orbital part), rolandic operculum, insula, and superior temporal gyrus

722 6.29 −2, 50, −14 Bilateral middle frontal gyrus (orbital part), superior frontal gyrus (medial part), rectus gyrus,
 and anterior cingulate gyrus

221 2.99 22, −80, −46 Right cerebellum

150 3.81 −4, −52, 30 Bilateral posterior cingulate gyrus, precuneus, and left median cingulate gyrus

139 6.59 0, −22, −4 Left thalamus and caudate nucleus

100 3.89 −62, −46, 4 Left middle temporal gyrus

88 6.19 50, −32, −6 Right middle temporal gyrus and inferior temporal gyrus

87 4.29 −52, 12, 36 Left precentral gyrus, middle frontal gyrus, and inferior frontal gyrus (opercula part)

79 6.55 0, 22, 64 Bilateral supplementary motor area and superior frontal gyrus (medial part)

Regions Associated With Deactivation During Indication of Font Color of Drug-Related Words vs Neutral Words

1402 −5.36 2, 8, 10 Bilateral caudate, thalamus, hippocampus, posterior cingulate, precuneus, calcarine gyrus, left
parahippocampus, left lingual gyrus,
 left fusiform gyrus, and right cuneus

639 −3.21 44, −8, −8 Right superior temporal gyrus, inferior frontal gyrus, rolandic operculum postcentral gyrus,
 supramarginal gyrus, Herschel gyrus, insula, and putamen

427 −2.47 −2, −2, 48 Bilateral cingulate gyrus, supplementary motor area, and paracentral lobule

188 −2.71 8, −72, 54 Right precuneus, cuneus, superior parietal gyrus, and superior occipital gyrus

130 −3.34 54, −36, 52 Right inferior parietal gyrus, postcentral gyrus, and supramarginal gyrus

119 −2.97 −22, −12, 72 Left precentral gyrus, superior frontal gyrus, paracentral lobule, and postcentral gyrus

Abbreviations: AAL, Automated Anatomical Labeling79; Max, maximum.

a
Max F denotes the maximum F statistic (test statistics for task-related activation) over all voxels in each region.

b
Coordinates are given in Montreal Neurological Institute space.
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Table 5

Brain Regions Differentially Activated During the Color-Word Stroop Task in Drug Users and Healthy
Volunteers, Irrespective of Drug Treatment

Size
(Voxel)

Max Fa x, y, z Max
Coordinates, mmb

AAL Regions

Regions Associated With Greater Activation During Indication of Font Color of Incongruent Color Words vs Neutral Words

126 5.69 −4, −46, −40 Left cerebellum and vermis

Regions Associated With Deactivation During Indication of Font Color of Incongruent Color Words vs Neutral Words

431 −4.09 2, 56, −10 Bilateral middle frontal gyrus (orbital part), superior frontal gyrus (medial part),
 gyrus rectus, and anterior cingulate gyrus

Abbreviations: AAL, Automated Anatomical Labeling79; Max, maximum.

a
Max F denotes the maximum F statistic (test statistics for task-related activation) over all voxels in each region.

b
Coordinates are given in Montreal Neurological Institute space.
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