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Abstract
Energy consumption is an important consideration for battery-powered implantable stimulators.
We used a genetic algorithm (GA) that mimics biological evolution to determine the energy-
optimal waveform shape for neural stimulation. The GA was coupled to NEURON using a model
of extracellular stimulation of a mammalian myelinated axon. Stimulation waveforms represented
the organisms of a population, and each waveform’s shape was encoded into genes. The fitness of
each waveform was based on its energy efficiency and ability to elicit an action potential. After
each generation of the GA, waveforms mated to produce offspring waveforms, and a new
population was formed consisting of the offspring and the fittest waveforms of the previous
generation. Over the course of the GA, waveforms became increasingly energy-efficient and
converged upon a highly energy-efficient shape. The resulting waveforms resembled truncated
normal curves or sinusoids and were 3–74% more energy-efficient than several waveform shapes
commonly used in neural stimulation. If implemented in implantable neural stimulators, the GA
optimized waveforms could prolong battery life, thereby reducing the costs and risks of battery-
replacement surgery.

I. Introduction
Implantable neural stimulators assist thousands of individuals with neurological disorders.
These devices are battery-powered, and when the battery is depleted, the entire device must
be replaced through an invasive and expensive surgery. The frequency of battery-
replacement surgeries could be reduced by increasing the energy efficiency of stimulation,
which is dependent upon stimulation parameters such as pulse width (PW) and waveform
shape.

The relationship between energy efficiency and PW of rectangular pulses is well
documented [1–5], but the relationship between energy efficiency and waveform shape is
not as straightforward. The energy-optimal waveform shape cannot be determined
analytically due to the complexity and non-linearity of the equations that define the excitable
membrane. Also, since the number of possible waveform shapes is infinite, the energy-
optimal shape cannot be determined through a “brute force” method of testing every
possibility. For problems such as these, solutions may be found using numerical methods
known as global optimization algorithms. The goal of this study was to seek the energy-
optimal waveform shape for neural stimulation using a genetic algorithm (GA). This
algorithm was applied in a computational model of extracellular stimulation of a mammalian
myelinated axon for a wide range of PWs. The outcome of these simulations was a set of
waveform shapes that were more energy-efficient than several waveforms commonly used
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in neural stimulation. The GA waveforms could prolong the lifetime of implantable
stimulators, thus reducing the costs and risks of battery-replacement surgery.

II. Methods
A. Overview of Genetic Algorithms

Genetic algorithms seek optimal solutions through a process that mimics biological
evolution. The first generation of a GA begins with a population of candidate solutions,
which are analogous to organisms, and the “genes” of each solution are the parameters that
define the solution. Then, the fitness of each solution is evaluated with a cost function
specific to the optimization problem. Next, the solutions “mate” with one another, producing
offspring solutions that possess a combination of the parents’ genes. Then, the genes of the
offspring are mutated. Both the mating process and mutations promote a wide exploration of
the solution space to increase the chance of discovering the global optimum rather than a
local optimum. At the end of each generation, the population is partially or entirely replaced
by the offspring. Over time beneficial genes remain in the gene pool of the population while
unfavorable genes are weeded out. This process of selection and mating is repeated either
for a fixed number of generations or until the solutions converge upon a fitness value, and
the solution with the greatest fitness is the resulting estimate of the optimum solution.

B. Specific Implementation of the Genetic Algorithm
We designed a GA to seek the energy-optimal waveform shape in a computational model of
nerve fiber stimulation. Simulations of extracellular stimulation of a single myelinated
mammalian peripheral axon were run in NEURON [6] using the MRG model (fiber
diameter = 11.5 μm) [7]. Stimulation was delivered through a current-regulated point source
located within a conductive medium (300 Ω-cm) at a distance of 1 mm directly above the
center node of the fiber.

Each generation of the GA consisted of a population of 50 stimulation waveforms with fixed
pulse width (PW). Waveforms were discretized in time using a time step equal to that of the
computational model (dt = 0.002 ms), and the amplitude at each time step was represented
by a gene (e.g. the genes of an increasing ramp waveform would increase in value at a
constant rate [0 1 2…]). The values of the genes of the waveforms of the first generation
were chosen randomly from a uniform distribution between 0 and two times the cathodic
threshold of stimulation with a rectangular waveform at equivalent PW. The cost function,
F, of each waveform equaled the energy consumed by the stimulation pulse, E, plus a
considerable penalty if the waveform failed to elicit an action potential:

(1)

(2)

where P is instantaneous power, t is time, I is current, Z is load impedance, and N is the
number of discretizations (genes) of a stimulation waveform. In our simulations, the output
impedance was assumed to be linear:

(3)
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Penalty was 0 if the waveform elicited an action potential, and 1 nJ/ohm (2 to 3 orders of
magnitude larger than E) if it did not.

F was not used to select parents for mating but was used to select waveforms to survive to
the next generation. Each waveform had an equal chance of being selected as a parent to
promote a wide search of the solution space. Each offspring was produced by combining the
genes of two parents through two crossover points. Then, each gene was mutated by scaling
the value by a random value chosen from a normal distribution (μ = 1, σ2 = 0.025).
Amplitudes were never allowed to be positive, thus restricting waveforms to monophasic
cathodic pulses. At the end of each generation, all but the top 10 fittest waveforms (i.e.
smallest F) in the population were replaced by offspring waveforms.

The GA was run multiple times using several different parameters. To determine whether
the outcome of the GA was dependent on PW, we ran the GA for a wide range of PWs
(0.02, 0.05, 0.1, 0.2, 0.5, 1, and 2 ms). For each PW, the GA was run for 5 independent
trials, each for 10,000 generations and with different initial populations. For each trial, we
recorded the most energy-efficient waveform of the final generation (GA waveform) and the
energy consumed by the most energy-efficient waveform of each generation (generation
energy). For each PW, we calculated the mean and standard error of the energy consumed
by the GA waveforms across trials, and these values of energy were used to construct an
energy-duration curve. The GA energy-duration curve was compared to energy-duration
curves of waveform shapes commonly used in neural stimulation: square, increasing/
decreasing ramp, increasing/decreasing exponential, and sinusoid.

C. Population Model
The GA waveforms were tested in a model of a population of axons consisting of 100
parallel MRG axons (11.5-μm diameter) distributed uniformly within a cylinder with 3-mm
diameter. Extracellular stimulation was delivered through a point source electrode located at
the center of the cylinder. For each PW (0.02, 0.05, 0.1, 0.2, 0.5, 1, and 2 ms), 10 random
axon populations were chosen. Then, for each population, input/output (I/O) curves of the
number of fibers activated vs. energy consumed were constructed. Amplitudes were adjusted
by scaling the entire waveform. For each I/O curve, the energy required to activate 50% of
the entire population was calculated, and the means and standard errors of these values
across the 10 axon populations were computed. I/O curves were also generated for the same
populations using square, increasing/decreasing ramp, increasing/decreasing exponential,
and sinusoid waveforms, and the energy efficiencies of these waveforms and the GA
waveforms were compared.

III. Results
A. Genetic Optimization of Stimulus Waveform

By the end of each trial, the GA had converged upon a highly energy-efficient waveform
shape. The generation energy was within 1% of the final generation energy by 5000
generations for PW ≤ 0.5 ms and by 9000 generations for PW = 1 and 2 ms. For each PW,
the GA waveforms were very similar across trials, and across PWs the shapes of the GA
waveforms were also quite similar (Fig. 1). For PW ≤ 0.2 ms, the shapes of these waveforms
resembled truncated normal curves or sinusoids, with the peak near the middle of the pulse.
For PW ≥ 0.5 ms, the shapes of the GA waveforms also resembled truncated normal curves
or sinusoids but with leading and/or trailing tails of negligible amplitude. As PW increased,
the smoothness of the GA waveforms decreased.

Compared to commonly-used waveforms in neural stimulation, the GA waveforms were
more energy-efficient for all PWs. The energy-duration curve of the GA waveforms was
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concave up (Fig. 2a), and the minimum energy of this curve was less than the minimum
energies for the other waveform shapes. For PW ≤ 0.2 ms, the GA waveforms were slightly
more energy-efficient (<15%) than the other waveform shapes (Fig. 2b). Of these other
shapes, the shape that most resembled the GA waveforms—the sinusoid—was the most
energy-efficient. Between PW = 0.2 ms and 0.5 ms, the differences in energy-efficiency
between GA waveforms and the other shapes increased considerably for all shapes, and the
differences increased further with PW for all but the exponential waveforms.

Results of the GA were mostly insensitive to variations in the algorithm parameters. Neither
doubling nor halving the number of waveforms in each generation or waveforms that
survived to the next generation had substantial effects on the shape of the GA waveforms or
their energy efficiencies (< 0.1% difference). As well, the amplitudes of the waveforms in
the initial generation were scaled between 0.4 – 1.6 times the original amplitudes. Scaling
factors < 0.6 resulted in initial waveforms that were all below threshold, and the GA did not
produce an energy-efficient waveform. However, scaling factors > 0.8 had little effect on the
shape and energy efficiency (<0.1% difference) of the GA waveforms. Further, the variance
of the normal distribution used in mutations was varied between 0 – 4 times the original
variance. With variance = 0 (no mutations), the GA quickly converged on an energy-
inefficient waveform. For all other variances, the GA resulted in approximately the same
shape and energy efficiency (<0.4% difference) of the GA waveform. One factor that had a
substantial effect on energy efficiency—but not the overall shape of the GA waveform—
was the time step, dt. Smaller values of dt resulted in more energy-efficient GA waveforms
for PW ≤ 0.5 ms, as a result of finer resolution of waveform shape; and less energy-efficient
GA waveforms for PW ≥ 1 ms, due to the increased difficulty of generating smooth
waveforms.

B. Population Model
As in the single axon model, the GA waveforms were more energy-efficient than the
commonly-used waveform shapes in the population model. The most energy-efficient GA
waveform for each PW was used in the population model. The resulting energy-duration
curve of the GA waveforms was concave up with the minimum at PW = 0.5 ms (Fig. 3a).
The GA waveforms were more energy-efficient than the commonly-used waveform shapes
for all PWs, and differences in energy efficiency were approximately equal to the
differences in the single axon model with a few exceptions (Fig. 3b). These results
demonstrated that the superior energy efficiency of the GA waveforms compared to the
other waveform shapes was independent of the position of the electrode with respect to the
axon.

IV. Discussion
A genetic algorithm was used to seek the energy-optimal waveform shape for neural
stimulation. In an optimization problem where analytical methods were impossible and brute
force methods were impractical, the GA succeeded in revealing highly energy-efficient
waveforms. The resulting waveforms of the GA resembled truncated normal distributions or
sinusoids and were more energy-efficient than waveforms commonly used in neural
stimulation. For short PWs, improvements in energy efficiency were small, but for long
PWs, improvements were more substantial. With more energy-efficient waveforms, the
lifetime of implantable stimulators could be extended, which would reduce the risks and
costs of battery-replacement surgeries.

For many optimization problems, including the present problem, it is impossible to prove
that a solution is globally optimal. However, the results of this study provide strong
evidence that the GA waveforms are the most energy-efficient shapes. For all trials, the
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generation energy was within 1% of the final generation energy for >1000 generations,
indicating that each trial had converged upon at least a locally-optimal solution. As well, for
each PW, all 5 independent trials of the GA converged to approximately the same shape
(Fig. 1) and the same energy efficiency (Fig. 2a). Across PWs, all GA waveforms resembled
normal curves or sinusoids that were truncated at different points. Finally, variations in the
parameters of the GA either had negligible effects on the solutions or resulted in less energy-
efficient waveforms. Although these findings do not constitute a proof of the GA waveforms
being globally optimal, they do suggest that the GA waveforms were more than just locally
optimal.

Although the GA was mostly effective, a minor shortcoming was the lack of smoothness of
the resulting waveforms. The GA waveforms were often jagged, leading to slight reductions
in energy efficiency. The waveforms would likely have become smoother and more energy-
efficient if the GA had run for a greater number of generations. The lack of smoothness was
especially a problem for GA waveforms with long PWs on the leading and trailing tails with
low amplitude. All GA waveforms with PW = 1 and 2 ms were still able to elicit an action
potential when the tails were removed, indicating that the tails were superfluous (data not
shown). However, the GA prevented the amplitude from reaching 0. The lack of smoothness
of the GA waveforms with long PWs led to the energy-duration curve being concave up
(Fig. 2a). Theoretically, as PW increased, the energy should have either continued to
decrease or plateaued because any GA waveform generated at a given PW could be
generated with a longer PW. Despite the lack of smoothness of the GA waveforms, the GA
still revealed highly energy-efficient waveform shapes.

Several issues should be considered before the GA waveforms are implemented. As
calculated in this study, the energy efficiency did not take into account the energy consumed
by the electronic circuitry that would be required to generate the GA waveforms. When this
circuitry is considered, the GA waveforms may not be energy-optimal. Another
consideration is the charge efficiency of the GA waveforms. The charge and charge density
delivered during a stimulus pulse are cofactors in tissue damage [8, 9] and electrode
corrosion. If the GA waveforms required excessive charge, then they would not be clinically
useful, no matter how energy-efficient they were. A third consideration is whether the GA
waveforms would still be energy-efficient when delivered as one phase of a biphasic pulse.
Clinically, neural stimulation is most often delivered as biphasic pulses. The charge
recovery pulse can affect the threshold of the primary pulse, and it is unclear if changes in
threshold are dependent on the waveform shape of the primary pulse. The GA could be run
again with biphasic pulses to determine if the GA produces the same resulting waveforms.
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Fig. 1.
Energy-optimal stimulation waveforms determined with a genetic algorithm for different
PWs: 0.02, 0.05, 0.1, 0.2, and 0.5 ms (a–e, respectively). f) Waveforms for PW = 1 and 2 ms
combined. For PW ≥ 0.5 ms, the peaks of the waveforms were aligned and leading/trailing
tails of low amplitude were excluded for plotting. Curves within the gray regions represent
the means of the resulting waveforms across 5 trials, and the upper and lower curves define
95% confidence intervals.

Wongsarnpigoon and Grill Page 7

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2013 May 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Energy efficiency of the GA waveforms in single axon model. a) Energy-duration curves for
GA waveforms (mean, n=5; SE was negligible) and square waveform. b) Energy efficiency
of GA waveforms compared to waveform shapes commonly used in neural stimulation.
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Fig. 3.
Energy efficiency of GA waveforms in population model. a) Energy-duration curves for
activation of 50% of axons in randomly-selected populations (mean +/− SE; n=10). b)
Energy efficiency of GA waveforms compared to waveform shapes commonly used in
neural stimulation (mean, n=10; SE was negligible).
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